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Abstract: Underwater signal processing is primarily based on sound waves because of the unique
properties of water. However, the slow speed and limited bandwidth of sound introduce numerous
challenges, including pronounced time-varying characteristics and significant multipath effects. This
paper explores a channel estimation method utilizing superimposed training sequences. Compared
with conventional schemes, this method offers higher spectral efficiency and better adaptability
to time-varying channels owing to its temporal traversal. To ensure success in this scheme, it
is crucial to obtain time-varying channel estimation and data detection at low SNRs given that
superimposed training sequences consume power resources. To achieve this goal, we initially
employ coarse channel estimation utilizing superimposed training sequences. Subsequently, we
employ approximate message passing algorithms based on the estimated channels for data detection,
followed by iterative channel estimation and equalization based on estimated symbols. We devise an
approximate message passing channel estimation method grounded on a Gaussian mixture model
and refine its hyperparameters through the expectation maximization algorithm. Then, we refine the
channel information based on time correlation by employing an autoregressive hidden Markov model.
Lastly, we perform numerical simulations of communication systems by utilizing a time-varying
channel toolbox to simulate time-varying channels, and we validate the feasibility of the proposed
communication system using experimental field data.

Keywords: underwater acoustic communication; time-varying channel; approximate message
passing; AR-HMM; superimposed training

1. Introduction

With the development of information technology, wireless communication technology
is no longer limited to the terrestrial. While information technology now extends from
terrestrial to aerial spaces to facilitate novel user services, underwater wireless commu-
nications (UWC), unfortunately, have been neglected [1]. The main limitation to space–
air–ground–ocean (SAGO) information transmission is the UWC technology. However,
increasing ocean exploration and development have created a rising need for reliable
high-speed underwater acoustic communication [2]. The speed of sound waves in water,
approximately 1500 m/s, results in a considerable multipath delay in underwater acoustic
channels, which is coupled with a narrow coherence bandwidth. Consequently, despite
the relatively narrow acoustic signal bandwidth, the effective bandwidth utilized far ex-
ceeds the coherence bandwidth. Hence, an underwater acoustic communication (UAC)
system behaves as an ultra-wideband system and is significantly impacted by multipath
channels [3,4].The slow speed of sound under water also results in a short correlation
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time for the underwater acoustic channel compared to the signal duration. Consequently,
during underwater acoustic signal processing, the model must account for the channel’s
time-varying nature.

Channel estimation and equalization essentially involve linear regression. Research
on underwater acoustic channels is crucial for sonar imaging systems. In UACs, underwa-
ter communications channels introduce multipath interference, leading to inter-symbol
interference. In sonar imaging, this manifests as ghosts [5,6]. Initially, these problems
were primarily addressed using algorithms like least squares and recursive least squares.
However, as signal processing tools advanced, there was a transition from basic probabil-
ity methods to Bayesian techniques. This shift emphasized leveraging signal probability
and distribution (statistical laws) for estimation purposes, leading to the development of
methods such as maximum likelihood estimation, Bayesian estimation, and maximum a
posteriori estimation [7]. Approaching the channel estimation and equalization problem
from a probabilistic standpoint, methods can be categorized into two main groups: sparse
Bayesian learning methods and maximum a posteriori probability estimation. Both types
of algorithms are essentially empirical Bayesian algorithms. They marginalize the prior
and conditional probability distributions of the signal to approximate the distribution we
wish to estimate. Subsequently, they find the optimal solution or its conditional mean from
this distribution using the maximum a posteriori probability criterion. Calculating the
posterior probability solution precisely is often challenging. Researchers have found that
many real signals exhibit sparsity. Leveraging this assumption of sparsity greatly simplifies
the process. This approach is exemplified by the expectation propagation (EP) algorithm
and numerous approximate message passing (AMP) algorithms [8]. The EP algorithm
evolved from the assumed-density filtering (ADF) algorithm [9] and enhances performance
through added iterations. Its core principle involves constructing an exponential family of
functions and approximating this family and the distribution of signals to be estimated by
minimizing KL divergence. This approximation aligns with the assumptions of sparsity
and the central limit theorem, which render most signals as Gaussian distributed, thus
meeting the assumptions of the exponential family. The AMP algorithms are primarily
derived from the belief propagation (BP) algorithm, which is rooted in the sum–product
algorithm. BP achieves the solution of the signal’s marginal distribution by representing
it as a factor graph and iteratively exchanging information between factor nodes and
variable nodes. The BP algorithm exhibits high computational complexity and limited
adaptability. As a result, Donoho proposed the AMP algorithm [10], which shares signifi-
cant similarities with the iterative shrinkage threshold algorithm (ISTA) regarding its form
and the Onsager term [11]. Despite this resemblance, AMP’s derivation process relies on
message passing algorithm approximation: hence, it is named the approximate message
passing algorithm.

Despite advancements, approximate message passing algorithms still have several
limitations. Consequently, numerous new algorithms have emerged in recent years to
address these issues. Among them, GAMP [12] stands out as a more representative ap-
proach that not only advances approximate message passing but also generalizes the model.
GAMP combines several earlier methods and achieves efficient computation and systematic
approximation of loopy belief propagation (LBP) using the maximal sum algorithm and
the sum–product algorithm. Additionally, VAMP [13] and OAMP [14] were proposed
by different scholars at nearly the same time. These algorithms primarily address cases
involving dictionary matrix pathology or the non-zero mean. By iterating the noise variance
and denoising function in approximate message passing algorithms, they remain effective
even in less pathological cases. Subsequently, CAMP [15], MAMP [16], UAMP [17], and
other algorithms have been proposed.

Utilizing the empirical Bayesian method for channel estimation requires critical estab-
lishment of the channel model. Additionally, the time-varying nature of the underwater
acoustic channel creates significant disparity between general time-invariant models and
convolutional channels for accurately depicting the channel: both in simulation experi-
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ments and practical scenarios. The non-Gaussian nature of the underwater acoustic channel
is a significant topic in acoustic channel research. The commonly used models include
stable-α distribution and Gaussian mixture models (GMM). However, using these chan-
nel distributions in signal processing presents challenges. For stable-α distributions, it is
very difficult to obtain the joint distribution because it has no fixed expression, and the
statistical parameters can only be approximated by some numerical computation methods.
The Gaussian mixture distribution presents challenges in parameter estimation due to its
composition of multiple Gaussian distributions. Additionally, the time variation of the
underwater acoustic channel is not random, and the autoregressive hidden Markov model
(AR-HMM) is the more widely used model to describe this variation. Impulse noise is also
an important characteristic of underwater acoustic channels. We explored the application
of norm constraints for channel estimation under such noise conditions and observed that
a method based on l1 norm constraints effectively suppresses impulse noise [18].

Research on time-varying channels traces back to 1963, when Bello discussed the
symmetry of channels in time and frequency [19]. In 2011, Qarabaqi released a simulation
toolkit for simulating underwater acoustic time-varying channels on his homepage [20];
however, no channel estimation or equalization methods for time-varying channels were
provided. Some scholars adopt adaptive modulation to combat the impact of time-varying
factors in underwater acoustic communication [21–24]. In 2009, Guo et al. introduced a
two-way iterative channel estimation method utilizing the AR-HMM model. This method
leverages the correlation between the front and back of the channel and integrates it with
the Gaussian message passing algorithm [25]. Over the last two years, Yang et al. have
integrated the superposition training technique with experimental data to further validate
the applicability of this model in UACs [26,27]. Zhang and Rao introduced a temporal-
correlation-based T-MSBL algorithm for the AR-HMM model in their paper [28]. However,
it primarily addresses the block sparsity problem and is effective only at high SNRs and
for channels with strong correlation. The scheme is more suitable for scenarios where
MIMO diversity gain is insignificant, indicating the presence of strongly correlated co-
channel interference [29]. Currently, minimal research has focused on time-varying channel
models and their channel estimation and equalization. In [30], we proposed a TC-AMP
algorithm for time-varying channels; it uses a two-layer iterative algorithm to improve the
performance of channel equalization. In this paper, we further employ the superimposed
training sequence strategy and GMM-distribution-based assumptions.

Investigating the time-varying characteristics of underwater acoustic channels reveals
significant challenges in obtaining a dictionary matrix that accurately aligns with both
observed signals and those intended for detection. Superposition pilots, also known
as implied training sequences, offer a promising solution to the challenge of matching
channels and data. Several scholars have already conducted research in this area [31].
Unlike traditional training sequences, this method traverses the training sequence over time.
When integrated with message passing algorithms, it facilitates better information iteration
across a wider operational spectrum. However, time traversal also entails power loss,
necessitating a higher SNR for this method. Time traversal incurs power loss, necessitating
higher signal-to-noise ratio requirements for this method. However, it offers unparalleled
advantages for time-varying channels, as discussed in references [26,27], which advocate
for the superposition of training sequences. Yuan et al. also proposed a communication
method based on a superposition pilot to enhance spectrum utilization in communication
systems [32]. Despite limited research on combining frequency guide superposition with
time-varying models and message passing algorithms, the field of UAC using time-varying
channels offers ample opportunities for exploration.

This paper employs superimposed training sequences, where short cyclic sequences
are added to the data sequences. The cyclic nature of these short sequences allows for
power loss compensation through stacking. Moreover, traversing the training sequences
in the time domain helps to better mitigate the mismatch between observations and mea-
surements, thereby enhancing the system’s capability to address time-varying channels. To
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enhance equalization algorithm performance and channel estimation accuracy, we assume
a Gaussian mixture model for the signal. Based on this assumption, we propose iterative
equalization and time-varying channel estimation algorithms that employ approximate
message passing. The GMM distribution information is updated by the EM algorithm.
Feasibility is verified through outfield experiments. Moreover, outfield experiments demon-
strate the efficiency of channel estimation and equalization using superimposed frequency
guides. This study underscores the significant potential of combining superimposed train-
ing sequences with soft iterative channel estimation and equalization algorithms for UACs.

• We propose a communication scheme that uses coarse channel estimation based on
superimposed training, AMP equalization, and EM-GMM-AMP channel estimation.
Based on the factor graph of the underwater acoustic channel model, an approximate
message passing underwater acoustic channel estimation method based on Gaussian
mixture distribution is derived.

• We combine the EM-GMM-AMP algorithm with the AR-HMM model for CSI updating
based on time correlation, further improving the accuracy of channel estimation.

• The effectiveness of the algorithm proposed in this paper is verified through pool
experiments and field experiments.

The paper’s structure is as follows: Section 2 outlines the system model, including the
matrix-based representation of time-varying channels and superimposed training sequences.
In Section 3, we outline the algorithm derivation, which includes AMP equalization for QPSK
signals, AMP channel estimation using the GMM approximation, and updates of forward–
backward channel information with AR-HMM. Section 4 presents simulations and outfield
experimental validations of the algorithms. Section 5 concludes the paper.

2. System Model
2.1. Time-Varying Channel System Model

The fundamental model employed in this paper is a linear model of the channel: specifi-
cally, the convolutional channel, which is denoted as Equation (1) for time-invariant systems.

y = h⊗ x + w, (1)

To simplify, we can represent it in matrix form.

y = Hx + w, (2)

where H is the Toeplitz matrix with respect to the channel, which can be expressed as:

H =



h0 0 · · · 0
... h0

. . .
...

hL−1
...

. . . 0

0 hL−1
... h0

...
...

. . .
...

0 0 · · · hL−1


(3)

The discrete convolution relation can be represented in matrix form. It is impor-
tant to note that the channel in the equation above is time-invariant. To capture the
channel’s time-varying nature, we represent the signal in segments, as depicted in the
following figure.

To facilitate the representation, we only selected three segments of the signal for a
simple illustration. Signals x1, x2, x3 correspond to the channels h1, h2, h3, respectively, and
in these three segments, the signal within the channel is kept constant in each segment. The
segments’ Toeplitz matrices are T1, T2, and T3, respectively. Then, the received signals can
be obtained y1 = T1x1, y2 = T2x2, y3 = T3x3. In practical communication systems, there
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exists a time delay difference among the three signals that corresponds to the length of
each signal.

Assuming equal segment lengths, the received signal y under the time-varying channel
results from the shifted superposition of these segments. For clarity, we denote the length
of each signal segment as Ls, the total signal length as Lb, and the channel length as Lc,i.
This approach allows us to express the received signal y under time-varying conditions in
matrix notation.

y =
[
(T1, 0, 0)T, (0, T2, 0)T, (0, 0, T3)

T
]
×

 x1
x2
x3

+ w

=

 y1
0
0

+

 0
y2
0

+

 0
0
y3

+ w.

(4)

where Ti ∈ C(Lsi + Lci−1)×Lsi , xi ∈ CLsi×1,yi ∈ C(Lsi + Lci−1)×1, 0 is a column vector or
blanking matrix used to complement the length of the signal. The form of Equation (4) is in
perfect agreement with Figure 1, and for more intuition, we can rewrite Equation (4):

y =

 T1 0 0
0 T2 0
0 0 T3

×
 x1

x2
x3

+ w. (5)

It is worth noting that the dimensions of T1, T2, and T3 in the above equation are
not necessarily the same; we assume that the length of each segment of the signal is Lsi ,

corresponding to a channel length of Lci ,then, we can get Ti ∈ C(Lsi + Lci−1)×Lsi . As we can
see in Figure 1, the total length of the signals depends only on the length of the channel
corresponding to the last segment of the signal. If we take the limit case where the channel
changes for each symbol, we can rewrite the above equation as Equation (6).

y =



h1,0 0 · · · 0
... h2,0

. . .
...

h1,L1−1
...

. . . 0

0 h2,L2−1
... hN,0

...
...

. . .
...

0 0 · · · hN,LN−1


×


x1
x2
...

xN

+ w. (6)

where we define this class of Toeplitz matrices as our channel matrix H ∈ C(N + LN−1)×N .
The above is the model we use in this paper, and in practice, we use a similar approach
to Equation (5) in the practical treatment. We provide a specific analysis of the specific
superimposed training sequence symbols below.

1
x

2
x

3
x

3
y

2
y

1
y

y

1
t

2
t

3
t t

1
x

2
x

3
x

3
y

2
y

1
y

y

1
t

2
t

3
t t

Figure 1. Segmented representation of time-varying channels.
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2.2. Superimposed Training Model

Signal processing involves linearly superimposing QPSK mapped training sequences
and source code, as illustrated in Figure 2, to create the base signal for transmission. This
enables the real-time estimation of signals in order to acquire the time-varying channel
state information matrix essential for this study.

Training Sequence

Data signal

Linear 

superposition

Transmitted SignalTransmitted Signal

Figure 2. Schematic diagram of the structure of superimposed training sequences.

Assuming that our data sequence is s, the training sequence is p, and to better adapt
to time-varying channels, we rewrite the received signal as:

y= H(s + p)+w, (7)

where sn is the QPSK signal mapped from a binary sequence bn =
[
b1

n, b2
n, · · · , bQ

n

]
, pn is

composed of a cyclic sequence [c1, c2, · · · , cM], and w is Gaussian white noise. Combined
with the previously mentioned time-varying channel model, we can represent the time-varying
underwater acoustic channel model based on the superimposed training sequences as:

y =


T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · Tk

×



s1 + c1,1
s2 + c1,2

...
sn + c1,M

sn+1 + c2,1
...

sN + ck,M


+ w. (8)

where the channel matrix H is a matrix consisting of Toeplitz matrices on the diagonal, and
each T matrix is defined as:

Tk =



hk,0 0 · · · 0
... hk,0

. . .
...

hk,Lk−1
...

. . . 0

0 hk,Lk−1
... hk,0

...
... hk,Lk−1

...
0 0 · · · hk,Lk−1


. (9)

In conclusion, we have derived the signal representation based on the time-varying
channels and superimposed training sequences proposed in this paper.

2.3. Soft Iteration UAC Receiver

Based on the above system model, we have obtained the overall system diagram as
shown in Figure 3.
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Figure 3. Block diagram of soft iterative UAC receiver.

From Figure 3, we can see that first we use the received signal and superimposed
training sequence for coarse channel estimation, and then we perform AMP equalization
based on the results of the coarse estimation. Channel reconstruction is done using the
equalization result, and the reconstructed signal is utilized for channel estimation using
the EM-GMM-AMP algorithm. Then, channel information based on AR-HMM is updated
based on the results of different estimated blocks and the correlation coefficient of the chan-
nel. Based on the updated channel information, the algorithm enters the next equalization
cycle. Next, in the third part of this article, we will provide a detailed description of the
algorithms used in each part of the system.

3. Channel Estimation and Equalization Based on Superimposed Training Sequences

To initiate the equalization algorithm based on channel estimation, an initial time-
varying channel state information matrix must be obtained. This can be achieved relatively
easily by incorporating superimposed training sequences. However, due to signal inter-
ference and the uncertainty of the time-varying speed, the accuracy of this method may
be compromised. Therefore, to enhance accuracy, factor graphs and message passing
algorithms are combined in subsequent steps. The proposed time-varying UAC algo-
rithm is based on superimposed training sequences and comprises three main components:
coarse channel estimation, an approximate message passing equalization algorithm, and
an iterative channel estimation and equalization algorithm based on message passing.

3.1. Coarse Channel Estimation Based on Superimposed Training Sequences

Initially, coarse estimation of the channel is conducted using superimposed training
sequences. The methodology primarily draws from the reference [31]. As we can see from
the previous section, the received signal can be represented as Equation (2). Assume that
the signal length is N. The length of a single recurrent training sequence is P, and N = KP.
We define a mean training sequence associated with the received signal.

Ap(j) = E[y(iP + j)], i = 0, 1, · · · , K− 1 j = 0, 1, · · · , P− 1, (10)

We substitute the received signal into Equation (10) and assume that the mean of the
H values among this block is 0; thus, the mean of w is also 0. Then, we can get Ap(j).

Ap(j) = E[Hp(iP + j)]

=
K−1

∑
m=0

h(m)c(j−m)P, j = 0, 1, · · · , P− 1.
(11)

During signal processing, the received signal is essentially a superposition. The
communication signal, being an encoded signal, approximates a Gaussian signal, in contrast
to white noise is a Gaussian signal. When superimposing, the power corresponding to the
data signal and noise cannot be added. As K becomes large, the result of superposition
tends to converge to 0. Conversely, cyclic superposition of training sequence signals, being
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cyclic in nature, effectively enhances their energy. We average the signals by segments to
get the corresponding mean training sequence values.

Âp(j) =
1
K

K−1

∑
i=0

y(iP + j), j = 0, 1, · · · , P− 1, (12)

If represented in vector form, we know that the training sequence is ck. Then the
Toeplitz matrix C can be constructed. A coarse channel estimation based on the superim-
posed training sequences is obtained.

h̃ = C−1Âp. (13)

If we construct T̂1 based on h̃1, then we get T̂2, · · · , T̂k. In this way, we can obtain the
time-varying channel estimation matrix:

Ĥ =


T̂1 0 · · · 0
0 T̂2 · · · 0
...

...
. . .

...
0 0 · · · T̂k

. (14)

Obviously, we do not take full advantage of the time-varying nature of the channel when
estimating each h̃. This will inevitably lead to some errors in channel estimation, so we will
further propose a channel estimation method based on time-varying channels in the following.

3.2. Equalization Based on Approximate Message Passing

Through coarse estimation of the channel using superimposed training sequences, we
derive the time-varying channel matrix corresponding to our signal. The subsequent task
involves estimating the transmit sequence given the known time-varying channel matrix.
During this stage, we temporarily disregard the impact of the training sequences. On this
basis, we can turn the problem into a solution of Equation (15).

xamp = arg min
x∈Bn

∥y−Hx∥2. (15)

Based on the Bayesian formulation, we convert this to a MAP problem, which gives us:

p(x|y, H ) ∝ p(x|H )p(y|x, H ) (16)

So according to the model, we can get the factor graph as Figure 4.

( )jp x( )1p x ( )Mp x

1
x jx Mx

( )1 1

Hp y h x ( )H

i ip y h x ( )H

N Np y h x

) ) )

x

) ) )

) ) )

x

) ) )

(a)

( )1p x ( )jp x ( )Mp x

1
x jx Mx

( )1 1

Hp y h x ( )H

i ip y h x ( )H

N Np y h x

( )1p x ( )jp x ( )Mp x

1
x jx Mx

( )1 1

Hp y h x ( )H

i ip y h x ( )H

N Np y h x

(b)

Figure 4. Linear systems represented by factor graphs: (a) Message from node i=1 to j = 1.
(b) Message from node j = 1 to i = 1.
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Based on the factor graph shown in Figure 4, we can get the expression of the sum–
product algorithm based on the factor graph:

pt
i→j
(
xj
)
=
∫

x\xj

{
p
(

yi

∣∣∣hH
i x
)

∏
k ̸=j

pt
i←k(xk)

}
dx, (17)

pt+1
i←j
(
xj
)
= p

(
xj
)
∏
l ̸=i

pt
l→j
(
xj
)

(18)

where p
(

xj
)

is a QPSK signal. By simplifying the sum–product algorithm, we can obtain
the core iterative formulation of the AMP algorithm as follows: [33]:

xt
j = η

 1
σ2

j
∑

b∈[m]

Hb,jrt
b + xt−1

j ,
τ2

t
σ2

j

, (19)

ςt
j = κ

 1
σ2

j
∑

b∈[m]

Hb,jrt
b + xt−1

j ,
τ2

t
σ2

j

, (20)

rt+1
i = yi − ∑

k∈[n]
Hi,kxt

i +
∑k∈[n] σ2

k ςt
k

mτ2
t

rt
i , (21)

τ2
t+1 = σ2 +

∑j∈[n] σ2
j ςt

j

m
. (22)

where x0 = 0, r1 = y, τ2
1 = 100, ui←j = 1

σ2
j

∑
b∈[m]

Hb,jrt
b + xt−1

j , vi←j =
τ2

t
σ2

j
. Because the

channel is time-varying, we can write the channel as H = [h1, · · · , hn], and σ2
j =

∥∥hj
∥∥2, σ

is the estimated noise power. We assume that the power of the noise is Gaussian white
noise, so it does not change over time. Function η(·, ·) and κ(·, ·) are defined as:

η
(

ut
i←j, vt

i←j

)
=
∫
x

xp(x)N
(

x; ut
i←j, vt

i←j

)
dx, (23)

κ
(

ut
i←j, vt

i←j

)
=
∫
x

x2 p(x)N
(

x; ut
i←j, vt

i←j

)
dx− η2

(
ut

i←j, vt
i←j

)
. (24)

We assume that the set of MPSK signal mappings is sM = [s1
M, s2

M, · · · , sl
M]; then, we

can get η
(

ut
i←j, vt

i←j

)
and κ

(
ut

i←j, vt
i←j

)
:

η
(

ut
i←j, vt

i←j

)
=

∑M
l=1 sl

Me
−

∣∣∣∣sl
M−ut

i←j

∣∣∣∣2
vt

i←j

∑M
l=1 e

−

∣∣∣∣sl
M−ut

i←j

∣∣∣∣2
vt

i←j

, (25)

κ
(

ut
i←j, vt

i←j

)
=

∑M
l=1

∣∣∣sl
M

∣∣∣2e
−

∣∣∣∣sl
M−ut

i←j

∣∣∣∣2
vt

i←j

∑M
l=1 e

−

∣∣∣∣sl
M−ut

i←j

∣∣∣∣2
vt

i←j

−
∣∣∣η(ut

i←j, vt
i←j

)∣∣∣2. (26)
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If M = 4, i.e., the transmit signal is a QPSK signal, we can further simplify the above
function as:

η
(

ut
i←j, vt

i←j

)
=

1√
2

tanh

√2 Re
{

ut
i←j

}
vt

i←j

+
j√
2

tanh

√2 Im
{

ut
i←j

}
vt

i←j

, (27)

κ
(

ut
i←j, vt

i←j

)
= 1−

∣∣∣η(ut
i←j, vt

i←j

)∣∣∣2. (28)

In summary, from Equations (19)–(22), (27), and (28), we obtain a QPSK equalization
algorithm based on time-varying channel matrices and approximate message passing.

3.3. GMM Time-Varying Channel Estimation Based on AR-HMM Model

In the preceding section, we utilized a channel estimation method grounded on
superimposed training sequences, essentially employing the least squares (LS) method. It
capitalizes on the power gain inherent in the superimposition of cyclic training sequences,
making it effective even with lower SNRs. However, this method underutilizes a priori
information, rendering it inefficient in practical scenarios. To enhance its efficacy, we refine
the channel estimation method by incorporating coarse channel estimation and message-
passing-based equalization, introducing a time-varying channel model-based approximate
message passing channel estimation approach. Additionally, the superimposed training
sequence method proposed earlier proves ineffective during rapid channel variations. In
such instances, the asynchronous superimposition of individual cyclic training sequences
due to channel influence or overlapping channels results in a composite channel matrix,
leading to substantial errors during equalization. To address this issue, we assume a
relationship between preceding and subsequent channel changes, conforming to AR-HMM.

ha = βha−1 +
√

1 − β2h. (29)

where β ∈ ( − 1, 1) is the AR coefficient. If converted to matrix form expression, we can
rewrite it as:

Hi,a = βHi,a−1 +
√

1 − β2ni,a, i = 1, · · · , M; a = 1, · · · , L (30)

We assume that the channel distribution at each moment obeys a Gaussian mixture
distribution, i.e.,

P
(

Hi,t; ρt, µt, σ2
t

)
=

L

∑
l=1

ρt,lN
(

Hi,t; µt,l , σ2
t,l

)
(31)

Since underwater acoustic channels are generally considered to be multipath channels
with significant sparsity properties, we denote the channel as ht = [hk,t]. This allows us to
represent it as a Gaussian mixture distribution as follows:

P
(

h k,t; ρt, µt, σ2
t

)
=

L

∑
l=1

ρt,lNC

(
h k,t; µt,l , σ2

t,l

)
(32)

where NC denotes the complex Gaussian distribution. We assume that there are K indepen-
dently and identically distributed elements in ht.

P(ht; ψt) =
K

∏
k=1

P
(
hk,t; ψt

)
, ψt ≜

(
ρt, µt, σ2

t

)
(33)
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We can then calculate the Bayesian estimate of ht using the probability distribution of
ht, i.e., calculate the conditional expectation of ht:

ĥk,t =
∫

hk,tQ
(
hk,t
)
dhk,t, (34)

where:
Q
(
hk,t
)
=
∫

P
(

ht

∣∣∣yt

)
∏
i ̸=k

dhi,t. (35)

However, it is very difficult and extremely computationally intensive to try to solve
the two equations above, and we need to know the a priori information ψt first. Therefore,
we first estimate each time using the AMP algorithm and use the EM algorithm to learn the
hyperparameters ψt after each iteration.

In fact, we can see that Equation (34) is the maximum a posteriori probability estima-
tion, so we still use the AMP-based iterative algorithm, and the main iterative steps are
still Equations (19)–(22). Only this time, the estimation object is the channel instead of the
sequence to be detected, and we can update the channel estimation method based on AMP
with the factor graph in Figure 5.

ht
j = η

 1
σ2

j
∑

b∈[m]

Xb,jrt
i + ht−1

j ,
τ2

t
σ2

j

, (36)

ςt
j = κ

 1
σ2

j
∑

b∈[m]

Xb,jrt
i + ht−1

j ,
τ2

t
σ2

j

, (37)

rt+1
i = yi − ∑

k∈[n]
Xi,kht

i +
∑k∈[n] σ2

k ςt
k

lτ2
t

rt
i , (38)

τ2
t+1 = σ2 +

∑j∈[n] σ2
j ςt

j

m
. (39)

where h0 = 0, r1 = y, τ2
1 = 100, X = [x1, · · · , xn ], and σ2

j =
∥∥xj
∥∥2, σ is the estimated

noise power.
The Toeplitz matrix used in channel estimation is generated from our estimated sig-

nal and the transmit signal reconstructed from the loop training sequence, and what is
to be estimated is the channel. However, since the distribution of the channel is differ-
ent from that of the signal, we update the functions η(·, ·) and κ(·, ·), and, referring to
Appendix A, we can obtain the modified functions under GMM as follows:

η
(

ut
i←j, vt

i←j; ψ
)
≜

∑L
l=1 ρlNC

(
0; µl − ut

i←j, vt
i←j + σ2

l

) µlvt
i←j+ut

i←jσ
2
l

vt
i←j+σ2

l

∑L
l=1 ρlNC

(
0; µl − ut

i←j, vt
i←j + σ2

l

) , (40)

ε
(

ut
i←j, vt

i←j; ψ
)
≜

∑L
l=1 ρlNC

(
µl − ut

i←j, σ2
l + vt

i←j

) ∣∣∣µlvt
i←j+ut

i←jσ
2
l

∣∣∣2 + σ2
l vt

i←j

(
σ2

l +vt
i←j

)
(

σ2
l +vt

i←j

)2

∑L
l=1 ρlNC

(
µl − ut

i←j, σ2
l + vt

i←j

) , (41)

κ
(

ut
i←j, vt

i←j; ψ
)
≜ ε
(

ut
i←j, vt

i←j; ψ
)
−
∣∣∣η(ut

i←j, vt
i←j; ψ

)∣∣∣2. (42)
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After the AMP iteration is stopped, the posterior probability density function is
obtained as hk,t; then, we can get:

Pamp
(
hk,t
)
≜ P

(
hk,t|AMP

)
=

NC
(
hk,t; ak,t, vk,t

)
P
(
hk,t; ψt

)∫
NC
(
hk,t; ak,t, vk,t

)
P
(
hk,t; ψt

)
dhk,t

.
(43)

where ak,t = η
(

ut
i←j, vt

i←j; ψ
)

,vk,t = κ
(

ut
i←j, vt

i←j; ψ
)

. We substitute the distribution in
Equation (32) into Equation (43) to obtain:

Pamp
(
hk,t
)

=
L

∑
l=1

Γk,t,lNC
(
hk,t; γk,t,l , ζk,t,l

)
(44)

where

Γk,t,l =
ρt,lNC

(
ak,t, vk,t + σ2

t,l

)
∑L

l′=1 ρt,l′NC

(
ak,t, vk,t + σ2

t,l′

) , (45)

γk,t,l =
σ2

t,l

σ2
t,l + vk,t

ak,t, (46)

ζk,t,l =
σ2

t,l

σ2
t,l + vk,t

vk,t. (47)

However, as we can see from the previous steps, we do not know the hyperparameters
ψ during the iteration process, so we introduce the EM algorithm for hyperparameter
learning during each iteration. The steps of learning can be written:

ψ̂m+1
t = arg max

ψt

E
{

log2P
(

y
t
, ht; ψ̂m

t

)}
(48)

According to the EM algorithm in reference [34], we can get the iterative equation:

ρ̂m+1
t,l =

1
M

M

∑
k′=1

Γm
k′ ,t,l , (49)

µ̂m+1
t,l =

M
∑

k′=1
Γm

k′ ,t,lγ
m
k′ ,t,l

M
∑

k′=1
Γm

k′ ,t,l

, (50)

(
σ̂2

t,l

)m+1
=

M
∑

k′=1
Γm

k′ ,t,l

(∣∣∣µ̂m
t,l − γm

k′ ,t,l

∣∣∣2 + ζm
k′ ,t,l

)
M
∑

k′=1
Γm

k′ ,t,l

. (51)

And we can learn the parameters of the GMM at the same time as we learn the
parameters of the noise.

∆m+1
t =

∆m
t

∆m
t + Vm

t

 1
T

T

∑
n=1

∣∣∣∣∣y−n,t
− wm

n,t

∣∣∣∣∣
2

+Vm
t

. (52)

where wj ≜ ∑
j

Hi,jui←j, Vi ≜ ∑
j

∣∣Hi,j
∣∣2vi←j. The initialization conditions for these parame-

ters are ρ̂0
1,l = 0.5, µ̂0

1,l = 0, σ̂0
1,l = 2l−1, and ∆0

1 = 0.1.
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It is worth noting that our iterative algorithm only obtains the channel estimation
results for the current block, and based on the assumptions of the AR-HMM model in the
previous section, we believe that the channel, although changing at the before and after
moments, is strongly correlated within a short period of time, especially in terms of the
neighboring before and after channels. To make better use of this correlation, we can get
the factor graph as in Figure 5.
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Figure 5. Time-varying channel factor graph.

From Figure 5, we can see that although the description based on the AR-HMM model
does not have a direct impact on the channel estimation of each time period, it still has a
very close impact on the before and after channel according to the principle of factor graph
message passing. When we get the estimation of h1, the other factors connect to h1 will no
longer have an impact on the node h2. So by removing the impact of the other nodes, we
can get the factor graph of the AR-HMM network as in Figure 6.
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Figure 6. HMM representation of the estimated channel and the corresponding FFG.

To better describe the estimated channel and the relationship between the implied
channel and the final estimated channel, we refer to the references [26,27], wherein the FFG
factor graph is used. Obviously, this description of the delay position before and after the
channel does not change much, so before we proceed with this step, we must reduce the
effect caused by channel Doppler by Doppler compensation.
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According to the HMM algorithm, we can get the forward update coefficient by
combining the idea of message passing based on the factor graph as:V−1

haF
= V−1

hc
+ V−1

ha

ĥaF = VhaF

(
V−1

hc
ĥc + V−1

ha
ĥa

)
.

(53)

In the above equation, h is the estimated channel vector, and V is a transformation
with respect to the measurement matrix, which is computed by referring to reference [25].
Due to the AR-HMM assumption, we can obtain the following relationship:{

ĥa+1 = βĥaF

Vha+1 = β2VhaF + α1,
(54)

where α2 + β2 = 1. Obviously, for the first channel, there is no forward channel transmitting
information, so we can get: {

V−1
haF

= V−1
h1

ĥaF = ĥ1.
(55)

Similarly, we can get backward message update coefficients:V−1
hbF+1

= V−1
hc+1

+ V−1
hb

ĥbF+1 = VhbF+1

(
V−1

hc+1
ĥc+1 + V−1

b+1ĥb+1

)
.

(56)

And both satisfy the relationship:{
ĥb = β−1ĥbF+1

Vhb
= β−2

(
VhbF+1

+ α1
)

,
(57)

Similarly, for one of the rightmost channels, again there are no messages from the
backward direction, so for the last piece of the signal, we consider that:{

V−1
hbF+1

= V−1
hN

ĥbF+1 = ĥN .
(58)

Finally, by fusing the forward and backward messages at moment t, we obtain the
forward–backward algorithm based on the AR-HMM model:V−1

hcF
= V−1

haF+c−1
+ V−1

hb−c

ĥcF = VhcF

(
V−1

haF+c−1
ĥaF+c−1 + V−1

hb−c
ĥb−c

)
.

(59)

In this way, based on the channel obtained from the EM-GMM-AMP channel estima-
tion in the previous section, we can get the channel estimation result for each sub-block,
and then this channel estimation result will be used to update the channel coefficients by
the HMM-based forward–backward algorithm. Then fed back to the decoding side for
iterative decoding and a new round of channel estimation until the iteration is completed.

Of course, we find that there are some other coefficients for which updates do not
appear in the iterations of the algorithm, e.g., the mixing coefficients L in the GMM model
and the correlation coefficients β in the AR-HMM model. Regarding the model of the
GMM, in reference [34], Vila proposed a method based on the great likelihood estimation to
estimate the order L of the GMM, we use the estimation results based on the superposition
of the training sequences for the computation of the L taps. For the channel correlation
coefficient, since we have a coarse estimation, the channel correlation coefficient can be
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derived from the correlation coefficients of the neighboring channels, and this step can also
be obtained from the part of superimposed training sequences in the previous section. Then,
we statistically average the correlation coefficients obtained as β used by forward–backward
algorithms based on the temporal correlation of the AR-HMM model.

At this point, the derivation of our algorithm related to superimposed training sequences
is complete, and the algorithm will be subsequently validated with out-of-field experiments.

4. Numerical Results
4.1. Simulation

To validate the proposed algorithm in this paper, we executed simulation experiments
on a system with the time-varying channel matrix proposed in this paper. In the simulation,
we used the time-varying channel model proposed by Stojanovic in [20], which is the
channel shown in Figure 7. The delay of this channel changes over time, indicating that we
will extract some channels from this series of time-varying channels as simulation channels.
The way we add channels is in the form of a time-varying channel matrix as in Equation (8),
so we extract the channels and then construct a Toeplitz-like matrix based on the extracted
channels, pass the channels in the baseband, and then add Gaussian white noise.
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Figure 7. Pseudo color diagram of time−varying underwater acoustic channel in simulation.

The parameters used in this simulation and subsequent field experiments are listed in
Table 1.

Table 1. Parameter list of simulation and outfield mobile communication experiments.

Simulations Pool Songhua Lake

Code rate 1/2 1/2 1/2
Mapping QPSK QPSK QPSK

Power TrainSeq/Data 0.2:0.8 0.2:0.8 0.2:0.8
Block length 1024 symbols 1024 symbols 1024 symbols

Sub-block length 64 symbols 64/128/256/512 symbols 64/128/256/512 symbols
CP 128 symbols 128 symbols 128 symbols

System SC-FDE SC-FDE SC-FDE
Center frequency - 12 kHz 12 kHz

Bandwidth 2 kHz 6 kHz 6 kHz
fs - 96 kHz 96 kHz

Communication range - 4 m–9 m 400 m–1400 m
Tx/Rx depth - Tx (2/3 m) Rx 4 m Tx (5/10 m) Rx (15:35) m

Relative speed 4 m/s 0.2 m/s−1 m/s 0.5 m/s−1 m/s
SNR −6 dB to 12 dB 25 dB 6 dB to 18 dB

Initially, we simulated channel estimation with EM-AMM-AMP. The channel estima-
tion results of the first sub-block are depicted in Figure 8.
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Figure 8. Channel estimation results.

The figure shows the actual channels used, the estimated results of the EM-GMM-
AMP algorithm, and the updated CSI with AR-HMM. From the figure, it can be seen
that after iteration, the channel estimation based on the EM-GMM-AMP algorithm has
achieved a relatively accurate result. Then, after being updated by the AR-HMM forward–
backward algorithm, the channel estimation is closer to the actual channel, and in this case,
the channel equalization effect is also better. The time-varying communication scheme
proposed in this article is complex and not solely based on channel estimation performance.
Therefore, we simulated the algorithm proposed in this article and compared it with similar
algorithms in reference [26].

We simulated the signal under different SNRs and iteration times and with a Monte
Carlo number of 2000. The main comparison is between the method from reference [26]
and the algorithm proposed in this paper. Algorithm 1 in Figure 9 refers to the method
based on Gaussian message passing from reference [26]; Algorithm 2 is the algorithm
proposed in this paper. We can see from Figure 9a that when the SNR is low, the iterative
method based on AMP equalization and GMM-AMP channel estimation proposed in this
paper is significantly better than the methods in the reference literature. However, as the
SNR increases, the difference between the two gradually narrows. The reason for this
phenomenon may be that as the SNR increases, the factors affecting the system, such as the
influence of time-varying speed and superimposed pilot power, change. This impacts the
correlation coefficients when updating AR-HMM channel information. From Figure 9b,
it can be seen that the algorithm proposed in this paper has similar performance to the
reference algorithm when the number of iterations is not high. However, as the number of
iterations increases, the algorithm proposed in this paper performs better, which is also
confirmed in Figure 9a. Therefore, considering all factors, the algorithm proposed in this
paper has certain advantages in performance. Nevertheless, a substantial disparity remains
between the simulation environment and the real underwater acoustic channel; the actual
effect of our system is still based on the field experiment effect, and the simulation is only
for reference.
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Figure 9. Communication system simulation results: (a) BER performance with different numbers of
iterations. (b) BER performance with different SNRs.

4.2. Field Experiments

Previously, we analyzed the algorithm proposed in this article via a simulation, but
the system is a relatively complex communication system, and it is difficult to describe
the overall effect through simple simulation experiments. Therefore, we conducted the
following two experiments to research this soft iterative system.

4.2.1. Movement Experiment in Pool at Harbin Engineering University

In order to study the communication performance of the soft iterative system using
time-varying channels, we conducted mobile UAC experiments in the channel pool at
Harbin Engineering University in 2019. The experimental parameters are shown in Table 1.
To verify the impact of different time-varying channels on communication performance, we
conducted experiments using horizontal and vertical movement. The experimental layout
is shown in Figure 10.

Figure 10. Experimental layout in pool.
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Under the condition of horizontal movement, we set the maximum distance for
transmission and reception as 9 m, and the distance for the signal to cycle through is 5 m.
The length of one frame of the signal is approximately 5.5 s. So the speed of horizontal
movement is estimated to be between 0.6 m/s and 1 m/s. Under vertical movement
conditions, due to the shallowness of the pool, we did not move in a single direction, but
instead moved up and down, simulating the up–down surge in situations with large waves.
We went up and down from a depth of 2 m to 3 m but at a slow speed. For UAC, SNR is
a very important parameter. We take the blank signal around the synchronous signal as
noise and estimate the SNR in the experiment as:

SNR(dB) = 10log10

(
PRx − Pnoise

Pnoise

)
(60)

Based on the experimental data of the pool, we obtained the channel estimation results
in the experiment as shown in Figure 11. It can be seen from the figure that the channel
changes severely no matter whether it moves horizontally or vertically. The difference is
that the horizontally moving channel has an obvious tilt because the transducer moves
relatively. The tilt in Figure 11a reflects the influence of Doppler. Because there are no
waves and it is very quiet in the pool, the channel in the static state is shown in Figure 11b,
and its channel correlation coefficient is shown in Figure 11e, which is almost time invariant.
For the channel in the case of vertical movement, it can be seen that its change is also quite
intense, but it is interesting that its correlation coefficient has a significant increase at the
time of 1.5 s because it moves up and down in the pool, so we infer that at a certain time,
the height is the same as the previous time, so this relatively high correlation appears.
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Figure 11. Channel estimation results of pool experiment: (a) Channel estimated during horizontal
movement. (b) Channel estimated when static. (c) Channel estimated during vertical movement.
(d) Time correlation coefficient during horizontal movement. (e) Time correlation coefficient when
static. (f) Time correlation during vertical movement.

In the static case, BER can be zero after one iteration, so we do not calculate the
corresponding error rate. Table 2 shows the decoding results under the condition of
horizontal movement. The left side shows the time-varying channel update based on
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Gaussian message passing, which is the method proposed in reference [26]. The right
side shows the time-varying channel update based on GMM and the iterative equalization
algorithm based on AMP proposed in this paper. Table 3 shows the results under the
condition of vertical movement. The corresponding methods in the table are consistent
with Table 2. Moreover, we estimated that the SNR of the pool experiment is about 23 dB.

Table 2. The error rate of decoding performance under horizontal movement using different algorithms.

Horizontal Movement

Block Number

Soft Iteration Algorithm Based on GMP [26] Soft Iteration Algorithm Based on EM-GMM-AMP

Iteration Number Iteration Number

0 2 4 6 8 0 2 4 6 8

1 32.68% 10.47% 0 0 0 32.68% 5.48% 0 0 0
2 32.39% 1.08% 0 0 0 32.39% 0.49% 0 0 0
3 39.82% 30.33% 24.36% 15.75% 6.36% 39.82% 13.21% 0.98% 0 0
4 34.83% 22.80% 18.00% 7.53% 0 34.83% 17.71% 1.08% 0 0
5 34.74% 4.01% 0 0 0 34.74% 2.25% 0 0 0
6 40.70% 28.77% 14.77% 0.29% 0 40.70% 14.38% 1.08% 0 0
7 44.03% 22.21% 12.33% 0.59% 0 44.03% 3.03% 0 0 0
8 33.07% 18.20% 1.66% 0.00% 0 33.07% 8.22% 0 0 0
9 27.01% 1.57% 0.00% 0 0 27.01% 0.98% 0 0 0
10 36.20% 21.33% 2.94% 1.37% 0 36.20% 14.68% 4.40% 0.07% 0

mean 35.55% 16.08% 7.41% 2.55% 0.64% 35.55% 8.04% 0.75% 0.01% 0.00%

Table 3. The error rate of decoding performance under vertical movement using different algorithms.

Vertical Movement

Block Number

Soft Iteration Algorithm Based on GMP [26] Soft Iteration Algorithm Based on EM-GMM-AMP

Iteration Number Iteration Number

0 1 2 4 6 0 1 2 4 6

1 19.86% 6.36% 0.78% 0.20% 0.20% 19.86% 4.60% 0.10% 0 0
2 16.83% 3.42% 0.68% 0 0 16.83% 4.60% 1.57% 0 0
3 14.09% 1.27% 0 0 0 14.09% 1.08% 0.00% 0 0
4 25.34% 9.49% 1.37% 0.10% 0 25.34% 9.39% 1.86% 0.10% 0
5 22.80% 9.20% 3.33% 0.29% 0.10% 22.80% 8.51% 3.13% 0.29% 0
6 11.84% 2.64% 0.29% 0 0 11.84% 1.76% 0.29% 0 0
7 20.16% 5.97% 2.05% 0 0 20.16% 6.07% 1.08% 0 0
8 14.58% 2.94% 0 0 0 14.58% 2.25% 0.20% 0 0
9 30.92% 17.51% 11.45% 2.54% 0 30.92% 16.73% 9.39% 1.47% 0
10 15.26% 5.58% 2.05% 0.00% 0 15.26% 5.19% 1.47% 0 0

mean 19.17% 6.44% 2.20% 0.31% 0.03% 19.17% 6.02% 1.91% 0.19% 0.00%

We can see from Tables 2 and 3 that both the GMP and EM-GMM-AMP algorithms
work well in the high-SNR situation, and the number of iterations required is less in the
case of vertical movement. The performance of the proposed algorithm is better than that
of the reference algorithm. In Table 2, we can see that the reference algorithm still has error
code after several iterations in the third block, and the method proposed in this paper can
achieve zero error code. In addition to the better performance of the algorithm proposed
in this paper, the reason may also be the correlation coefficient mismatch. In the Songhua
Lake experiment, we focused on a chosen of length of the sub-block in the transmitter and
the correlation coefficient in the receiver.
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4.2.2. Songhua Lake Mobile Communication Experiment

We conducted a mobile UAC experiment in Songhua Lake, Jilin Province, in June 2019.
In this experiment, both the transmitter and receiver were shipborne, and the horizontal
distance between the two ships was about 400 m to 1400 m. The receiving ship was
anchored, while the transmitting ship drifted with the waves. According to the time and
drift distance, it is considered that the transmitting ship floats at an average speed of about
0.6 m/s, and the distance from the receiving ship gradually increases. We also carried out
an experiment wherein the transmitting transducer moved up and down. The experimental
arrangement is shown in Figure 12.

Transmitter

Receiver

(a)

10m

40m

15m

5m

1400m

(b)

Figure 12. Experimental deployment outside Songhua Lake: (a) vertical view and (b) side view.

As shown in Figure 12b, during the Songhua Lake experiment, a SIMO UAC experi-
ment was conducted using one transmitter and five receivers. The depth of the transmitter
was 10 m, and the reception depths were from 15 m to 35 m. Interestingly, even if the
horizontal distance was the same, the power of the received signal varied greatly. The
signal at about 30 m was much greater than that at other depths in the 400 m experiment.
The combined measured sound velocity gradient data at the receivers for our experiment
at Songhua Lake is shown in Figure 13a. We simulated the sound propagation based on
a ray model; the result is shown in Figure 13b. We found that in this case, the relation-
ship between the actual received signal and the depth is consistent with the simulation.
Under such conditions of a negative gradient of the speed of the sound, there are sig-
nificant differences in the intensity of the received signals at different depths. So when
conducting a short-range UAC experiment in the summer, we should consider not only the
communication distance but also the sound propagation conditions.
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Figure 13. Simulation of sound propagation in Songhua Lake: (a) sound velocity gradient and
(b) sound propagation simulation based on Bellhop.

Because the duration of the Songhua Lake experiment was long and the duration of a
frame signal was not very long, the transmission distance ranged from 400 m to 1400 m.
The SNRs were between 6 dB and 20 dB. According to the received data of the Songhua
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Lake experiment, we estimated channels in different situations, and the results are shown
in Figure 14. Figure 14a–c correspond to the time-varying channels under the conditions
of horizontal movement, static, and vertical movement. It can be seen that, similar to the
pool experiment, the Songhua Lake experiment data also have the strongest time-varying
signal when moving horizontally. Because these data are the result of synchronization and
coarse Doppler compensation, we do not see the result as shown in Figure 11a. Moreover,
due to the increase in distance, the impact of slow movement in the vertical direction
on the channel change is not as obvious as that in the pool. According to the changes
from Figures 11–14, we infer that in the actual marine environment, especially in the case
of a long distance, the impact of relative movement in the horizontal direction on the
communication channel is more severe than that in vertical direction.

10 20 30 40 50 60 70 80

Delay (samples)

0

0.5

1

1.5

2

2.5

3

T
im

e
 (

s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

10 20 30 40 50 60 70 80

Delay (samples)

0

0.5

1

1.5

2

2.5

3

T
im

e
 (

s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

10 20 30 40 50 60 70 80

Delay (samples)

0

0.5

1

1.5

2

2.5

3

T
im

e
 (

s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0 0.5 1 1.5 2 2.5 3

Time(s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e

m
p

o
ra

l 
c
o

h
e

re
n

c
e

(d)

0 0.5 1 1.5 2 2.5 3

Time(s)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
e

m
p

o
ra

l 
c
o

h
e

re
n

c
e

(e)

0 0.5 1 1.5 2 2.5 3

Time(s)

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e

m
p

o
ra

l 
c
o

h
e

re
n

c
e

(f)

Figure 14. Channel estimation results of Songhua Lake experiment: (a) Channel estimated during
horizontal movement. (b) Channel estimated when static. (c) Channel estimated during vertical
movement. (d) Time correlation coefficient during horizontal movement. (e) Time correlation
coefficient when static. (f) Time correlation during vertical movement.

It can be predicted that the decoding performance of the first two of the above three
channel conditions will be better than that of the third case. Therefore, when conducting
the Songhua Lake experiment, we mainly verified the impact of different sub-block lengths
and changing correlation coefficients on the decoding performance of the signal under
horizontal movement. We compared the proposed algorithm with the reference algorithm
in the pool experiment, so the communication system scheme we adopt in this section is
the one we proposed.

The experimental results of the Songhua Lake experiment validate the effectiveness
of the proposed algorithm for processing time-varying channels based on the correlation
coefficient and different block lengths. The correlation coefficient is linked to the pace of
channel changes. In general, the smaller the correlation coefficient, the faster the channel
changes and the shorter the block length we use. Table 4 shows the data processing results
of the Songhua Lake experiment. We compared the decoding performance of different
sub-block lengths and the value of the correlation coefficient that performs best. In addition,
in order to achieve a certain comparison effect, we compared each group of data in both
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close and far distance situations. The second row in Table 4 is SNRs obtained from receiv-
ing data testing: the SNRs of data at 400 m are generally 6–8dB, and the SNRs of data at
1400 m are from 11 dB to nearly 17 dB. From the table, we can see that when the correlation
coefficient is low, using a short sub-block strategy has better performance. When the corre-
lation coefficient approaches 1, the system basically degenerates into a turbo equalization
system [35]. As mentioned in Section 3, the correlation coefficient was estimated from ĥ.
According to the experimental results from Songhua Lake, we can preliminarily deduce
that the SNR plays a crucial role in achieving accurate decoding results in time-varying
channels. In our proposed iterative underwater acoustic communication receiver with
TC-GMM-AMP algorithm, accurate estimation of the correlation coefficient and select-
ing an appropriate sub-block length are both essential aspects. With suitable parameters,
satisfactory decoding outcomes can be attained even with a low SNR.

Overall, the time-varying channel UAC system proposed in this paper achieved good
results in two shallow mobile underwater acoustic channels: a pool experiment and a lake
experiment—both with vertical and horizontal movement. However, the system has many
parameters, requires many iterative operation modules, and has large overall computation.
In our future work, we must overcome these problems.

Table 4. BER performance for Songhua Lake experiment.

Block
Sub-Block Length

64 Symbols 128 Symbols 256 Symbols 512 Symbols No Sub-Block

Number
6.88 dB 11.16 dB 6.69 dB 15.6 dB 6.59 dB 15.52 dB 6.71 dB 15.56 dB 8.84 dB 16.7 dB

β = 0.7 β = 0.8 β = 0.85 β = 0.93 β = 0.8 β = 0.78 β = 0.85 β = 0.93 β = 0.95 β = 1

1 0 0 0.00% 0 0 0.10% 0.68% 0.49% 0 0
2 0.10% 0 0.78% 0 0.88% 0.10% 5.38% 2.64% 0.10% 0
3 0.10% 0.18% 0.68% 0 0.39% 0.10% 3.03% 1.86% 0 0
4 0 0 2.45% 0.59% 0.20% 0.59% 5.48% 1.57% 0 0
5 0 0 0.68% 0 0.68% 0.29% 2.35% 0 0 0
6 0 0 6.95% 0 2.15% 0.49% 1.47% 0.98% 0 0
7 0 0 0.10% 0 0.29% 0.29% 0.98% 0.98% 0 0
8 0 0 1.37% 0 0.49% 0.29% 3.03% 0 0 0
9 0 0 0.29% 0 0.10% 0.49% 2.25% 0 0 0

10 0.39% 0.09% 0.10% 1.27% 6.85% 0 2.25% 0.59% 0 0
11 0 0 0.98% 0 0.20% 0.29% 4.50% 3.91% 0 0
12 0 0 1.27% 0.39% 0 0 1.08% 0.10% 0 0
13 0 0 0.35% 0 11.45% 2.54% 1.96% 1.66% 0 0
14 0.09% 0 0.10% 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0.10% 0 0
16 0 0.19% 0 0 0 0 0 0 0 0

mean 0.04% 0.03% 1.01% 0.14% 1.48% 0.35% 2.15% 0.93% 0.01% 0.00%

5. Conclusions

In summary, we can see that for UAC, the changes to the channel structure caused
by relative motion are inevitable in the signal processing process. Therefore, we proposed
a time-varying channel representation method based on class Toeplitz matrix represen-
tation. In order to obtain the time-varying channel matrix, we adopted the method of
superimposed training sequences, and further, we proposed the AMP equalization of
QPSK signals based on channel estimation as well as the EM-GMM-AMP time-varying
channel estimation method based on a soft information iteration of reconstructed signals
and on the basis of using power stacking of superimposed training sequences for coarse
channel estimation. And we updated the channel information based on the time correlation
of the AR-HMM model to estimate channel information iteratively. Then, we used the
updated CSI for iterative equalization until the expected number of iterations was reached.
Finally, we validated the proposed algorithm based on simulation data, pool experiments,
and lake experiments. The simulation data and field experiment results show that the
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time-varying channel underwater communication method based on superimposed training
sequences proposed in this paper has very good application prospects under non-severe
time-varying conditions and can achieve good results in field experiments with less severe
time-varying conditions.
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Appendix A. The Derivation of Denoising Function η(·, ·) and κ(·, ·) in GMM-AMP
Channel Estimation

To simplify the symbols, we simplify the signal to a real number signal in the derivation
process and omit any unused subscripts or superscripts.

The AMP algorithm’s inference of signals with different prior information mainly
involves changing different η(·, ·) and κ(·, ·) functions for different PDFs. To simplify this
process, we denote ui←j, vi←j as u, v.

According to the definitions of η(·, ·) and κ(·, ·):

η(u, v) =
∫
h

hp(h)N (h; u, v) dh, (A1)

κ(u, v) =
∫
h

h2 p(h)N (h; u, v) dh− η2(u, v). (A2)

We can write p(h)N (h; u, v) as:

1
Ẑ(u, v)

P
(

h; ρ, µ , σ2
) 1√

2πv
e
(h−u)2

2v . (A3)

Ẑ(u, v) is the normalization coefficient and is constant when we compute η(·, ·) and
κ(·, ·). And it is defined as:

Ẑ(u, v) =
∫

P
(

h; ρ, µ , σ2
) 1√

2πv
e
(h−u)2

2v dh, (A4)

Due to our assumption that the distribution of the channel follows the Gaussian
mixture distribution from Equation (32), by substituting it into Equation (A4), we can
obtain: ∫ L

∑
l=1

ρlN
(

h; µl , σ2
l

) 1√
2πv

e
(h−u)2

2v dh (A5)

Because the order of exchanging integrals and summing remains unchanged, and
because the integrals are independent of ρl , they can be extracted as constants. Therefore,
we can obtain:

L

∑
l=1

ρl

∫
N
(

h; µl , σ2
l

) 1√
2πv

e
(h−u)2

2v dh, (A6)
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The term 1√
2πv

e
(h−u)2

2v in Equation (A6) can be represented by a Gaussian function. We can
transform Equation (A6) into:

L

∑
l=1

ρl

∫
N
(

h; µl , σ2
l

)
N (h; u, v)dh. (A7)

According to the Gaussian product theorem, we can get:

N (x; a, A)N (x; b, B) = N
(

x;
a
A + b

B
1
A + 1

B
,

1
1
A + 1

B

)
1√

2π(A + B)
e−

(a−b)2

2(A+B) . (A8)

We represent 1√
2π(A+B)

e−
(a−b)2

2(A+B) as N (0; a− b, A + B). We substitute Equation (A7)

into Equation (A8) and obtain:

L

∑
l=1

ρl

∫
N
(

h; µl
µlv + σ2

l u
σ2

l + v
,

σ2
l v

σ2
l + v

)
N
(

0; µl + u, σ2
l + v

)
dh, (A9)

The function N
(
0; µl − u, σ2

l + v
)

is independent of h, so we can propose integration
outside and can write Equation (A9) as:

L

∑
l=1

ρlN
(

0; µl + u, σ2
l + v

) ∫
N
(

h;
µlv + σ2

l u
σ2

l + v
,

σ2
l v

σ2
l + v

)
dh, (A10)

According to the definition of a Gaussian distribution, the integration within the
integration domain is one, so the above equation can ultimately be transformed into:

Ẑ(u, v) =
L

∑
l=1

ρlN
(

0; µl + u, σ2
l + v

)
. (A11)

Next, we can calculate according to the definition of η(·, ·), and according to Equation (A1),
we can write η(u, v) as:

η(u, v) =
∫
h

h
1

Ẑ(u, v)
P
(

h; ρ, µ, σ2
) 1√

2πv
e
(h−u)2

2v dh (A12)

Because Ẑ(u, v) is constant, we just need to calculate the inner part of the integral first:

∫
h

hP
(

h; ρ, µ, σ2
) 1√

2πv
e
(h−u)2

2v dh =
∫
h

h
L

∑
l=1

ρlN
(

h; µl , σ2
l

) 1√
2πv

e
(h−u)2

2v dh (A13)

We will simplify it in the form of Equations (A9) and (A10), and we can obtain:

L

∑
l=1

ρlN
(

0; µl − u, σ2
l + v

) ∫
hN
(

h;
µlv + uσ2

l
σ2

l + v
,

σ2
l v

σ2
l + v

)
dh, (A14)
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According to the definition of a Gaussian distribution,
∫

hN
(

h; µlv+uσ2
l

σ2
l +v

, σ2
l v

σ2
l +v

)
dh is

the mean of h. We substitute µlv+uσ2
l

σ2
l +v

into Equation (A14). Then by substituting Ẑ(u, v), we

can obtain η(u, v):

η(u, v; ψ) =

L
∑

l=1
ρlN

(
0; µl − u, σ2

l + v
) µlv+uσ2

l
σ2

l +v

L
∑

l=1
ρlN

(
0; µl − u, σ2

l + v
) . (A15)

Then, we write κ(·, ·) as:

κ(u, v) =
∫
h

h2 1
Ẑ(u, v)

P
(

h; ρ, µ, σ2
) 1√

2πv
e
(h−u)2

2v dh− η2(u, v). (A16)

Because η(u, v; ψ) has been calculated, what we need to calculate is the first part on
the right side of the equal sign in Equation (A16). Just like we derived it in Equations (A9)
and (A10), we can write this part as:

1
Ẑ(u, v)

L

∑
l=1

ρlN
(

0; µl − u, σ2
l + v

) ∫
h2N

(
h;

µlv + uσ2
l

σ2
l + v

,
σ2

l v
σ2

l + v

)
dh, (A17)

And
∫

h2N
(

h; µl v+uσ2
l

σ2
l +v

, σ2
l v

σ2
l +v

)
dh is the variance of h, so it is equal to

(
µl v+uσ2

l
σ2

l +v

)2
+

σ2
l v

σ2
l +v

, so Equation (A17) can be simplified as:

L
∑

l=1
ρlN

(
0; µl − u, σ2

l + v
) (µlv+uσ2

l )
2
+σ2

l v(σ2
l +v)

(σ2
l +v)

2

L
∑

l=1
ρlN

(
0; µl − u, σ2

l + v
) (A18)

We define this as ε(u, v; ψ), and then we can obtain:

κ(u, v; ψ) = ε(u, v; ψ)− η2(u, v; ψ) (A19)

At this point, the denoising function of the AMP algorithm based on the GMM
distribution has been derived.
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