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Abstract: Landslide disasters pose a significant threat, with their highly destructive nature underscor-
ing the critical importance of timely and accurate recognition for effective early warning systems and
emergency response efforts. In recent years, substantial advancements have been made in the realm
of landslide recognition (LR) based on remote sensing data, leveraging deep learning techniques.
However, the intricate and varied environments in which landslides occur often present challenges
in detecting subtle changes, especially when relying solely on optical remote sensing images. InSAR
(Interferometric Synthetic Aperture Radar) technology emerges as a valuable tool for LR, providing
more detailed ground deformation data and enhancing the theoretical foundation. To harness the
slow deformation characteristics of landslides, we developed the FCADenseNet model. This model
is designed to learn features and patterns within ground deformation data, with a specific focus on
improving LR. A noteworthy aspect of our model is the integration of an attention mechanism, which
considers various monitoring factors. This holistic approach enables the comprehensive detection of
landslide disasters across entire watersheds, providing valuable information on landslide hazards.
Our experimental results demonstrate the effectiveness of the FCADenseNet model, with an F1-score
of 0.7611, which is 9.53% higher than that of FC_DenseNet. This study substantiates the feasibility
and efficacy of combining InSAR with deep learning methods for LR. The insights gained from
this research contribute to the advancement of regional landslide geological hazard monitoring,
identification, and prevention strategies.

Keywords: InSAR; surface deformation rate; deep learning; landslide recognition

1. Introduction

Landslide is a geological disaster characterized by sudden, rapid, and irreversible
movement. Typically occurring in terrain such as mountain slopes, river banks, or geotech-
nical slopes, landslides involve the downward sliding of soil and rocks due to the influence
of gravity or other factors. Given China’s mountainous landscape and distinctive energy
gradient, coupled with human engineering activities, the country is prone to frequent geo-
logical disasters, including landslides [1]. In 2022, China experienced a total of 5659 geolog-
ical disasters, with landslide geological disasters accounting for a significant 70%, totaling
3919 incidents. These events resulted in substantial life and economic losses [2]. Landslides,
influenced by external factors such as intense or sustained precipitation, earthquakes, and
human activities, as well as internal factors such as loose rock and soil structures and
geological structural damage, are marked by their strong destructiveness and high risk [3].
Landslides pose a significant threat to the lives of society and individuals. Such disasters
often lead to road destruction and disruptions in traffic, hindering investigators’ swift
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access to the disaster site for immediate assessments. Therefore, the rapid and timely
acquisition of landslide disaster information and the establishment of landslide inventory
maps are crucial for effective subsequent responses to landslide risks [4,5].

In recent years, extensive studies have focused on landslide recognition (LR). The
initial methods for LR involved manual visual interpretation. This method usually requires
interpreters to have rich experiences, and is subjectively influenced and time-consuming,
making it difficult to meet the needs of processing a large amount of information [6].
Subsequently, computer-aided methods were introduced. However, due to the increasingly
complex spectral features, the classification efficacy remained unsatisfactory. As computer
algorithms continued to evolve, researchers progressively integrated mainstream machine
learning algorithms into LR, encompassing artificial neural networks [7], support vector
machines [8], random forests [9], and decision trees [10]. Despite enhancing performance,
these algorithms encountered difficulties in processing extensive remote sensing (RS)
data and extracting deep-dimensional information from various image datasets. Deep
learning algorithms (DLAs) can automatically extract meaningful feature representations
from images [11]. Through the construction of deep neural networks, DLAs can acquire
sophisticated and abstract features from raw data. Research on LR based on DLAs can
be broadly categorized into three categories: classification, semantic segmentation, and
object detection. Mainstream models based on CNNs (Convolutional Neural Networks),
such as VGGNet [12], ResNet [13], DenseNet [14], have achieved notable success in remote
sensing landslide recognition (RSLR). While object segmentation methods are effective,
the accumulation of errors stemming from their reliance on predefined object features has
prompted the rapid development of pixel-based methods. These pixel-based approaches
prioritize labeling each pixel, thus capturing fine-grained information.

The semantic segmentation network initiated with a Fully Convolutional Network
(FCN) replaces the traditional fully connected layer with a convolutional layer for the first
time, and achieves end-to-end pixel-level classification [15]. Moreover, the semantic seg-
mentation encoding–decoding architecture, as exemplified by U-Net, lays the groundwork
for subsequent improvements [16]. For instance, Lei et al. used FCN and U-Net frameworks
to extract landslide features, combining them with the Pyramid Pooling module to consider
the mutual constraints between convolutional receptive fields and contextual information,
thereby improving landslide mapping [17]. Liu et al. introduced a reconstruction U-Net
model using hierarchical feature extraction for automatic extraction of post-earthquake
landslides, surpassing traditional U-Net models by 13.8% [18]. Soares et al. delved into the
effectiveness of a fully convolutional deep learning model based on U-Net in mountain
landslide inventory maps, conducting experiments with patch pixels of varying sizes [19].
Qi et al. innovatively utilized residual learning blocks to replace each convolutional layer
of the U-Net baseline model’s encoding path. By integrating environmental information,
they generated disaster maps, effectively circumventing model degradation resulting from
limited landslide samples training [20]. The continual refinement and exploration of these
methods contribute to the provision of more accurate and efficient solutions for LR.

Landslide recognition, as a pivotal task in geological disaster monitoring, plays a
crucial role for early warning and disaster prevention. Currently, the main method is
to combine optical remote sensing images and influencing factors. This combination,
considering the spectral and spatial characteristics of landslide, is employed to monitor
landslide-prone areas and effectively identify them [21]. However, the environments
where landslides occur are often complex, marked by significant variations in landforms,
vegetation, and land use types. Furthermore, adverse weather conditions, particularly
cloud cover, can impede the quality and availability of optical RS images, rendering it
challenging to capture changes on the surface.

To overcome these limitations, researchers have turned their attention to other RS data
and technologies. InSAR (Interferometric Synthetic Aperture Radar) stands out as a RS tech-
nology based on Synthetic Aperture Radar data. By analyzing the phase difference of radar
signals, InSAR observes subtle changes in surface deformation, reflecting alterations in
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underground geological structure and surface motion. This approach offers crucial insights
into landslide activity and proves to be a potent and effective technical tool. Currently,
applications like D-InSAR (Differential Interferometric Synthetic Aperture Radar) [22],
PS-InSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) [23], SBAS-InSAR
(Small Baseline Subset Interferometric Synthetic Aperture Radar) [24], developed based
on InSAR methods, are widely used. In terms of geological disaster research, InSAR
technology is mainly used for long-term deformation monitoring and characterization.
Liu extracted two-dimensional deformation features of landslides using LOS/ALSAR-1
and ALOS/ALSAR-2 images under a new offset tracking method [25]. Dai used SBAS
InSAR to monitor the surface deformation area of Zhouqu County, analyzed its deforma-
tion characteristics and triggering reasons, and identified 23 active landslide deformation
characteristics [26]. Lattari combined with long short-term memory to model InSAR time
series and achieve continuous monitoring of landslides [27]. In addition, Cai proposed
an integrated algorithm for landslide multi-source displacement optimization estimation
based on the Kalman filter, which integrates displacement observation results from multi-
ple platforms into a unified time series to achieve high temporal resolution monitoring of
landslide motion [28]. Liu used the DS-InSAR method to monitor and analyze the Woda
landslide area, and the density of monitoring points in the ascending and descending orbit
data increased by 25.1% and 22.9%, respectively, providing more accurate monitoring of
landslide deformation [29].

Landslide recognition requires the support from multiple sources of data and methods.
The comprehensive utilization of multiple data sources and technical means can signifi-
cantly improve the landslide identification ability and reliability of results [30]. The factor
systems commonly utilized in numerous studies primarily focus on external triggering
factors and internal geological factors. However, these factor systems may not adequately
capture the intricate evolution and deformation processes of landslides themselves. In-
SAR technology can capture small surface deformation information, and deep learning
methods can obtain the intrinsic feature representation of landslides. Therefore, this study
combines InSAR technology and deep learning methods, utilizing the surface deformation
information obtained by InSAR technology as an internal indicator for landslide analy-
sis. Combining RS images and geological factor data, regional landslide sample data are
established to explore the coupling effect between it and other breeding factors; Based
on deep learning methods, a dense connected semantic segmentation network based on
full convolution is proposed, and attention mechanism is introduced to integrate various
monitoring factors for landslide recognition and analysis. This comprehensive method
can fully utilize the advantages of different data sources and technical means, provide
comprehensive landslide analysis and evaluation, and provide strong support for landslide
prevention and disaster management.

2. Study Area and Data
2.1. Study Area

The Baihetan Reservoir Area (BRA) is located in the border area between Sichuan
Province and Yunnan Province in China, adjacent to five counties (districts): Huidong
County, Ningnan County, Qiaojia County, Huize County, and Dongchuan District (Figure 1).
This region lies between the Wumeng Mountains and the Lunan Mountains within the
Hengduan Mountains, positioned on the southeastern edge of the Qinghai Tibet Plateau. It
falls within the high mountain and plateau geomorphic units of southwestern Sichuan and
northeastern Yunnan. The terrain exhibits significant variations, marked by complexity,
with most mountain peaks surpassing an elevation of 2000 m. The BRA is situated in
the Jinsha River Basin, encompassing a broad distribution of water systems, including
tributaries such as Xiaojiang River and Pudu River, along with well-developed gullies.
This area experiences a typical subtropical humid and alpine climate due to its undulating
terrain, high mountains, deep valleys, and abundant precipitation. The combination of
these factors makes it susceptible to elevated river water levels, impacting steep terrain and
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unstable slope. The dynamic geological environment and intricate water system contribute
to the BRA being a high-risk area for landslide disasters [31]. Consequently, effective
identification and analysis of landslides in this area are paramount for proactive prevention
and response measures.
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Figure 1. Location of the study area.

2.2. Data and Preprocessing

In order to detect landslides in the BRA, this study mainly collected Sentinel-1 images
to offer surface deformation information, Sentinel-2 images to provide surface feature
details. Digital elevation model (DEM) and regional geological maps, as well as derived
factors were incorporated to furnish geological structure information. Table 1 outlines the
main data sources and information utilized in this study.

Table 1. Data information.

Data Information Number/Cloud Coverage Resolution Data Source

Sentinel-1 9 January 2021–29 May 2023 103 scenes 5 m × 20 m

European Space Agency
Sentinel-2

20230529T034541_T48RTR 0.7637%

10 m
20230529T034541_T48RUR 1.2485%
20230521T033539_T48RTQ 0.0565%
20230521T033539_T48RUQ 0.4099%

DEM / 12.5 m Alaska Satellite Facility
Lithology / / Geologic Map

The deformation data in this study are derived from Sentinel-1 image provided by
the European Space Agency. Sentinel-1A possesses all-weather observation capabilities,
making it widely used in surface monitoring [32]. SBAS-InSAR, employed in this study, is
an InSAR time series analysis technique based on multiple main images [33]. Its principle
involves calculating the time and spatial baselines of multi-scene SAR images in different
time periods within the coverage area. Subsequently, differential interference processing
and phase unwrapping are performed on the selected interference pairs. A series of subsets
are generated based on the time and spatial baselines, and the least squares method is
used to estimate deformation parameters. The final step involves inversion calculation and
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geocoding to obtain deformation results. To ensure the data source base for SBAS-InSAR
technology processing and the accuracy of obtaining surface deformation information
in the study area, 103 Sentinel-1A images from 9 January 2021 to 29 May 2023, were
selected. The imaging mode was interferometric wideband imaging (IW) with a resolution
of 5 m × 20 m, a central incidence angle of 39.17◦ and VV single polarization mode. In
the SBAS-InSAR method, the threshold for time baseline and spatial baseline is 60 days
and 0–2%, respectively. With these limitations, a total of 310 interferograms are generated
from the data, revealing a deformation rate in the study area ranging from −136.52 to
44.14 mm/year, as shown in Figure 2a. Based on the surface deformation results obtained
from the above process, we selected the areas with obvious deformation and combined
optical and Google Earth images for verification, and delineated landslide samples.
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The formation of landslides is a complex outcome involving the interaction of multiple
factors. Exploring the relationship between internal and external factors and the occurrence
of landslides enhances the accuracy of LR [34]. Therefore, optical images and geological
factors were also chosen as landslide causative factors (LCFs), conducting LR together with
deformation rate.

Sentinel-2 images are also sourced from the European Space Agency, encompassing
a total of 4 scenes across the entire study area, with imaging dates of 21 May 2023 and
29 May 2023. Following preprocessing steps such as radiometric calibration and atmo-
spheric correction, bands 2, 3, 4, and 8 with a resolution of 10 m were selected for band
fusion, cropping, and embedding to enhance interpretability. Additionally, the DEM used
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in this study was obtained from the Alaska Satellite Facility, featuring a spatial resolution of
12.5 m. Given the close relationship between the occurrence of landslide geological disasters
and LCFs, this study selected DEM-derived factors such as slope, aspect, curvature, and
geological lithology maps as LCFs for LR. All LCFs were underwent processing based
on ENVI5.3, SARscape platform and ArcGIS10.7, and the results were visualized using
ArcGIS10.7 (Figure 2).

To ensure pixel position matching, the spatial resolution of all factors was resampled
to 12.5 m. To standardize the data distribution across different dimensions and expedite the
convergence speed of the model, the Z-score method was used to normalize each channel
of input data [35]. Given the relatively small proportion of landslide samples, a data
augmentation strategy was adopted to generate more training samples. This experiment
utilized a sliding window size of 128 × 128 to scan and generate non-overlapping sample
blocks. Divide landslide and non-landslide samples at a ratio of 7:3, and then combine 70%
of the selected samples into the training dataset to learn landslide characteristics.

3. Method

This study is organized into three main components: data collection and processing,
model training, predictive evaluation (Figure 3). The first part is data collection and pro-
cessing, mainly including radar satellite data collection and processing in the research
area, image and deformation data acquisition, sample annotation, and geological factor
extraction. The second part is the model construction, a new FCADenseNet model is es-
tablished based on semantic segmentation, incorporating attention modules. Additionally,
three commonly used semantic segmentation networks are selected for comparison. The
third part involves predictive evaluation, wherein the trained model is employed to predict
the entire research area. Five evaluation metrics (EMs) for assessment of the performance
of the LR models, and the LR map are generated based on the predictions.
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3.1. Selection of LCFs

The selection of LCFs has an important impact on the overall performance of the model.
When factors exhibit high correlation, indicating a strong linear or non-linear relationship
between them, it not only burdens the model with excessive data but also interferes
with the weight allocation of different features during the feature learning process [36].
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Consequently, this study conducted correlation analysis, collinearity test, and importance
evaluation on the LCFs.

(1) Correlation analysis: Pearson correlation coefficient, also known as Pearson product
moment correlation coefficient (PPMCC), serves as a metric for quantifying the linear
correlation between two variables, denoted as X and Y. The correlation values range from
−1 and 1, indicating the strength and direction of the relationship between the variables [37].
This coefficient is determined by evaluating the covariance and standard deviation of the
two sets of data, as illustrated in Formula (1):

PPMCC =
cov(X, Y)

σXσY
=

∑n
i=1

(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1

(
Yi − Y

)2
(1)

where n is the total number of samples, and cov(X, Y) represents the covariance between
variables X and Y. Additionally, σX , σY signify the standard deviation of all samples. X and
Y denote the average values of all samples.

(2) Collinearity test: Multicollinearity refers to the linear correlation among indepen-
dent variables [38]. It involves examining tolerance (TOL) and variance inflation factor
(VIT) between selected factors, which exhibit a reciprocal relationship. The calculation
method of VIF is shown in Formula (2). The closer the VIF value is to 1, the weaker the
correlation among the data, while a higher value indicates a more pronounced correlation.

VIF =
1

1 − R2
i

(2)

where R2
i represents the i-th variable and obtains the corresponding decision coefficient in

the linear regression model.
(3) Importance evaluation: Factors have different contributions to the performance of

the model, and the importance of LCFs is ranked using the Gini index in the random forest
model [39]. If a feature is frequently selected for node partitioning in the construction of
random forests and can improve model performance after partitioning, then this feature
is likely to be an important feature. Conversely, if a feature is rarely selected in the
construction of a random forest or has little impact on model performance after partitioning,
then this feature is likely to be an unimportant feature. By employing this approach, we
can rank the importance of features.

3.2. FCADenseNet

The model initially incorporates fundamental concepts from DenseNet and ResNet,
establishing connections between feature maps (FMs) at different levels through dense
connections. This design enables each layer to directly access information from all previous
layers. Simultaneously, the incorporation of residual connections aims to address the
gradient dispersion problem that may arise with deepening the network. The architec-
ture of the FCN encoder–decoder is subsequently retained, transforming the conventional
DenseNet into a model well suited for image segmentation tasks. This adaptation al-
lows for the generation of pixel-level segmentation predictions, effectively fusing spatial
characteristics [40].

However, the dense feature reuse and connections may result in the loss of original in-
formation. Moreover, the smoothing and interpolation operations during the up-sampling
process can cause the blurring of edge information. Although the model’s emphasis on
learning deep semantic information, it is crucial to preserve detailed information. Con-
sequently, an attention module is introduced to both the decoding and encoder skip con-
nection sections, with the weight adjusted to learn without unduly increasing the model’s
complexity. This strategic enhancement aims to better leverage low-level fine information
and high-level semantic features. Figure 4 shows the overall model structure.
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Figure 4. FCADenseNet network architecture.

The FCADenseNet model mainly consists of four modules: Dense Block (DB), Transi-
tion Down (TD), Transition Up (TU), and attention mechanism. In the DB, the FMs of each
layer are densely connected to the FMs of all previous layers, to facilitating optimal infor-
mation transmission (Figure 5). This dense connection method significantly augments the
number of connections in the network, allowing each layer to directly access information
from all previous layers. Leveraging features from previous layers enhances the expression
ability of each layer, resulting in the extraction of richer semantic information. The formula
governing this process is as follows:

XL = Fl([X0, X1, . . . , XL−1]) (3)

where [X0, X1, · · · , XL−1] refers to the dense connections of the FMs of layers 0,. . ., L − 1. Fl
represents a combination of non-linear transformation functions: three operations are batch
normalization (BN), ReLU activation function, and 3 × 3 Convolution convolutions [41,42].
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Following the dense connections, each layer Fl produces k FMs, referred to as growth
rates, which are hyperparameters. Generally, opting for a smaller k tends to yield superior
performance. To mitigate an upsurge in feature computation due to redundant learning,
an internal 1 × 1 convolutional bottleneck layer is incorporated for feature compression.

The TD module employs a convolution operation akin to the DB module. It is distin-
guished by reducing the number of channels in the FM through a 1 × 1 convolution layer
and a max-pooling operation, effectively diminishing reducing network parameters. In the
decoder, TD and DB modules are arranged alternately, facilitating the extraction of global
information from the input data. The decoder part is a combination of TU and DB modules.
The TU module uses 3 × 3 convolutional layers and 2 × 2 up-samplingup-sampling lay-
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ers to systematically restore low resolution FMs to their original resolution. The overall
structure is shown in Figure 6.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 18 
 

 

𝑋 = 𝐹 ([𝑋 , 𝑋 , … , 𝑋 ])  (3)

where [𝑋 , 𝑋 , ⋯ , 𝑋 ] refers to the dense connections of the FMs of layers 0,…, L − 1. 𝐹  
represents a combination of non-linear transformation functions: three operations are 
batch normalization (BN), ReLU activation function, and 3 × 3 Convolution convolutions 
[41,42]. 

 
Figure 5. Dense Block block structure. 

Following the dense connections, each layer 𝐹   produces k FMs, referred to as 
growth rates, which are hyperparameters. Generally, opting for a smaller k tends to yield 
superior performance. To mitigate an upsurge in feature computation due to redundant 
learning, an internal 1 × 1 convolutional bo leneck layer is incorporated for feature com-
pression. 

The TD module employs a convolution operation akin to the DB module. It is distin-
guished by reducing the number of channels in the FM through a 1 × 1 convolution layer 
and a max-pooling operation, effectively diminishing reducing network parameters. In 
the decoder, TD and DB modules are arranged alternately, facilitating the extraction of 
global information from the input data. The decoder part is a combination of TU and DB 
modules. The TU module uses 3 × 3 convolutional layers and 2 × 2 up-samplingup-sam-
pling layers to systematically restore low resolution FMs to their original resolution. The 
overall structure is shown in Figure 6. 

 
Figure 6. Transition Down, Transition Up structure. 

Spectral and spatial features contained in different terrain characteristics in RS data 
are represented differently in FMs. The recognition ability will be greatly improved by 
pinpointing significant features of landslide objects in specific bands and spatial dimen-
sions. To optimize the utilization of both low-level fine information and high-level seman-
tic features, the Convolutional Block A ention Module (CBAM) [43] has been introduced 
to the shallow FMs in the skip connection section after the TU module. It is an efficient 
module suitable for feedforward neural networks, where the given feature map infers the 
a ention map along two independent dimensions, and then multiplies the a ention map 
with the input feature map for adaptive feature optimization. This is achieved through 
the learning of weights or a ention distribution, facilitating the extraction and accentua-
tion of key landmark features [44]. The structure of this a ention module is shown in Fig-
ure 7. The channel a ention component dynamically adjusts the importance level of chan-
nels in the FMs, while the spatial a ention part underscores the significance of spatial 

Figure 6. Transition Down, Transition Up structure.

Spectral and spatial features contained in different terrain characteristics in RS data
are represented differently in FMs. The recognition ability will be greatly improved by
pinpointing significant features of landslide objects in specific bands and spatial dimensions.
To optimize the utilization of both low-level fine information and high-level semantic
features, the Convolutional Block Attention Module (CBAM) [43] has been introduced
to the shallow FMs in the skip connection section after the TU module. It is an efficient
module suitable for feedforward neural networks, where the given feature map infers the
attention map along two independent dimensions, and then multiplies the attention map
with the input feature map for adaptive feature optimization. This is achieved through the
learning of weights or attention distribution, facilitating the extraction and accentuation of
key landmark features [44]. The structure of this attention module is shown in Figure 7.
The channel attention component dynamically adjusts the importance level of channels in
the FMs, while the spatial attention part underscores the significance of spatial positions in
the FMs, and the pooling operation can generate information feedback for each pixel. By
focusing on these key features, the information contained in the shallow FMs is emphasized,
effectively mitigating information loss caused by the up-sampling process in the FM and
improving overall model performance. Ultimately, the class distribution of each pixel is
derived through sigmoid non-linear mapping.
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3.3. Evaluation Metrics

Five commonly used evaluation metrics (EMs) were chosen to quantitatively evaluate
the performance of the proposed LR method. These metrics include the precision (Pre),
recall (Rec), F1-score (F1), Kappa coefficient (Kappa), and mean intersection over union
(MIoU). These five EMs are defined as follows.

Pre refers to the proportion of correctly predicted positive samples to the total number
of predicted positive samples. Rec refers to the proportion of correctly predicted positive
samples to all positive samples. Usually, in order to comprehensively evaluate the per-
formance of classification models, F1 is used to evaluate the model. When F1 is high, the
model performs well [45]. The calculation formulas of these three EMs are as follows:

Pre =
TP

TP + FP
(4)
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Rec =
TP

TP + FN
(5)

F1 = 2 × Pre × Rec
Pre + Rec

(6)

where TP is the number of correctly predicted positive samples, TN is the number of
correctly predicted negative samples, FN is the number of predicted negative samples, and
FP is the number of predicted positive negative samples.

Kappa coefficient is a method of evaluating consistency, ranging from [–1, 1]. The
higher the value of the coefficient, the higher the classification accuracy achieved by the
model [46]. Kappa coefficient and overall accuracy are mutually verified, and the results
are objectively evaluated. The formula is as follows:

kappa =
po − pe

1 − pe
(7)

po =
TP + TN

TP + TN + FP + FN
(8)

pe =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)

n2 (9)

MIoU calculates the ratio of the intersection and union of pixels in each category, and
averages the results of all categories to obtain the final MIoU value [47]. When the true and
predicted values are the same, the MIoU value is 1, indicating a perfect match in an ideal
situation. The formula is as follows:

MIoU =
1
2
×

(
TP

TP + FN + FP
+

TN
TN + FN + FP

)
(10)

3.4. Experiment Setting

The construction of the experimental platform mainly includes three key aspects: hard-
ware configuration, running environment setup, and parameter settings. The experimental
code was written using the Python programming language, executed on the Pycharm2021
software, and built upon the Keras framework within TensorFlow. Firstly, the network
weights are randomly initialized. The classifier of the network uses the sigmoid function,
which is suitable for binary classification problems. The binary cross-entropy function is
chosen as the loss function for LR. Using Adam algorithm as the optimization algorithm,
the learning rate is 0.0001, the batch size is 8, and the network weights are fine tuned. Ad-
ditionally, a Dropout layer with a value of 0.2 is incorporated during training to streamline
the model and mitigate gradient disappearance. Finally, the ModelCheckpoint function is
selected to monitor changes in the loss function and automatically save the model.

4. Results and Analysis
4.1. Analysis of LCFs

In this study, PyCharm 2020 was employed to calculate correlations, VIF, and TOL
among the selected factors. Figure 8 shows the PPMCC visualization thermal map of
six LCFs in the study area, including deformation rate. Positive and negative values
represent the positive and negative correlation between the data, while the depth of the
color indicates the strength of these correlations. Specifically, the deformation rate is
positively correlated with elevation and slope features, with correlation coefficients of
0.19 and 0.14, respectively. It indicates that with the increase in height and slope in the
region, the rate of surface deformation also rises. Relatively high elevations and steep slopes
have a certain correlation with the occurrence of landslide events, which is reflected in
surface deformation. Consequently, selecting elevation and slope features as discriminant
factors proves beneficial for LR.
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Table 2 shows the VIF and TOL values for the six LCFs. The results indicate a weak
positive correlation among the selected LCFs. The VIF and TOL values for each LCF
approach 1, indicating that the correlation among the selected LCFs in this study is not
strong. There is no need for removal through multicollinearity testing, affirming the
robustness of the chosen factors in the analysis.

Table 2. Multicollinearity test results of factors.

Deformation Rate Elevation Slope Aspect Curve Lithology

VIF 1.074 1.044 1.031 1.002 1.007 1.028
TOL 0.931 0.957 0.970 0.998 0.993 0.973

The importance ranking distribution of each LCFs in the study area is shown in
Figure 9, with the highest importance value for surface deformation rate, followed by eleva-
tion and curvature. A high deformation rate indicates the acceleration or rapid subsidence
of geological bodies, and a high probability indicates the occurrence of landslides; Elevation
and curvature are also important factors in the occurrence of landslides. Stress concentra-
tion at high curvature and steep slopes at high altitudes are more prone to landslides, so
their importance is also high. The importance of lithology is the lowest, as there are many
kinds of lithology and complex distribution in the region.
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4.2. LR Results

In this section, the performance of LR result of the proposed FCADenseNet model are
compared with three LR model, which are FCN, U-Net [48], and FC_DenseNet [40] network.

Since the landslide area in the study area occupies a small area, we chose to zoom in
on the local area to view the model identification results. As shown in Figures 10 and 11,
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they belong to two representative areas of medium landslide (most landslides) and small
landslide development in the region, respectively. According to the results, for medium
landslide, Figure 10a,b, respectively, show the results of the FCN and U-Net models
respectively. The FCN model seems to be overly regularized in identifying landslide
boundaries, resulting in a noticeable rectangular shape. The U-Net model demonstrates
stronger land-slide localization capabilities. But there are some difficulties in distinguishing
similar backgrounds around landslides, resulting in incorrect predictions. Figure 10c,d,
respectively, show the results of the FC_DenseNet and FCADenseNet models respectively.
Considering the localization of landslides and the recovery of boundary features, the results
are more accurate compared to the first two models, but there is still some noise in the
results of the FC_DenseNet model. The landslide range identified by FCADenseNet in the
four model results is more complete, and due to the introduction of attention, it effectively
recovers the loss of edge information during the up-sampling process. It is worth noting
that for the recognition results of small landslides, the range of landslides annotated based
on prior knowledge is very small, and there are obvious differences between the results of
models. Figure 11a,b show the identification results of FCN and U-Net models, respectively.
FCN and U-Net models are difficult to identify such small landslides. Figure 11c,d show the
results of the FC_DenseNet and FCADenseNet models, both of which accurately identify
the range of small landslides. In comparison, FCADenseNet has fewer errors in identifying
the surrounding areas.
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Furthermore, based on the visual results, we quantitatively analyzed the performance
of the model using the five EMs. In the experiment, we opted not to use Overall Accuracy
(OA) as one EM because the substantial imbalance between non-landslide and landslide
pixels in the study area, with a ratio of 224:1. The proportion of non-landslide pixels is very
high, which leads to a small change between the OA values of the model. From Table 3, the
five EMs of FCADenseNet are superior to the other three models, achieving commendable
LR results. The FCADenseNet model, augmented with an attention module, achieves
the Pre of 0.8381, the Rec of 0 6972, the F1 of 0.7611, the kappa of 0.7602, and the MIoU
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of 0.8062. It is noteworthy that the results of the proposed FCADenseNet obtained the
highest values of the five EMs, except for Rec. Compared to the FC_DenseNet model, the
F1, Kappa, and MIoU demonstrate improvements of 14.3%, 15.1%, and 7.8%, respectively.
This enhancement stems from our introduced method, adjusting the attention weight of
the model to preserve shallow information on landslide boundary features, effectively
recovering the loss of edge information during the up-sampling process. This adjustment
is the main reason for improving model accuracy.

Table 3. The EMs of different models (the bold and underlined value means the highest EMs of the col).

Pre Rec F1 Kappa MIoU

FCN 0.6870 0.5354 0.6018 0.6002 0.7136
U-Net 0.4653 0.6908 0.5561 0.5543 0.6901

FC_DenseNet 0.6312 0.7043 0.6658 0.6599 0.7479
FCADenseNet 0.8381 0.6972 0.7611 0.7602 0.8062

4.3. Improvement of FCADenseNet Performance by Deformation Rate

To verify the impact of deformation rate on the performance of the model, we com-
pared the LR results using the FCADenseNet model with or without deformation rate.
Two sets of training datasets were created: RS (devoid of deformation rate) and RS-DR
(incorporating deformation rate). The proposed FCADenseNet model was used to evaluate
both datasets.

Similarly, we focused on a local area for a closer examination of the model’s LR results.
As shown in Figure 12a,b, they represent the LR outcomes of small landslide areas using
RS and RS-DR training data, respectively. With sufficient learning from the FCADenseNet
model, the recognition of small landslides is relatively accurate, but there is no pronounced
increase in error recognition for non-landslide areas. Figure 12c,d represent the recognition
results of the local landslide area using RS and RS-DR training data, respectively. The
results of this area indicate that the model has some difficulties in identifying the overall
range of landslides in this area, but with the addition of deformation rate features, partial
positioning can be carried out within the landslide area, and the recognition results have
been improved.
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Figure 12. Recognition results: (a) local small landslides using RS, (b) local small landslides using
RS-DR, (c) local medium landslide using RS, and (d) local medium landslide using RS-DR.

Table 4 presents the quantitative analysis results for the two datasets. When using the
RS-DR dataset, the model achieved an F1, a kappa, and a MIoU of 0.7611, 0.7602, and 0.8062,
respectively. Compared with the RS dataset, the model exhibited increases in 12.9%, 12.9%,
and 7.1% in F1, kappa, and MIoU, respectively, highlighting the practicality of deformation
rate in effectively distinguishing landslides. Notably, in the results from both datasets,
the Rec value did not exhibit significant changes, while the Pre value demonstrated a
notable improvement. Combining the results of Figure 12, it becomes evident that the
RS-DR dataset provides a more detailed depiction of the morphology of localized landslide,
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resulting in clearer LR results. This indicates that adding deformation rate as a landslide
feature has a positive effect on LR.

Table 4. The EMs of FCADenseNet for two training data (the bold and underlined value means the
highest EMs of the col).

Pre Rec F1 Kappa MIoU

RS 0.6614 0.6878 0.6743 0.6729 0.7529
RS-DR 0.8381 0.6972 0.7611 0.7602 0.8062

5. Discussion
5.1. Comparisions of the Model’s Effect

Currently, LR methods based on semantic segmentation usually adopt an encoding–
decoding structure. In this structure, the stacking of convolutional layers can extract
landslide-related information well. However, during the up-sampling process, the gradual
recovery of feature maps may lead to the loss of information. To solve this problem, the
FCADenseNet proposed in this article adds an attention mechanism module based on
the original model and applies it to skip connections. This attention mechanism module
focuses on the information contained in the shallow feature map, effectively reducing the
information loss that may occur during the sampling process on the feature map. According
to comparative experiments with the original FC_DenseNet, U-Net, and FCN networks,
the FCADenseNet model has a more complete landslide boundary in terms of landslide
recognition effect, and has stronger recognition capabilities for some small landslides. This
adjustment effectively maintains the integrity of the original features during the information
recovery process and is the main factor in improving model accuracy.

5.2. Influence of Deformation Rate on LR

In the BRA, the water level of the river undergoes constant changes due to factors
such as rainfall and reservoir water storage. Additionally, the slope of the reservoir area
experiences continuous fluctuations. To account for these variations, we incorporate a time
series deformation change value, integrating it into LCFs to train the model for LR. Given
that the FCADenseNet model has already demonstrated excellent LR results, we conducted
a comparative analysis to assess the impact of including deformation rate features. The
results indicate that, when deformation rate is combined, the model can more accurately
identify landslide. However, some challenges remain, particularly in achieving precise
landslide positioning. There are regional landslides in the results that have not been
recognized by all models in this study, but there are in the sample library, which may be
due to incorrect labeling of samples based on deformation results and images; and the “false
detection” areas in the identification results may have some impact on the quantitative
evaluation results because these areas have characteristics of landslide hazards but are not
in our original sample library. Addressing this issue requires ongoing attention to surface
deformation conditions, with on-site verification being crucial for subsequent research
endeavors. In addition, it is difficult to accurately analyze the motion characteristics of some
deep landslides solely through InSAR methods. The surface deformation rate characteristics
have a certain improvement effect on the recognition of these shallow landslides, but the
impact on deep landslides still needs to be explored.

5.3. Limitations and Future Work

This study attempts to combine landslide surface deformation with DLAs for landslide
disaster recognition However, practical applications still face challenges in timely LR. Firstly,
the orbital data of the Sentinel-1A satellite can be used to provide surface deformation
data for LR. However, effectively analyzing orbit and descent data, leveraging richer
SAR data resources such as interferograms, and fusing InSAR data into factor data in
a more appropriate manner is still an unresolved issue. This is crucial for monitoring
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surface deformation with higher accuracy and obtaining more precise landslide cataloging
data. Secondly, the utilization of DLAs requires a substantial amount of sample data to
ensure accuracy, rendering it more suitable for ongoing landslides that require long-term
monitoring. Research efforts should focus on establishing dynamic databases that can be
updated in real time, thereby enhancing the generalization ability of existing models.

6. Conclusions

In this study, we aimed to validate the feasibility of combining InSAR technology with
deep learning in LR. We obtained the annual deformation rate of the BRA as the main
factor using SBAS-InSAR technology. This information, combined with the study area
image and geological factors, formed a new dataset for LR. We constructed a newly Dense
Connected Fully Convolutional Network model, incorporating an attention mechanism,
FCADenseNet, for LR. To assess the performance of the model, comparisons were made
with FCN, U-Net, and FC_DenseNet networks. The results demonstrate that the proposed
FCADenseNet achieves the F1-score of 0.7611 and the kappa of 0.7602, which is more
effective in this study and has certain advantages for small landslides. We also analyzed the
impact of surface deformation rate on LR. The results indicate that the increase in surface
deformation characteristics has a positive impact on LR. In the future, the integration of
InSAR technology with the existing system will provide more timely information for the
monitoring and rapid identification of landslide disasters. The establishment of a long-term
dynamic database will play a proactive role in regional disaster monitoring and recognition.
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