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Abstract: The launch of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the Surface
Biology and Geology (SBG) satellite sensors will provide increased spectral resolution compared
to existing platforms. These new sensors will require robust calibration and validation datasets,
but existing field-based instrumentation is limited in its availability and potential for geographic
coverage, particularly for coastal and inland waters, where optical complexity is substantially greater
than in the open ocean. The minimum signal-to-noise ratio (SNR) is an important metric for assessing
the reliability of derived biogeochemical products and their subsequent use as proxies, such as for
biomass, in aquatic systems. The SNR can provide insight into whether legacy sensors can be used for
algorithm development as well as calibration and validation activities for next-generation platforms.
We extend our previous evaluation of SNR and associated uncertainties for representative coastal and
inland targets to include the imaging sensors PRISM and AVIRIS-NG, the airborne-deployed C-AIR
radiometers, and the shipboard HydroRad and HyperSAS radiometers, which were not included in
the original analysis. Nearly all the assessed hyperspectral sensors fail to meet proposed criteria for
SNR or uncertainty in remote sensing reflectance (Rrs) for some part of the spectrum, with the most
common failures (>20% uncertainty) below 400 nm, but all the sensors were below the proposed 17.5%
uncertainty for derived chlorophyll-a. Instrument suites for both in-water and airborne platforms that
are capable of exceeding all the proposed thresholds for SNR and Rrs uncertainty are commercially
available. Thus, there is a straightforward path to obtaining calibration and validation data for
current and next-generation sensors, but the availability of suitable high spectral resolution sensors
is limited.

Keywords: signal-to-noise ratio; ocean color; coastal and inland waters; NDVI; kelp; chlorophyll

1. Introduction

Coastal, estuarine, and inland waters are optically complex and exhibit significant
spatial and temporal variability. Ocean color remote sensing imagery is often used to derive
relevant biogeochemical constituents within coastal and inland waters at appropriate
space and time scales [1]. Beyond basic research, such data products are used to provide
information about species composition and biodiversity, water quality, carbon cycling, and
biogeochemical fluxes relevant to human and ecosystem health [2]. Historically, ocean
color sensors have focused on the open ocean, which is typically optically simple (Case-1
waters; [3]) and exhibits greater spatial and temporal decorrelation scales compared to
coastal and inland waters. The coastal zone serves as a dynamic transition between the
oceanic and terrestrial biomes. It represents approximately 20% of Earth’s surface [4] but
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provides the richest biodiversity and the highest fishery production, both of which are
created from the highest primary production [4]. As such, it is an important target for
remote sensing. Advances in satellite radiometry have greatly increased the availability of
publicly available high spatial resolution data with the introduction of (e.g.) the Operational
Land Imager (OLI; 30 m spatial resolution) aboard Landsat 8/9 and the MultiSpectral
Instrument (MSI; 10, 30, 60 m spatial resolution) aboard Sentinel-2, while the launch of the
Ocean Land Colour Instrument (OLCI) aboard Sentinel-3 provides a compromise between
high spatial resolution (300 m) and more frequent return rate (~daily; [5]). Increasingly, the
community of practice is now turning toward increased spectral resolution as well [6].

Water-leaving radiance (LW(λ), µW cm−2 nm−1 sr−1, or LW) is highly variable, ranging
from extremely low values for clear, deep water to very bright values in optically shal-
low environments near the shoreline, in turbidity plumes, or in high productivity waters.
Legacy satellite missions such as SeaWiFS, MODIS, and VIIRS provide ~1 km and ~daily
resolution, which is generally not adequate for the coastal ocean [7]. Next-generation
missions such as PACE, deploying the Ocean Color Instrument (OCI; [8]), and the NASA
Surface Biology and Geology (SBG) study [9] provide more spectral resolution as well as
measurements that extend into shorter wavelengths. These shorter wavelengths, extending
into the ultraviolet (UV), are useful for the following: (a) discriminating red tides [10];
(b) identifying point sources for pollution [11]; (c) improving atmospheric correction [12],
particularly in turbid coastal waters [13,14]; and (d) reducing the uncertainties in derived
biogeochemical parameters at discrete wavelengths [15] or as part of end-member analy-
ses [16]. Most commercial-off-the-shelf (COTS) spectrometers and calibration/validation
(cal/val) sensors, however, lack UV bands or exhibit poor UV performance [17]. All these
issues make aquatic remote sensing, as well as cal/val activities, challenging.

The “classic” airborne visible infrared imaging spectrometer (AVIRIS-C) provides
both high spatial (~5–60 m) and spectral (~400–2500 nm) resolution, and has until recently
been the platform of choice for simulating ocean color products [17]. It has been com-
plemented by the next-generation airborne sensor AVIRIS-Next Generation (AVIRIS-NG).
Unfortunately, in-water and above-water instrumentation suitable for ground truth of high
spectral resolution imagery has decreased in availability [18]. Handheld sensors such as
the Malvern Panalytical ASD instruments are considered the gold standard but are not
automated and are therefore incapable of providing continuous spectral data in complex
environments. The Aerosol Robotic Network-Ocean Color (AERONET-OC) sensors are
automated, but are typically deployed in a fixed location [19,20].

As previously described [21,22], the remote sensing of coastal and inland waters often
involves compromises between optimizing the SNR and maintaining a broad dynamic
range for ocean sensors, and saturation over bright targets caused by limited dynamic
range is a common issue. In contrast, sensors designed primarily for land (e.g., MSI,
SBG) are optimized for observing bright targets and do not saturate but suffer from poor
performance (low SNR) for dark targets, i.e., clear, deep water. As a compromise, SNR
recommendations are variously set at an SNR of > 100–200 for shortwave infrared (SWIR),
>600 for near infrared (NIR), and > 1000 for UV to visible (VIS), i.e., UV-VIS, bands. Muller-
Karger et al. [2] recommended an SNR > 800 for the UV-VIS range. Wang and Gordon [23]
specifically evaluated NIR and SWIR bands for atmospheric correction, and identified
minimum requirements of ~200–300 for NIR and ~100 for SWIR, concluding that an SNR
of ~600 and ~200 for NIR and SWIR are acceptable minimum thresholds. SNR values
listed for at-sensor radiances can be difficult to interpret because of the wide dynamic
range of typical at-sensor radiance (Ltyp) values, particularly for coastal and inland waters,
and [21] recommended presenting values in terms of LW, remote sensing reflectance (Rrs,
sr−1), or water-leaving reflectance (ρW), consistent with the PACE Science Definition Team
report [24].

The goals of this manuscript are, first, to update [21] with sensors that were not
included in the original analysis, in particular AVIRIS-NG. Second, this paper assesses
whether existing commercially available airborne and in-water instrumentation provides
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sufficiently high-quality estimates of LW (and therefore of Rrs and ρW). We provide guide-
lines for future cal/val instrument development to achieve an adequate SNR (and uncer-
tainty) and, therefore, cal/val capability for next-generation sensors.

2. Materials and Methods
2.1. Field Sites and Targets

The sampling locations chosen for this analysis (Figure 1) were based on similar criteria
as [21]. First, the sites provide Ltyp values that are representative of common inland and
coastal water targets; with the exception of kelp, all the targets were spatially uniform water
targets referred to as “bright” or “dark”, i.e., waters with enhanced scattering (bright) or
absorption (dark). Second, quality-controlled data are available (see references in Section 2),
and the sites are characterized well enough to assess their use as case studies for coastal
and inland ocean color remote sensing. Third, the sites are both spatially extensive and
optically homogenous for applying geostatistical methods to calculate the SNR [21,25,26].
Finally, datasets were excluded that were redundant with the previous analysis [21]. Based
on those criteria, we identified five relevant sites as follows: San Francisco Bay, the Sub-
Mesoscale Ocean Dynamics Experiment (S-MODE) site offshore of San Francisco, coastal
Monterey Bay and Elkhorn Slough, the Santa Barbara Channel, the Gulf of Mexico, and
coastal Hawaii (Table 1).
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Table 1. Summary of data collection sites and processing parameters.

Sensor Date Resolution (m) Spectral Range
(Resolution) nm

Atmospheric
Correction

S-MODE, Monterey Bay, Elkhorn Slough
C-AIR 28-Oct-21 3.5 320–1640 (10) * Not Necessary
PRISM 24-Jul-12 1.0 350–1054 (3.5) ATREM

San Francisco Bay
HydroRad-3 23-Oct-19 95.8 350–850 (1.1) Not Necessary

Gulf of Mexico
HyperSAS 22-Apr-09 16.2 350–800 (3.5) Not Necessary

Hawaii
PRISM 17-Feb-17 16.2 350–1054 (3.5) ATREM

Santa Barbara Channel
AVIRIS-NG 17-Apr-21 7.9 380–2510 (5) ATREM

* fixed wavelengths at 320, 340, 380, 412, 443, 490, 510, 532, 555, 589, 625, 670, 683, 710, 780, 875, 1020, 1245,
1640 nm.

2.2. In-Water, Airborne, and Satellite Sensors

Three airborne and two shipboard instrument suites were evaluated, respectively, as
follows: AVIRIS-NG, PRISM, and Coastal Airborne In Situ Radiometers (C-AIR); plus the
HOBI Labs HydroRad-3 and SeaBird Electronics (formerly Satlantic) HyperSAS (Table 1).
AVIRIS-NG and PRISM are imaging spectrometers while the remaining instruments are
spectrometers or multiple-waveband radiometers. AVIRIS-NG data were collected over
the Santa Barbara Channel in support of the NASA Student Airborne Research Project
(SARP) activity and were acquired as Level 2 (atmospherically corrected) data from JPL
(https://avirisng.jpl.nasa.gov, accessed 28 August 2023). PRISM data were obtained
during the PRISM validation campaign (Moss Landing Harbor, adjacent to Elkhorn Slough;
prism.jpl.nasa.gov, accessed 12 September 2023) and the NASA COral Reef Airborne
Laboratory (CORAL; [27]). Data from C-AIR were obtained as part of the NASA Coastal
High Acquisition Rate Radiometers for Innovative Environmental Research (C-HARRIER)
campaign in collaboration with the NASA Sub-Mesoscale Ocean Dynamics Experiment
(S-MODE) experiment for offshore coastal waters, Monterey Bay, and Elkhorn Slough,
California. Data from San Francisco Bay collected with the HydroRad-3 were obtained
from a previous analysis [25] focusing on the derivation of Total Suspended Solids (TSS).
HyperSAS data were collected in the Gulf of Mexico [28] and were obtained from the
NASA SeaBASS repository [29]. Three of the four instrument suites collect data along-track,
while AVIRIS-NG and PRISM collect a swath. For geostatistical analyses, we treated all the
sensors as along-track. For each dataset, a homogenous along-track section used for the
estimation of the SNR was identified by visual inspection of radiance or reflectance data at
~555 nm to avoid obvious features such as fronts, kelp canopy edges, and shadows.

2.2.1. AVIRIS-NG Imagery

Images for the Santa Barbara Channel were obtained from the JPL AVIRIS-NG site. The
data were downloaded as Level 2 (L2) reflectance with a standard atmospheric correction
applied [30]. Imagery was kept at native pixel and wavelength resolution (Table 2). Two
regions were identified for analysis corresponding to a bright target (kelp bed) and dark
target (clear Case-1 waters to the south of Santa Cruz Island). We compared the along-track
SNR to a 2-dimensional data field [21] as well as multiple along-track datasets from the
same swath and the results were comparable, so only the single along-track results are
presented. Rrs was calculated using the Thuillier [31] solar irradiance spectra interpolated
to AVIRIS-NG wavelengths.

https://avirisng.jpl.nasa.gov
prism.jpl.nasa.gov
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2.2.2. PRISM Imagery

Images for Moss Landing Harbor, adjacent to Elkhorn Slough, and coastal waters off
Maui, Hawaii, were obtained from the JPL PRISM site and the CORAL site, respectively.
The data were downloaded as L2 reflectance with a standard atmospheric correction
applied [30]. The imagery was kept at native pixel and wavelength resolution (Table 2).
Moss Landing Harbor was chosen as a bright target (elevated TSSs) and Hawaii was chosen
as a dark target (clear Case-1 waters). The PRISM data exhibit “noise” due to the high
spectral resolution, and the spectra and uncertainties can be improved with non-standard
processing [30], but for this analysis the standard L2 data were used.

2.2.3. C-AIR Data

The C-AIR instrument suite is manufactured by Biospherical Instruments Inc. [32]
and operated by NASA Ames Research Center. As part of the C-HARRIER campaign [32],
the data were collected aboard a Twin Otter aircraft. C-AIR is an airborne radiometer
instrument suite based on microradiometers with a flight campaign heritage since 2011.
C-AIR consists of three 19-channel microradiometers [33], one fitted with a cosine collector
to measure the global solar irradiance (Es; µW cm−2 nm−1), and two radiance instruments
oriented to measure the indirect sky radiance (Li; µW cm−2 nm−1 sr−1) plus the total radi-
ance from the surface (LT; µW cm−2 nm−1 sr−1). C-AIR is similar to the Compact-Airborne
Environmental Radiometers for Oceanography (C-AERO) instrument suite [21] except for
less advanced hardware (and firmware) components, the lack of radiance shrouds, and a
15 Hz sampling rate rather than as fast as 30 Hz for C-AERO [34]. In addition, the C-AIR
data software is less sophisticated than C-AERO, with the former data acquisition being
more properly representative of non-commanded data recording. For the latter, tempo-
rally updated laboratory metadata are combined with unique ancillary sensor records.
Briefly, the combination permits preprocessing corrections to reduce uncertainties in data
products [35] as follows: (a) time-dependent characterizations; (b) gain-stage transitions;
(c) nonreal-time serial timing; (d) illumination geometry and normalizations; (e) planar
aperture tilting; and (f) environmental or field characterizations (e.g., dark currents), as
appropriate. Intercalibration corrections are not applied, because the absolute calibration of
each radiometer is determined independently. Postprocessing corrections are likewise most
advanced for the C-AERO data acquisition software, e.g., permitting glint discretization
shown to remove positive bias (brightening) in above-water radiometric observations [36].
Lowest safe altitude (LSA) flights, ~30 m above the water surface and flown in the principal
plane of the Sun to mitigate glint, were used for the data collection, negating the need for a
full atmospheric correction [32]. The SNR was estimated using the LT sensor. It was not
possible to calculate Rrs for C-AIR because there were insufficient resources to fully process
the data in compliance with the NASA Ocean Optics Protocols [37–41].

2.2.4. HydroRad-3 Data

The HydroRad-3 was deployed on the R/V Peterson in San Francisco Bay [25]. The
HydroRad-3 recorded continuous radiometric measurements of Es, Li, and LT. As described
previously [25], the optical sensors were fixed 2 m above the main deck on the bow of
the ship. The sensors were oriented such that a 100–130◦ average solar zenith angle was
maintained during the data collection. LT was fixed 40◦ down from horizontal. While Rrs
was calculated [25], the LT data were used for the calculation of the SNR for consistency.
The data were quality-controlled for suspect spectra [25] prior to analysis.

2.2.5. HyperSAS Data

The HyperSAS was operated aboard the R/V Cape Hatteras in the northern Gulf of
Mexico as part of the GulfCarbon program [28,29]. The HyperSAS system included two
HyperOCR-R radiance sensors for LT and Li, plus two HyperOCR irradiance sensors for
measuring Es, covering both UV (350–400 nm) and visible (400–800 nm) wavelengths. The
radiometers were mounted at 8 m height (above-water) with a 90◦ angle relative to the



Remote Sens. 2024, 16, 1238 6 of 17

ship’s heading. The LT and Li sensor viewing angles were 35◦ from the nadir and 125◦ from
the nadir, respectively. The data were quality-controlled as described in [28]. As with the
HydroRad-3, LT was used in this analysis for consistency.

2.3. Signal-to-Noise Ratio and Uncertainty Calculations

The SNR was estimated as the ratio of the mean signal for an invariant target to
the standard deviation of the signal. The methodology has previously been described
in detail [21]; we reproduce that description here as a background to the analysis. For
orbital or airborne sensors designed to image water, the SNR is most often measured in
the laboratory, using a spectrally uniform albedo of 5%, a reasonable reflectance for most
aquatic targets [42]. Estimates of the SNR convolve multiple sources of uncertainty (noise).
This can include instrument artifacts and uncertainties identified as part of the lab-based
characterization of an instrument (discussed in greater detail by [43]). An alternative
method, referred to as “geostatistical SNR”, calculates a semivariogram from field data
that are spatially uniform. This provides an SNR that is relevant to the investigator [26]
and can incorporate any pre- and post-processing, such as atmospheric correction schemes
and any data reduction or quality control, if applicable. Semivariogram analysis requires
that the data exhibit both isotropy and stationarity, and it is assumed that the data do
not change spatial resolution [26]. The airborne data collection was at fixed altitude
while the shipboard instruments were in fixed geometry relative to the target, but the
assumption of isotropy may not have been rigorously met for all data. For the imaging
sensors (AVIRIS-NG, PRISM), this was mitigated by testing for isotropy using the two-
dimensional data, while explicitly using along-track data for analysis to be consistent across
sensors. For the point-based sensors, it is not possible to test for isotropy without collecting
data in multiple orientations. Since those data are not available, we analyzed multiple
line segments and chose data that were qualitatively and quantitatively most uniform (see
Section 2.2).

We applied a geostatistical SNR approach, generally following the methodology out-
lined in [25]. The SNR was determined for each wavelength by calculating the semivariance,
γh, over the distance between pixel pairs (h) using the MATLAB (Mathworks Inc.) packages
variogram and variogramfit [44]. A theoretical semivariogram was calculated with the data
to estimate the nugget, sill, and range (c.f. [25,45]). The SNR was then calculated as the
mean signal (z, LT or reflectance) divided by the square root of the nugget variance (C0):

SNR =
z√
C0

. (1)

The nugget (n, or C0) is the non-zero intercept, and it determines the degree of un-
resolved variability, or noise. Mathematically, this is the non-zero limit of γh when h
approaches zero, where h is the lag and γh is the semivariance as a function of the lag. The
range (a) determines how quickly in space the variability reaches a global maximum, while
the sill (C1) indicates the point beyond which pixel proximity does not correlate with the
spatial structure of the data. This provides the total resolved variance. Multiple theoretical
variogram models are available and the choice of model depends on the structure of the
data. For this analysis, three theoretical models were used and are formulated as:

γh = C0 + C1

[
1–exp

(
–

h2

a2

)]
(2)

γh = C0 + C1

[
1–exp

(
–

h
a

)]
(3)
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γh =

{
C0 + C1

(
h
a

)
, h ≤ a

C0 + C1, h > a
(4)

where (2) is a Gaussian, (3) is an exponential, and (4) is a bounded linear model. Follow-
ing [25], the best R2 value of the fit was used to select the model. Data were discarded for
R2 < 0.7 for all but the HyperSAS data, where the criteria had to be relaxed to < 0.5 to cover
the full spectral range. For sensors other than HyperSAS the R2 values exceeded 0.8–0.9
on average.

2.4. Uncertainties in Rrs and Derived Geophysical Products

For a comparison to [21], we multiplied the percent noise of the mean signal by
the Rrs uncertainty for the HydroRad-3, HyperSAS, PRISM, and AVIRIS-NG (C-AIR was
excluded because Rrs was not calculated). Following [21,46], the same weightings in a
3-band configuration were used for calculating chlorophyll-a (chla) from the HydroRad-3,
HyperSAS, and AVIRIS-NG (dark target). For kelp, the normalized difference vegetation
index (NDVI) was calculated using AVIRIS-NG (bright target). The relevant algorithms are:

log10(chla)= a0 + ∑4
i ai

[
log10

(
Rbg

)
] (5)

where Rbg is the ratio of maximum blue to green reflectance, and a0–a4 are weighting
functions for instrument-specific bands (c.f. [47–50]) and for NDVI,

NDVI =
(

RNIR
rs − Rred

rs )/
(

RNIR
rs +Rred

rs

)
(6)

where Rred
rs , RNIR

rs are the remote sensing reflectances from AVIRIS-NG at 652.55 nm (red)
and 852.89 nm (NIR). Uncertainty was propagated using the standard OC3M band-ratio
algorithm for chlorophyll retrievals following [43], and for NDVI for the kelp target follow-
ing [21], where δchla and δNDVI are the calculated uncertainties with units of mg m−3 for
chla and dimensionless units (−1 to 1) for NDVI.

3. Results
3.1. Geostatistical SNR

Previous analysis [21] provided SNR estimates for multiple satellite and airborne sen-
sors for comparison to AVIRIS-NG, PRISM, C-AIR, HydroRad-3, and HyperSAS. Figure 2
shows a subset of those results for AVIRIS-C and C-AERO. C-AERO exhibited the highest
SNR and lowest uncertainty across all wavelengths. AVIRIS-C exhibited rapid declines
below ~450 nm and above ~700 nm with a peak SNR between ~490–700 nm depending on
the target. As discussed in [21], an SNR of two provides the absolute minimum threshold
for scientifically relevant data. The at-sensor signal for aquatic targets is assumed to be ~5%
of Ltyp. Therefore, for an at-sensor SNR of 400–1000, the atmospherically corrected SNR
should be 20–50. Doubling those values to account for other sources of variance results in
a minimum SNR of 40–100. Figure 2 thus provides examples of an airborne sensor that
meets proposed standards (C-AERO) and an airborne sensor (AVIRIS-C) that does not
consistently meet proposed standards.

Figure 3 provides the corresponding SNR for the airborne and shipboard datasets
included in this analysis. AVIRIS-NG exhibits higher SNR compared to AVIRIS-C, but still
falls below a threshold of 20 for blue-UV (<~450 nm) and for wavelengths beyond 750 nm,
although those bands are of less interest for ocean color (but see [51]). C-AIR is consistently
above both SNR thresholds in the UV and visible bands, but also drops off for wavelengths
beyond 750 nm, particularly for dark targets (e.g., S-MODE). C-AIR exhibits about a decade
of loss in the SNR compared to C-AERO. For the two shipboard sensors, the SNR peaks at
~555 nm, just at or below the proposed SNR threshold of 20. The SNR continues to drop
into the UV and the NIR ranges.
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Figure 3. SNR for dark and bright targets. (A) SNR for Santa Barbara Channel from AVIRIS-NG;
(B) SNR for bright targets in Monterey Bay from C-AIR; (C) SNR from the S-MODE site (dark targets)
from C-AIR. S-MODE-1 and S-MODE-2 are data flying into and out of the principal plane of the
Sun, respectively; (D) SNR for Moss Landing Harbor (bright target) and Hawaii (dark target) from
PRISM; (E) SNR for San Francisco Bay and Gulf of Mexico (both bright targets) from HydroRad-3
and HyperSAS. For each panel the proposed SNR thresholds (2, 20–50, 40–100; [21]) are indicated
for reference.
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3.2. Airborne and Satellite-Derived Uncertainty

Figure 4 provides the Rrs spectra and corresponding data for AVIRIS-NG, PRISM,
HyperSAS, and HydroRad-3 as Rrs and uncertainty (sr−1), and as percent environmental
uncertainty. C-AIR was excluded because Rrs was not available, but the results from [21]
provide a reasonable estimate of C-AIR instrument uncertainty. Hooker et al. [52] provide
guidelines for the generalized spectral properties of dark and bright water bodies in terms
of peaks and spectral end members as follows: (1) a radiometrically dark water body has
a central peak spanning the blue–green domains with the lesser amplitudes at shorter
wavelengths containing secondary features and the substantially decreasing amplitudes at
longer wavelengths containing an identifiable fluorescence peak in the red domain; and
(2) a radiometrically bright water body has a dominant peak shifted toward the red–NIR
domains with a usually identifiable fluorescence peak, plus secondary features (including
lesser peaks) at shorter wavelengths, wherein with respect to a dark water body, the shortest
wavelengths have significantly reduced amplitudes, but the longest wavelengths have
elevated amplitudes. The generalized properties of dark and bright water bodies are
not applicable to all the sampling circumstances and are provided to assist the reader in
generally assessing the material provided in the figures without the need to state all the
discernible features within or between figures. Consequently, only the most important
differences relevant to the study are described below.
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Figure 4. Data from (A) AVIRIS-NG (Santa Barbara Channel; black = dark target, gray = bright (kelp)
target) for Rrs (solid and dashed lines) and Rrs uncertainty; (B) HyperSAS (black; Gulf of Mexico) and
HydroRad-3 (gray; San Francisco Bay) for Rrs (black and gray lines) and Rrs uncertainty; (C) PRISM
(Hawaii = black, dark target; Moss Landing Harbor = gray, bright target) and Rrs uncertainty. Panels
(D–F) show corresponding percent uncertainty with proposed thresholds as solid horizontal black
lines (data should be below the line). Missing data at some wavelengths represent failure to converge
on an acceptable fit for the variogram analysis. Panel (B) includes a dashed horizontal line for 0 Rrs

and Rrs uncertainty; values below the dashed line represent negative calculated reflectances. Data
from AVIRIS-NG (panels (A,D)) were truncated at 900 nm.
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The PACE Science Definition team specified percent uncertainty ranges of 20% for
350–400 nm, 5% for 400–600 nm, and 10% for 660–710 nm [24]. AVIRIS-NG does not provide
data from 350 to 400 nm and was generally below the thresholds for dark targets, but not
for bright targets. PRISM does extend below 400 nm for the dark (but not bright) target
and is below the 20% proposed uncertainty threshold, but exhibits variability in the UV
range. In the visible spectrum, PRISM is not compliant for the dark target and fails the
proposed threshold from ~400–450 nm for the bright target. HydroRad-3 was generally
in compliance, except for the ~400–500 nm wavelengths. HyperSAS was well below the
proposed thresholds for all the wavelengths, but exhibited negative reflectances below
~400 nm.

The Rrs spectra were consistent with the expected targets; the PRISM and AVIRIS-NG
dark (blue water) spectra peaked in the blue and steadily declined into the red and NIR
ranges, while the bright (kelp) target exhibited a strong red edge feature from the surface
canopy of the kelp bed. The Moss Landing Harbor, San Francisco Bay, and Gulf of Mexico
targets (bright) exhibited very high Rrs peaking between 550 and 600 nm, consistent with
sediment-laden waters [25,28].

There was an unusual pattern in the AVIRIS-NG uncertainty, with both the absolute
uncertainty and percent uncertainty rising in the red edge feature over the kelp, tracking the
Rrs signal. While still below the PACE-specified threshold, it suggests that despite choosing
an apparently homogenous section of the kelp bed, there was pixel or subpixel variability
that influenced the variogram. This is presumably due to the high spatial heterogeneity
(e.g., [45]) associated with kelp beds at the native spatial resolution of AVIRIS-NG from this
data collection. PRISM also showed spectral variability at some wavelengths consistent
with narrow spectral bands being influenced by atmospheric absorption features [30] that
tend to be smoothed out in lower spectral resolution data.

3.3. Derived Chlorophyll and NDVI

AVIRIS-NG and PRISM data were converted to Rrs and HydroRad-3 and HyperSAS Rrs
were used to calculate chla and NDVI (for kelp). Although fully quality-controlled Rrs were
not available for C-AIR, we calculated δchla for the C-AIR dark targets (S-MODE) using a
simplified above-water correction scheme following [47] with ρ = 0.028. Corresponding
Rrs uncertainties are not provided (as noted above) given the simplified correction, but the
analysis provides a first-order estimate of instrument uncertainty for δchla using C-AIR
over a dark target.

In-water validation data were not available for all the sites, so δchla and δNDVI are
presented as percent uncertainty due to the estimated error introduced to the algorithm
(OC3M or NDVI) associated with environmental variability and instrument performance,
referred to hereafter as environmental uncertainty (UE, %). Reported UE is, therefore, only
an indication of the sensor performance as deployed and processed and does not account
for potential uncertainties or biases in the underlying algorithm, nor does it capture total
uncertainty. Statistics that compare satellite vs. in situ matchups result in a considerably
higher mean error. For example, [49] reported an ~11% error for chla in the California
Current (where in situ is considered correct), while [50] reported a Mean Absolute Error for
OC3 applied to global MODIS matchups of 1.64, or about a 64% error.

For C-AERO, direct matchups between airborne and in situ data were available,
while for San Francisco Bay and the Gulf of Mexico, in-water data that were spatially and
temporally close but not true matchups were available. Those values provide UE between
8.1 and 55.2% (relative percent difference), respectively, comparable to [50]. With those
caveats, Table 2 provides results from the relevant sensors. Kudela et al. [21] proposed a
first-order threshold of between 2.5 and 17.5% uncertainty of the underlying algorithm
for optically complex coastal and inland waters. With the exception of AVIRIS-C for δchla,
all the sensors were under the relevant thresholds for UE. The data demonstrate that UE
generally tracks kelp health (more positive NDVI), with increasing uncertainty as NDVI
values decrease. In contrast, for chla, there is no clear relationship between biomass and
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UE, with performance more closely associated with the sensor rather than environmental
conditions. Of the sensors evaluated, C-AERO exhibited the highest SNR and lowest
absolute Rrs uncertainty metrics, with C-AIR providing quantitatively similar performance
for δchla over a dark target. AVIRIS-NG exhibited lower uncertainty for δchla but not
δNDVI compared to AVIRIS-C. PRISM showed increasing UE for the dark target. All
sensors except AVIRIS-C were below the proposed threshold of 17.5% UE.

Table 2. Summary statistics for instrument uncertainty in retrieved biomass. OC3M estimates for
chla were classified for eutrophic status based on [50]. Measured chla (mg m−3), when available, are
included in parentheses.

Location Sensor Algorithm UE (%) Biomass
(NDVI, chla) Source

Santa Barbara
Channel AVIRIS-NG NDVI 5.4 0.57 This Study

Santa Barbara
Channel AVIRIS-C NDVI 0.7 0.97 [21]

Santa Barbara
Channel OLI NDVI 0.9 0.80 [21]

Santa Barbara
Channel MSI NDVI 8.2 0.34 [21]

Santa Barbara
Channel RapidEye-2 NDVI 4.1 0.82 [21]

Santa Barbara
Channel AVIRIS-NG OC3M 2.4 1.17 This Study

Moss Landing
Harbor PRISM OC3M 0.7 3.66 This Study

Maui, Hawaii PRISM OC3M 1.3 0.31 This Study
San Francisco Bay C-AERO OC3M 0.1 8.08 (9.19) [21]

Lake Tahoe C-AERO OC3M 0.2 0.49 (0.44) [21]
Central California

(S-MODE) C-AIR OC3M 0.2 0.21 This Study

San Francisco Bay OLCI OC3M 1.1 17.71 [21]
San Francisco Bay AVIRIS-C OC3M 40 3.58 [21]
San Francisco Bay OLI OC3M 1.1 2.75 [21]
San Francisco Bay MSI OC3M 4.1 3.52 [21]

Gulf of Mexico HyperSAS OC3M 2.3 1.90 (3.35) This Study
San Francisco Bay HydroRad-3 OC3M 10.5 2.84 (2.62) This Study

4. Discussion

We updated the results from [21] to include current state-of-the-art imaging spec-
trometers (AVIRIS-NG and PRISM) as well as three COTS sensors capable of providing
near-continuous measurements spatially (C-AIR, HyperSAS, HydroRad-3). In evaluating
these and other sensors, one criterion for choosing to use a sensor is whether its perfor-
mance is fit for purpose [15]. Ocean color remote sensing (broadly defined to include all
aquatic remote sensing but referred to as “ocean color” for convenience) can be divided into
three categories: calibration, validation, and research (CVR; [32,35]). Calibration has usu-
ally relied on fixed-location, custom-built radiometers at specific locations, e.g., MOBY [48],
but Bouée pour l’acquisition de Séries Optiques à Long Terme (BOUSSOLE) used COTS ra-
diometers [53]. Mobile autonomous platforms that meet calibration quality standards
while extending observations into the UV and SWIR have also been demonstrated [35]. Re-
quirements for validation are generally less rigorous and extend measurements to include
both custom-built and COTS instrumentation including fixed platform [19], airborne [32],
shipboard [11,54], and autonomous vehicles [35,55]. Research quality observations are
the least restrictive and represent the vast majority of ocean color measurements. For
calibration and validation, there are considerably fewer hyperspectral data, and even fewer
data that extend into the UV [56,57] and SWIR [43] ranges.
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Next-generation sensors extend observations into the UV range, primarily to improve
atmospheric correction [12], although, as noted in the introduction, there are multiple
biogeochemical parameters of interest that take advantage of UV bands [10,15,16,58–60].
While fixed-location UV sensors suitable for ocean color validation exist [11,48], the use of
airborne, autonomous vehicle, or automated shipboard platforms for CVR exercises enables
increased spatial extent at the temporal scale needed for match-ups to satellite observations
as well as for characterizing dynamic, optically complex environments [32,35,52,55,61].
AVIRIS-C, AVIRIS-NG, and HyperSAS exhibit poor performance or lack data (either be-
cause of atmospheric correction failure or lack of bands) in the UV range. C-AIR, C-AERO,
PRISM (for dark targets), and HydroRad-3 provide reasonable data (based on SNR, Rrs
uncertainty) but are of limited availability. The community of practice would benefit from
access to, and support for, sensors with high UV fidelity that also provide adequate spatial
and temporal coverage. At the other end of the spectrum, short-wave infrared bands are
also underutilized. A recent analysis demonstrates that the technology used in C-AIR and
C-AERO is fully capable of delivering absolute radiometric measurements of targets darker
than sunlit waters (Figures 2 and 3A,D), and negating the common assumption of a “black
pixel” in the NIR or SWIR region of the spectrum [51]. If the community of practice were to
take advantage of those wavelengths, similar issues as for the UV bands become evident.

An instrument that meets calibration-quality performance is automatically capable
of validation and research-level performance. Microradiometer technology has met this
threshold [35] for in-water instruments and C-AERO is arguably also of calibration quality
(Figure 2). C-AIR is based on the same technology but exhibits a lower SNR for the NIR
and SWIR wavelengths (Figure 2), effectively placing it into the validation-quality category.
AVIRIS-NG exhibit validation-quality performance, while HyperSAS and HydroRad-3 also
meet the requirements for most wavelengths. Kudela et al. [21] noted that operational
validation is possible for several sensors over turbid waters or for a reduced spectral range
over blue or turbid waters (PRISM, MSI, OLCI, OLI, AVIRIS-C), to which we can add
C-AIR, HyperSAS, and HydroRad-3. For dark targets, the available sensors for validation
are limited if the full hyperspectral (UV-SWIR) range is required. Only C-AERO meets or
exceeds all the proposed criteria, but it is multispectral rather than hyperspectral. Many of
the sensors fail in the UV range. HydroRad-3 (at least in this analysis) shows a degraded
performance from ~400–450 nm for a bright target, which would potentially translate to
poor performance for dark targets as well. For all sensors, performance can be improved
with spatial or spectral binning [62–65], but that negates the value of sensors with high
spectral and spatial resolution [2].

For research, a reasonable criterion is that derived biogeochemical variables such as
chla and NDVI exhibit better than 17.5% UE for typical environments. While this study is
limited in the number of targets, all the sensors meet this threshold, presumably in part
because, as noted in [21], objectively poor (radiometrically) sensors often provide robust
biogeochemical estimates when using band-ratio algorithms. Numerous publications
have successfully applied all of these sensors to both inland and coastal waters, and the
relative insensitivity of band-ratio algorithms to spatial and spectral resolution as well as
radiometric performance is encouraging, providing a basis for the use of less expensive and
lower performance sensors on novel platforms such as unoccupied airborne vehicles [6].

A question that is increasingly being asked is whether hyperspectral measurements
are required or desirable for operational aquatic remote sensing [6]. While valuable, the
large data volume [66] and corresponding field validation data [67] present challenges.
There are anticipated benefits such as the ability to identify specific spectral signatures for
(e.g.) phytoplankton groups [68,69] or trace gasses such as methane [70,71], but a more
common use is to locally tune band-ratio algorithms to achieve better performance [72,73]
or to track spectrally dynamic features such as fluorescence line height [74] using a subset
of fixed wavelengths. Recent analysis shows that global ocean hyperspectral data have
comparable degrees of freedom compared to legacy sensors such as MODIS because of
strong covariance across wavelengths [75]. While this may set an upper limit on the number
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of parameters that can be independently extracted from hyperspectral imagery, it does not
negate the use-case for the identification of spectrally narrow features or for band-switching
algorithms. Nonetheless, the launch of PACE and SBG and the lack of readily available
validation-quality hyperspectral instrumentation that can collect data at relevant spatial
and temporal scales for inland and coastal waters is problematic. One potential solution is
to combine high-fidelity multiwavelength point measurements with spectrometers [35] or
to rely on numerical models to recreate full spectral data [76,77]. A third approach would
be to rely on a variety of sensors with varying performance characteristics deployed as a
sensor web [32,78,79].

This analysis focused exclusively on sensors amenable to the geostatistical deter-
mination of the SNR, which precludes the inclusion of fixed-location sensors [19] and
in-water sensors on a variety of platforms [11,35,55]. While not discussed, it is implicit in
proposed PACE validation activities that airborne sensors would be complemented with
fixed-position, shipboard, and autonomous platforms [80]; the same validation methodol-
ogy would also serve for other imminent hyperspectral missions [81]. This multi-modality
approach has many advantages, including capturing a wider range of remote sensing tar-
gets than are available from calibration sites, the potential for improved Rrs uncertainty [30]
and cross-validation of airborne and in-water sensors [32], particularly for sensor web
configurations. This analysis provides SNR and Rrs uncertainty metrics for the sensors
as used, which are often greatly degraded compared to ideal (engineering) estimates
under controlled conditions. For example, PRISM is reported to have an SNR of 500 at
450 nm [80] while AVIRIS-NG was reported to have an SNR of 54–1114 (average of 345) for
a scene-derived SNR from terrestrial targets [82]. In contrast, the estimates of HyperSAS Rrs
uncertainty of 10–15% under typical field conditions [82] were comparable to the HyperSAS
and HydroRad-3 results from this analysis (Table 2).

The apparent discrepancy between the realized geostatistical SNR and ideal SNR can
be caused by numerous factors since there are many sources of error such as instrument
(hardware) noise, environmental variability, and incomplete or insufficient post-processing,
e.g., incomplete removal of skylight and glint contamination. Data collection that follows
existing protocols will reduce errors even for high-fidelity instruments. As an example,
Figure 2 provides the SNR for dark and bright targets using C-AERO with data collection
that followed strict metrology. Figure 3B,C provide the SNR for C-AIR over comparable
dark and bright targets. The underlying hardware is essentially identical as used (the same
sampling rate was used for both data collections), other than the inclusion of shrouds on
C-AERO, which should reduce noise in the SWIR. The realized SNR is about an order of
magnitude lower for C-AIR compared to C-AERO for the same geostatistical analysis, sug-
gesting that the discrepancy is largely associated with the data collection (i.e., metrology),
acquisition software, and post-processing; in the case of C-AIR for this study, support was
available for data collection but not for full post-processing, highlighting the need for better
end-to-end support for airborne missions to improve collection of high quality data.

Looking into the near future, this analysis demonstrates that next-generation remote
sensing satellite platforms would benefit from next-generation calibration and validation
technology given that existing instrumentation is of limited availability or no longer sup-
ported by the manufacturers. This has minor impacts on band-ratio based algorithms but
suggests that the ocean color community is lacking in commercially available sensors (other
than fixed-position deployments) that can provide adequate calibration and validation data
across the full spectral range. While this issue is minimized for global ocean color, science
assessing inland and coastal waters will suffer unnecessarily due to the lack of high-fidelity
cal/val data.

5. Conclusions

We update a previous analysis of multiple sensors to demonstrate that presently
operational shipboard, airborne, and satellite sensors are effective in the SNR and Rrs
uncertainty for typical coastal and inland targets. C-AERO continues to provide the highest
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SNR and lowest Rrs uncertainties. AVIRIS-NG performs very well for aquatic targets but
does not reach validation-quality data for all wavelengths at native resolution. Neither
AVIRIS-NG nor PRISM can reliably provide data at the specified accuracy in the UV range.
The derived biogeochemical products such as chla and NDVI are remarkably tolerant to
poor radiometric performance and are retrieved with compliant accuracy for environmental
uncertainty. Existing COTS technology (C-AERO) exceeds all radiometric requirements
for the calibration and validation of multi-wavelength sensors extending into the UV, NIR,
and SWIR ranges, while also exceeding all criteria for application to the clearest (darkest)
inland (e.g., Lake Tahoe) and open-ocean systems.
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