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Abstract: Some passive sensors can provide only relative angles of a signal source. To obtain the signal
source location, multiple passive sensors can be constructed into a passive sensor network through com-
munication links. This paper investigates the source localization problem with angle-only measurements
in three-dimensional space. First, we present an intersection localization method, which estimates the
target position by minimizing the sum of distances between lines formed by angle-only measurements.
It has the same target position estimate as the widely used least-squares (LS) method, but with a lower
computational cost. Furthermore, considering the differences in measurement accuracy of sensors, the
weighted least-squares (WLS) algorithm can achieve better localization performance than the LS method.
Unfortunately, since the coefficient matrix and the noise vector are correlated, the WLS method is biased.
The bias-compensation WLS (BCWLS) method is also presented in this paper to reduce the bias by es-
timating the correlation between the coefficient matrix and the pseudolinear noise vector. To evaluate
the performance of the presented algorithms, numerical simulations are conducted, indicating that the
superiority of the intersection localization method in computational cost and the superiority of the BCWLS
method in localization accuracy.

Keywords: passive sensor; source localization; angle-only measurements; bias compensation;
sensor network

1. Introduction

Signal source localization has applications in many fields, such as surveillance, guidance,
and tracking [1–3]. In terms of whether to actively transmit electromagnetic signals, sensors
for target localization can be divided into active sensors and passive sensors. Active sensors
can achieve single-station positioning by transmitting signals to measure the distance to
the target [4]. Passive sensors do not emit electromagnetic signals; therefore, they have a
strong concealment [5]. Generally speaking, the types of passive sensors’ measurements
include time delay (TD), Doppler shift (DS), angle of arrival (AOA), angle rate, or their
combinations [6,7]. Among them, signal source localization with angle-only measurements
has attracted considerable attention for many years, and it has been applied in many fields,
including radar, sonar, navigation, and communications [8–11]. The signal source position
cannot be obtained by the angle-only measurement in one snapshot with one passive sensor.
Therefore, in order to estimate the signal source position, a widely used approach is to connect
passive sensors distributed at different positions through communication links, and then
design appropriate positioning algorithms to estimate the source position.

In the three-dimensional (3D) space, each passive sensor can measure the relative azimuth
angle and elevation angle of the signal source, and output them as angle-only measurements.
Therefore, it is obvious that each angle-only measurement can form a line with the sensor
position as the endpoint. In the absence of noise, the signal source position are on a straight
line, and the lines formed by the angle-only measurements of different sensors from the same
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signal source intersect at the signal source position. However, in practice, due to the presence of
measurement error, including the angle measurement error and the sensor self-positioning error,
even the lines formed by angle measurements from the same target are unlikely to intersect at
the same point, but they intersect in a small volume. The small volume is determined by the
level of the measurement noise. In [11], following this concept, a test statistic is constructed
using the distance between the lines formed by angle-only measurements to complete the data
association of angle-only measurements from different sensors.

Although the concept of target localization may be simple, it is challenging to obtain
a robust and efficient estimate of the target position. Due to the nonlinearity of the signal
source position and the angle-only measurement, signal source localization based on angle-only
measurements is a nonlinear estimation problem [12,13]. To solve this problem, a pseudolinear
equation regarding the signal source position is constructed by linearizing the angle measure-
ment equation [6,8,10,14]. The least-squares (LS) method is an efficient and intuitive method
to solve the pseudolinear overdetermined equation [15]. It is widely used because of its low
complexity and stability. However, in the constructed pseudolinear overdetermined equation,
the coefficient matrix is also contaminated by the measurement noise, which is not considered
in the LS method [16,17]. The total least-squares (TLS) method not only considers the error of
the data vector but also takes into account the perturbation of the coefficient matrix [18,19]. It
is a natural generalization of the LS method [14,20]. In addition, the signal source position can
also be estimated based on the spatial relationship between the source position and the lines
formed by angle-only measurements [11,21–23].

The LS and TLS methods do not take into account the difference in the measurement
noise levels of different sensors and they assume that the weights for different measurements
are the same. Furthermore, to obtain a more accurate target position estimate, the weighted
least-squares algorithm has been presented by considering the difference in measurement
noise levels between different sensors [8,24]. The WLS algorithm is widely used due to its
stability and accuracy [8,15,25,26]. Although the WLS method provides a more accurate target
position estimate compared to the LS method, the WLS method is biased due to the presence
of measurement noise not only in the pseudolinear noise vector but also in the coefficient
matrix, especially if the angle measurement noise level is high [27]. To reduce the bias of the
target position estimate, a series of methods have been investigated [28,29]. In 2D space, the
bias-compensation operation is studied, which can reduce the bias to a certain extent [28]. In
addition, from the perspective of reducing the noise of the coefficient matrix, the instrumental
variables constructed in [29] can partly overcome the bias. Therefore, if the target is stationary
or the observations of the sensors are synchronized, the above series of localization algorithms
can be used to locate the target. However, if the target is moving and the sensor observations
are not synchronized, it may be inappropriate to ignore the target movement.

To estimate the target motion state under asynchronous sensor observations, the gross
LS method and the linear LS method are presented in [30]. In addition, a series of filtering
algorithms have also been applied to estimate the target motion state with angle-only
measurements [31]. Because of the nonlinearity of angle measurements and the target
position, it is necessary to use a nonlinear tracking algorithm to estimate the target state.
First, the standard Kalman filter algorithm has been used to process the pseudolinear
equations constructed by the angle-only measurements, called pseudolinear Kalman filter
(PLKF) [32,33]. In addition, many nonlinear filtering algorithms have also been used
for target tracking with angle-only measurements. The extended Kalman filter (EKF)
approximately obtains a linear observation equation through a first-order Taylor expansion.
However, due to the neglect of high-order terms, it faces a filtering divergence problem
when the measurement noise level is high [34]. Sigma-point Kalman filtering algorithms
assume that approximating a distribution is easier than approximating a nonlinear function
itself. They approximate the distribution of the target state by selecting a set of sigma
points and use a Kalman filter to update the target state, such as the cubature Kalman filter
(CKF) [35] or the unscented Kalman filter (UKF) [36,37]. In addition, the particle filter is
also used for target tracking with angle-only measurement [38].
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In this paper, we investigate the source localization problem with angle-only measure-
ments from the passive sensor network connected by communication links in one snapshot.
Firstly, we formulate an algorithm named intersection localization method, which is ob-
tained by minimizing the distances between lines formed by the angle-only measurements.
The LS method is also studied in this paper, which estimates the target position by solv-
ing the equation constructed using the angle measurements. By comparing the results
of the presented intersection localization method and the LS method, we prove that the
target position estimates of the intersection localization method and the LS method are the
same. However, compared with the LS method, the coefficient matrix size of the proposed
intersection localization method is smaller. Therefore, it requires smaller multiplication
and addition operations. In theory, the computational cost of the intersection localization
method is lower. Furthermore, the TLS method is studied, which takes into account not
only errors in the data vector but also errors in the coefficient matrix. In practice, different
sensors may have different levels of measurement noise. The WLS method is determined
by considering the difference in measurement noise of different sensors. It is found that the
WLS method is biased due to the presence of noise not only in the pseudolinear noise vector
but also in the coefficient matrix. Therefore, we further formulate a bias-compensation
WLS (BCWLS) algorithm by compensating the positioning bias of the WLS algorithm. To
analyze the localization performance, the Cramér–Rao lower bound (CRLB) of the target
position estimators based on angle-only measurements is also derived in this paper.

In numerical simulation, we analyze the impacts of angle measurement noise and
sensor self-positioning noise on the target positioning accuracy of several algorithms.
Numerical results show that the performance of the BCWLS method is closer to the CRLB
performance among the above algorithms, proving the performance improvement of the
BCWLS algorithm. In addition, it is verified that the intersection localization method
and the LS method have the same target position estimate. Furthermore, we compare
the running time of several algorithms under the same conditions, and the results verify
the inference that the intersection localization algorithm requires a lower computational
cost than the LS algorithm. Simulation results validate the performance of the proposed
methods and demonstrate the improvement compared with the previous algorithms. In
summary, the main contributions of this article can be highlighted as follows:

(1) We present an intersection localization method with angle-only measurements in a
passive sensor network. The presented intersection localization method has the same
target position solution as the widely used and computationally efficient LS method
but has a lower computational cost.

(2) We present a bias computation WLS estimator for target localization using angle-only
measurements. The presented method can compensate for the positioning bias of the
WLS method, thereby improving the accuracy of the target position estimate.

(3) We derive the CRLB for estimating the target position under the condition of sensor
self-positioning error. Numerical simulations evaluate the superiority of the intersec-
tion localization method in terms of computational cost and the superiority of the
BCWLS method in terms of localization accuracy.

The rest of this article is sectioned as follows. In Section 2, we construct a target
localization scenario with angle-only measurements in a passive sensor network and
provide a series of target localization methods. In Section 2.2, we present an intersection
localization method. In Sections 2.3–2.5, the LS, TLS, and WLS methods are introduced,
respectively. In Section 2.6, we analyze the solution of the WLS method and further present
a bias-compensation WLS method. Section 2.7 gives the CRLB of the target position
estimators with angle-only measurements in passive sensor network. Section 3 examines
the performance of the above methods via numerical simulations. Section 4 summarizes
the results of the simulation results and provides the advantages and disadvantages of the
two presented algorithms. Finally, Section 5 concludes this article.
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2. Materials and Methods
2.1. Signal Model of Angle-Only Measurements

We consider a 3D target localization scenario, which includes M targets and a passive
sensor network. This passive sensor network consists of N passive sensors that can only
provide the angle information of the target, such as passive radar, photoelectric sensor,
and infrared sensor. In 3D space, angle-only measurements consist of azimuth and ele-
vation angles. The true positions of the targets need to be estimated by the angle-only
measurements. The position of each passive sensor is measured by its mounted positioning
device, such as inertial navigation systems and the Global Positioning System (GPS). At
time t, the true position of the nth sensor is denoted as po

n(t) = [xo
n,s(t), yo

n,s(t), zo
n,s(t)]T,

n = 1, 2, . . . , N. The elements xo
n,s(t), yo

n,s(t) and zo
n,s(t), respectively, represent the coordi-

nates of the nth sensor on the x-axis, y-axis, and z-axis in the common coordinate system
at time t. The notation [·]T denotes the transpose operation. The true position of the mth
target at time t is denoted as go

m(t) = [xo
m,g(t), yo

m,g(t), zo
m,g(t)]T, m = 1, 2, . . . , M. Figure 1

shows the 3D target localization scenario.
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Figure 1. Three-dimensional target localization scenario.

Assume that for the nth sensor, there are a total of Nn observations. Each observation
can receive radiation signals from multiple signal sources. The time instant of each observa-
tion can be defined as tk,n, k = 1, . . . , Nn. For each radiation signal, the passive sensor can
measure its AOA, termed angle-only measurement. At time instant tk,n, the measurement
of the nth sensor position can be expressed as

pk,n(tk,n) = po
n(tk,n) + ∆pn(tk,n) = [xn,s(tk,n), yn,s(tk,n), zn,s(tk,n)]

T (1)

where the vector ∆pn(tk,n) is the sensor self-positioning noise. Without loss of generality,
it is assumed to follow a zero-mean Gaussian distribution with the covariance matrix
Rs,n(tk,n) = E(∆pn(tk,n)∆pT

n(tk,n)), namely ∆pn(tk,n) ∼ N (0, Rs,n(tk,n)). The notation E(·)
is the expectation operation. At time instant tk,n, the real position of the mth target can be
denoted as

go
m(tk,n) = [xo

m,g(tk,n), yo
m,g(tk,n), zo

m,g(tk,n)]
T. (2)

Assuming that the nth sensor receives a total of Lk,n signals corresponding to Lk,n angle-
only measurements during the kth observation. Therefore, the angle-only measurements
of the kth observation of the nth sensor can be indexed by a triple (l, k, n), l = 1, . . . , Lk,n.
It should be noted that due to the presence of false alarms and missed detections, there
may be a situation where Lk,n is not equal to the number of targets M. In this way, we can
establish a one-to-one index for all angle-only measurements of all sensors.

The set of angle-only measurements of the nth sensor at instant tk,n can be represented
as Lk,n, and
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Lk,n = {j|j = (l, k, n)}. (3)

The cardinality of Lk,n satisfies Lk,n = |Lk,n|, where the notation | · | represents the cardinal-
ity of the set. Denote the set Ln and L, which represent the set of measurements by the nth
sensor and the set of measurements by N sensors, respectively. The sets Ln and L are

Ln = ∪Nn
k=1Lk,n,L = ∪N

n=1Ln (4)

where the notation ∪ represents the union operation. Therefore, we define Ns as the total
number of the angle-only measurements of N sensors,

Ns = |L| =
N

∑
n=1

Nn

∑
k=1

Lk,n. (5)

It is necessary to associate the measurements of N sensors before target localization.
Each angle-only measurement can only come from one of M targets or a false alarm. We
define a set M = {0, 1, . . . , M} as the associated results’ index set, where the index 0
represents the false alarm, and the index 1, . . . , M represent target 1, . . . , M, respectively.
Each angle-only measurement corresponds only to one member of the set M. In our
previous work [11], we constructed a test statistic using the minimum distance between
the lines formed by the angle-only measurements of different sensors and then achieved
the data association of the angle-only measurements. Then, we can obtain a mapping
ψ : L → M, which represents that any element in L corresponds to a unique element in
M. Therefore, after data association, the index set L can be divided into M + 1 disjoint set,
denoted as B0,B1, . . . ,BM, where B0 represents the index set of angle-only measurements
from the false alarm, and Bm represents the index set of angle-only measurements from the
mth target, where Bm is

Bm = {j|ψ(j) = m, j ∈ L} (6)

where the sets Bi and Bj satisfy Bi ∩ Bj = ∅, i, j ∈ M, i ̸= j. The notation ∩ represents
the intersection operation of sets. In this paper, we study the target localization problem
with angle-only measurements from multiple passive sensors. Therefore, for simplicity, we
assume that the data association of angle-only measurements has been completed, and the
mapping ψ is known. For the mth target, its angle-only measurements index set is Bm. We
assume that |Bm| = Lm. For the angle-only measurement index n ∈ Bm, assuming that the
sensor position measurement of its corresponding sensor can be expressed as

pn = po
n + ∆pn (7)

where the vector pn represents the sensor position measurement, the vector po
n represents

the true sensor position, and the vector ∆pn represents the sensor self-positioning noise
assumed to be a zero-mean Gaussian distribution with covariance matrix Rp,n.

The positions of the sensors with respect to the Lm angle-only measurements can be
expressed as

p = po + ∆p (8)

where p = [pT
1 , pT

2 , . . . , pT
Lm
]T, po = [poT

1 , poT
2 , . . . , poT

Lm
]T, and ∆p = [∆poT

1 , ∆poT
2 , . . . , ∆poT

Lm
]T.

The covariance matrix of ∆p is Rp = blkdiag(Rp,1, Rp,2, . . . , Rp,Lm), where the notation
blkdiag(A1, A2, . . . , AN) represents the operation of constructing a block diagonal matrix
with the matrices A1, A2, . . . , AN .
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The true value of the azimuth angle θo
n and elevation angle φo

n corresponding to the
nth angle-only measurement can be expressed as [34]

θo
n = fθ(go

m, po
n) = tan−1

( yo
m,g − yo

n,s

xo
m,g − xo

n,s

)
(9)

φo
n = fφ(go

m, po
n) = tan−1 zo

m,g − zo
n,s√

(xo
m,g − xo

n,s)2 + (yo
m,g − yo

n,s)2
(10)

where go
m = [xo

m,g, yo
m,g, zo

m,g]
T represents the target position, θo

n ∈ [−π, π], φo
n ∈ [−π

2 , π
2 ],

and tan−1 is the 4-quadrant arctangent function.
In practice, the angle-only measurements θn and φn can be expressed as

θn = θo
n + ∆θn = fθ(go

m, pn) + ∆θn (11)

φn = φo
n + ∆θn = fφ(go

m, pn) + ∆φn (12)

where the elements ∆θn and ∆φn represent the angle measurement noise, θn ∈ [−π, π],
and φn ∈ [−π

2 , π
2 ]. Without loss of generality, we assume that ∆θn and ∆φn are zero-

mean Gaussian noises with variances σ2
∆θn

and σ2
∆φn

, namely, ∆θn ∼ N (0, σ2
∆θn

) and
∆φn ∼ N (0, σ2

∆φn
), respectively.

From (11) and (12), due to the presence of sensor positioning error, (11) and (12) can
be expressed as

θn = θo
n + eθ,n + ∆θn = θo

n + δθ,n (13)

φn = φo
n + eφ,n + ∆φn = φo

n + δφ,n (14)

where the elements eθ,n and eφ,n denote the measurement noise of the azimuth and elevation
angles, respectively, caused by the sensor self-positioning error. They can be expressed as

eθ,n =
∂ fθ(go

m, pn)

∂pT
n

∆pn, eφ,n =
∂ fφ(go

m, pn)

∂pT
n

∆pn. (15)

Therefore, the elements δθ,n and δφ,n represent the total measurement error of the azimuth
angle and elevation angle, respectively. Assuming that the sensor self-positioning noise and
the angle measurement noise are independent of each other, the variances of δθ,n and δφ,n are

σ2
θ,n = σ2

∆θn
+ bT

θ,nRp,nbθ,n (16)

σ2
φ,n = σ2

∆φn
+ bT

φ,nRp,nbφ,n (17)

where

bθ,n =
∂ fθ(go

m, pn)

∂pn
, bφ,n =

∂ fφ(go
m, pn)

∂pn
(18)

The nth angle-only measurement vector is θn = [θn, φn]T, and its corresponding
measurement error vector is δθ,n = [δθ,n, δφ,n]T. The covariance matrix of δθ,n is
Rθ,n = diag(σ2

θ,n, σ2
φ,n), where the notation diag(a1, a2, . . . , aN) represents the operation

of constructing a diagonal matrix using a1, a2, . . . , aN .
The angle-only measurement vector of the mth target is

θ = θo + δθ (19)

where θ = [θT
1 , θT

2 , . . . , θT
Lm
]T, θo = [θoT

1 , θoT
2 , . . . , θoT

Lm
]T, and δθ = [δT

θ,1, δT
θ,2, . . . , δT

θ,Lm ]
T. The

covariance matrix of δθ is Rθ = blkdiag(Rθ,1, Rθ,2, . . . , Rθ,Lm).



Remote Sens. 2024, 16, 1319 7 of 22

2.2. Intersection Localization Method

It is obvious that each angle-only measurement of a passive sensor forms a line in 3D
space with the sensor position as the endpoint. Under the condition that this measurement
is not a false alarm, and there is no measurement noise, the target is on that line. With
multiple angle-only measurements from different sensors, the target can be located. The
line formed by the nth measurement can be expressed as

Ln : xn = pn + αnen, αn ∈ R (20)

where the element αn is a distance parameter indicating the distance to pn, the vector
en = [en,x, en,y, en,z]T denotes the normalized direction vector, and

en = [cos(θn) cos(φn), sin(θn) cos(φn), sin(φn)]
T (21)

where ∥en∥ = 1, and the notation ∥ · ∥ over a vector denotes the ℓ2-norm.
In [11], the minimum distance between two lines is used to solve the distance parame-

ters of the two lines. In this part, we extend the algorithm such that the distance parameters
α = [α1, . . . , αLm ]

T are solved as a whole.
For simplicity, assume that the elements in Bm can be expressed by Bm = {1, . . . , Lm}.

The square of the Euclidean distance between two points on two lines Li, Lj is

di,j =∥pj − pi + (ei, ej)[−αi, αj]
T∥2

=∥PIi,j1 + EIi,jα∥2

=αTIi,jETEIi,jα + 2αTIi,jETPIi,j1 + 1TIi,jPTPIi,j1

(22)

where P = [p1, . . . , pLm ] ∈ R3×Lm , E = [e1, . . . , eLm ] ∈ R3×Lm , the vector 1 ∈ RLm×1

denotes an all-one vector of length Lm, and the elements of matrix Ii,j ∈ RLm×Lm can be
expressed as

[Ii,j]k,m =


1 k = m = j
−1 k = m = i
0 else.

(23)

It should be noted that the distance di,j is actually the square of the Euclidean distance,
instead of the Euclidean distance itself. To extend the minimum total distance between all
the lines, instead of two lines, we can formulate the optimization problem as

min
α

d = ∑
1≤i<j≤Lm

di,j (24)

where only one (i, j) pair is taken into account in the summation operation since di,j = dj,i.
It can be proved that the total distance can be expressed by

d = ∑
1≤i<j≤Lm

di,j = αTKα + 2αTK̄1 + 1TK̃1 (25)

where

K = ∑
1≤i<j≤Lm

Ii,jETEIi,j = KT (26)

K̄ = ∑
1≤i<j≤Lm

Ii,jETPIi,j (27)

K̃ = ∑
1≤i<j≤Lm

Ii,jPTPIi,j = K̃T. (28)
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It is evident that K = KT, and K̃ = K̃T. For any matrix G ∈ RLm×Lm , we have

[Ii,jGIi,j]k,m =


Gi,i k = m = i
−Gi,j k = i, m = j, or, k = j, m = i
Gj,j k = m = j
0 else.

(29)

With this equation, we can verify that

∑
1≤i<j≤Lm

Ii,jGIi,j = LDiag(G)− G (30)

where the notation Diag(·) corresponds to a square matrix representing a diagonal matrix
with the same diagonal elements as the input matrix.

Note that all the diagonal elements of EET are 1 since eTe = 1; then,

K = ∑
1≤i<j≤Lm

Ii,jETEIi,j = LmI − ETE (31)

K̄ = LmDiag(ETP)− ETP (32)

K̃ = LmDiag(PTP)− PTP. (33)

To solve for the parameter α that minimizes d, we take the derivative of (25) with
respect to α,

dd
dα

= 2Kα + 2K̄1. (34)

Setting (34) to zero and solving the equation, we obtain a solution

dd
dα

= 0 ⇒ αopt = −K−1K̄1 (35)

Putting αopt into (25), we obtain the minimal distance dmin as

dmin = 1T(K̃ − K̃K−1K̃)1. (36)

In particular, if
K̃ = K̃K−1K̃ (37)

then
dmin = 0. (38)

In practice, the size of K is Lm × Lm, and thus the computational cost to calculate K−1

is huge. According to the Sherman–Woodbury–Morrison equation,

(A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1 (39)

From K in (31), we let A → −LmI, B → −ET/Lm, and C → E; then, the matrix inversion
operation K−1 can be simplified as

K−1 =
1

Lm
I +

1
L2

m
ET(I − EET/Lm)

−1E (40)

where the only matrix inverse operation is over a 3 × 3 matrix I − EET/Lm.
Consequently,
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K−1K̄ = Diag(ETP)− 1
Lm

ETP +
1

L2
m

ET(I − EET/Lm)
−1E(LmDiag(ETP)− ETP)

= Diag(ETP)− 1
Lm

ETP +
1

Lm
ET(I − EET/Lm)

−1EDiag(ETP)

+
1

Lm
ET(I − EET/Lm)

−1(I − EET/Lm − I)P

= Diag(ETP) +
1

Lm
ET(I − EET/Lm)

−1(EDiag(ETP)− P).

(41)

The optimal weight can be written as

αopt = −K−1K̄1 = −diagvec(ETP)− 1
Lm

ET(I − EET/Lm)
−1(Ediagvec(ETP)− P1) (42)

where the notation diagvec(·) with a square matrix input represents a vector formed by
the diagonal elements of the input matrix.

For the ith line, the point corresponding to αi is

x(ti) = pi + αiei (43)

which, however, may be different for different lines. Therefore, we take the mean as the
final estimate of the target position go

m, namely,

ĝm =
1

Lm

Lm

∑
i=1

x(ti) =
1

Lm
(P1 + Eαopt)

=
1

Lm
(P1 − EK−1K̄1)

= (LmI − EET)−1(P1 − Ediagvec(ETP))

= (LmI − EET)−1
Lm

∑
i=1

(I − eieT
i )pi.

(44)

2.3. Least-Squares Method

The LS method is a very classic and widely used method to solve linear overdeter-
mined equations [15]. In this section, we use the LS method to solve the pseudolinear
equations constructed by the angle measurement equations to estimate the target position.
Firstly, let us derive the pseudolinear equations about a target position.

In (9), taking the tangent on both sides of the equation and replacing tan θo
n with

sin θo
n/ cos θo

n, it can be rewritten as [8]

uoT
θ po

n = uoT
θ go

m (45)

where uo
θ = [sin θo

n,− cos θo
n, 0]T.

Replace po
n and θo

n with their corresponding measurement values pn and θn, respec-
tively. If the angle measurement noise is small, we have approximations of sin δθ,n ≈ δθ,n
and cos δθ,n ≈ 1, then

sin θn = sin(θo
n + δθ,n) ≈ sin θo

n + δθ,n cos θo
n (46)

cos θn = cos(θo
n + δθ,n) ≈ cos θo

n − δθ,n sin θo
n. (47)

Taking (46) and (47) into (45), the pseudolinear equation obtained from the azimuth
angle can be expressed as

zθ,n = Aθ,ngo
m + ηθ,n (48)
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where zθ,n = uT
θ,npn, ηθ,n ≈ −do

n cos φo
nδθ,n + uoT

θ,n∆pn, Aθ,n = uT
θ,n, uθ,n = [sin θn,− cos θn, 0]T,

do
n = ∥po

n − go
m∥. In (48), we have used the geometric relationship (xo

g,m − xo
n,s) cos θo

n +
(yo

g,m − yo
n,s) sin θo

n = do
n cos φo

n.
Similarly, Equation (10) can be rewritten as [8]

uoT
φ,npo

n = uoT
φ,ngo

m (49)

where uo
φ,n = [− cos θo

n sin φo
n,− sin θo

n sin φo
n, cos φo

n]
T. Similarly, from (46) and (47), we

also have the following approximation about the elevation angle

sin φn = sin(φo
n + δφ,n) ≈ sin φo

n + δφ,n cos φo
n (50)

cos φn = cos(φo
n + δφ,n) ≈ cos φo

n − δφ,n sin φo
n. (51)

Putting (46), (47), (50), (51), and the noisy sensor position pn into (49), the pseudolinear
equation obtained by the elevation angle can be expressed as

zφ,n = Aφ,ngo
m + ηφ,n (52)

where zφ,n = uT
φ,npn, Aφ,n = uT

φ,n, and uφ,n = [− cos θn sin φn,− sin θn sin φn, cos φn]T,
ηφ,n ≈ do

nδφ,n + uoT
φ,n∆pn. Combining (48) and (52) in matrix form, we obtain a pseudolinear

equation,

zn = Ango
m + ηn (53)

where zn = [zθ,n, zφ,n]T, and An = [uθ,n, uφ,n]T ∈ R2×3. The vector ηn denotes the pseudo-
linear noise vector,

ηn = [ηθ,n, ηφ,n]
T ≈ Do

nδθ,n + Ao
n∆pn (54)

where Do
n = diag(−do

n cos φo
n, do

n) and Ao
n = [uo

θ,n, uo
φ,n]

T. The covariance matrix of ηn is

Rη,n = E[ηn, ηT
n ] = Do

nRθ,nDoT
n + Ao

nRp,nAoT
n . (55)

Combining (55) formed by Lm angle-only measurements, we have

z = Ago
m + η (56)

where the coefficient matrix A and the data vector z can be expressed as

z = [zT
1 , zT

2 , . . . , zT
Lm
]T (57)

A = [AT
1 , AT

2 , . . . , AT
Lm
]T. (58)

The pseudolinear noise vector η is

η = [ηT
1 , ηT

2 , . . . , ηT
Lm
]T ≈ Doδθ + Bo∆p (59)

where Do = blkdiag(Do
1 , Do

2 , . . . , Do
Lm
) and Bo = blkdiag(Ao

1 , Ao
2 , . . . , Ao

Lm
). The covari-

ance matrix of vector η can be expressed as

Rη = blkdiag(Rη,1, Rη,2, . . . , Rη,Lm). (60)

With Lm observations, there are a total of 2Lm equations about the target position go
m,

and there are three unknown parameters in go
m. Therefore, if Lm ≥ 2, go

m has a solution, its
LS solution can be obtained by minimizing ∥η∥, which can be expressed as [15]

ĝm,LS = (ATA)−1ATz. (61)
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By rewriting the target position go
m as (ATA)−1ATAgo

m, the bias of the LS estimate
ĝm,LS can be expressed as

E[∆gm,LS] = E[go
m − ĝm,LS] = −E[(ATA)−1ATη]. (62)

We can see that if the measurement noise is negligible and the pseudolinear noise vector
satisfies E[η] = 0, the LS estimator can be seen as approximately unbiased.

It can be proved that the following equations exist

I − eneT
n = AT

nAn (63)

AT
nz = AT

nAnpn = (I − eneT
n)pn. (64)

Therefore, in (44) and (61), we have the following equations

(LmI − EET)−1 = (ATA) (65)
Lm

∑
i=1

(I − eieT
i )pi = ATz. (66)

Therefore, the target position estimate ĝm of the intersection localization method and
the LS estimate ĝm,LS are equal. Due to the fact that the size of A in the LS method is 2Lm × 3,
and the size of E in the intersection localization method is 3× Lm, their computational costs
are different. In theory, the intersection localization method requires fewer multiplication
and addition operations than the LS method.

2.4. Total Least-Squares Method

It should be noted that the construction of matrix A and vector z is based on the angle
measurements and the sensor position measurements. Therefore, measurement noise not
only exists in vector z but also in matrix A, and Equation (56) can actually be expressed
as [18]

(Ao + ∆A)go
m = zo + ∆z (67)

where A = Ao + ∆A, andz = zo + ∆z. The matrix Ao and the vector zo represent A and z
with the noise values replaced by the true values, respectively.

By transferring items, (67) can be expressed as

(Ao + ∆A|zo + ∆z)

[
go

m

−1

]
= 0. (68)

The TLS solution of the target position can be obtained by minimizing the Frobenius norm
of the matrix [∆A, ∆z]. Therefore, the TLS estimate ĝm,TLS can be obtained by solving the
following constrained optimization problem, as in [18],

argmin
ĝm,TLS,∆ATLS,∆zTLS

∥
[

∆A ∆z
]
∥F

s.t. (A − ∆A)go
m = z − ∆z

(69)

where the notation ∥ · ∥F with a matrix entry represents the Frobenius norm of the ma-
trix. The TLS estimate ĝm,TLS of the target position go

m can be obtained by singular value
decomposition (SVD) of the augmented matrix [A,−z] [19].

Denote C = [A,−z] ∈ R2Lm×4, and the SVD of the matrix C is

C = UΣVT (70)
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where the matrix Σ = diag(σ1, . . . , σ4). σ1, . . . , σ4 are the singular values of C and satisfy
σ1 ≥ σ2 . . . ≥ σ4. The matrix V can be partitioned as

V =

[
V11 v12
v21 v22

]
(71)

where V11 ∈ R3×3, v12 ∈ R3×1, v21 ∈ R1×3, and v22 ∈ R1×1.
It has been proved in [19] that the TLS solution of (69) exists if and only if the element

v22 is non-singular, i.e., v22 ̸= 0. In this case, the TLS estimate can be expressed as

ĝm,TLS = v12v−1
22 . (72)

2.5. Weighted Least-Squares Method

The LS method applies the same weight to different measurements. However, in practice,
the accuracy of different measurements may be different and may be known a priori. We
assume that the distributions of angle-only measurement noise and sensor self-positioning
noise are known a priori. Therefore, the target localization accuracy can be improved by
giving proper weights to different measurements, which is the WLS method [8,14,15].

In (56), by considering the covariance of η, the cost function of the WLS formulation is

J = (z − Ago
m)

TW(z − Ago
m) (73)

where W is the weighting matrix,

W = R−1
η = blkdiag(W1, W2, . . . , WLm) (74)

where Wn = R−1
η,n, n = 1, 2, . . . , Lm.

The partial derivative of the cost function J for the target position go
m is

∂J
∂go

m
= −2ATWz + 2ATWAgo

m. (75)

Let ∂J/∂go
m = 0; then, the WLS solution of the target position is [8]

ĝm,WLS = (ATWA)−1ATWz. (76)

Rewriting the target position as (ATWA)−1ATWAgo
m, we obtain the estimate error of

ĝm,WLS as

∆gm,WLS = ĝm,WLS − go
m = (ATWA)−1ATWη. (77)

The covariance matrix of ĝm,WLS is [29]

Rg,WLS = E[∆gm,WLS∆gT
m,WLS]

≈ (AoTWAo)−1AoTWE[ηηT]WTAo(AoTWAo)−1 = (AoTWAo)−1
(78)

where we have used E[ηηT] = W−1.
It should be noted that the weighting matrix W requires the unknown true position of

the target via Do and Bo. To solve this problem, we obtain an initial target position estimate
by using the LS method. The weighting matrix W can be obtained by this initial solution;
then, the WLS estimate can be derived by (76).
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2.6. Bias-Compensation WLS Method

This section firstly analyzes the bias issue of the WLS method introduced in Section 2.5.
Then, a bias-compensated WLS method is studied by estimating the bias of the WLS
estimate ĝm,WLS.

The expectation of ∆gm,WLS in (77) can be expressed as

δg,WLS = E[∆gm,WLS] = E[(ATWA)−1ATWη] ≈ (ATWA)−1E[ATWη] (79)

Since both the matrix A and the pseudolinear noise vector η contain measurement
noise, the matrix A and the noise vector η are correlated. Therefore, E[ATWη] ̸= 0, so that
the WLS estimator is biased.

Since the matrix W is a block diagonal matrix, the expectation E[ATWη] can be
rewritten as

E[ATWη] =
Lm

∑
n=1

E[AT
nWnηn] ≈

Lm

∑
n=1

mn. (80)

Because the weighting matrix Wn is the inverse of the covariance matrix Rn, it is a
symmetric matrix that can be expressed as

Wn =

[
an bn
bn cn

]
(81)

Putting (81) into (80), the vector mn can be written as

mn = g1,n + g2,n (82)

where

g1,n =
(

ana1,nbT
θ,n + bn(a2,nbT

θ,n + a3,nbT
φ,n)
)

Rp,nuo
θ,n − do

n cos φo
nσ2

∆θn
(ana1,n + bna2,n) (83)

g2,n =
(

bna1,nbT
θ,n + cn(a2,nbT

θ,n + a3,nbT
φ,n)
)

Rp,nuo
φ,n + cndo

na3,nσ2
∆φn

(84)

where

a1,n = [cos θo
n, sin θo

n, 0]T (85)

a2,n = [sin θo
n sin φo

n,− cos θo
n sin φo

n, 0]T (86)

a3,n = −[cos θo
n cos φo

n, sin θo
n cos φo

n, sin φo
n]

T (87)

Therefore, according to (77), the bias-compensation WLS estimate of the target position is

ĝbc
m,WLS = ĝm,WLS − δg,WLS. (88)

It should be noted that the calculation of δg,WLS depends on the true azimuth angle
θo

n, elevation angle φo
n, and distance do

n. To ensure accuracy, we can use the WLS solution
ĝm,WLS of the target position to estimate δg,WLS and then derive the final solution by (88).

2.7. Cramér–Rao Lower Bound

It is well-known that the CRLB establishes a lower bound on the performance of
estimators [8,14,24]. Therefore, it is widely used to calculate the best estimation accuracy in
theory and evaluate the performance of estimators. For the scenario in this article, with the
presence of the sensor self-positioning noise, the unknown parameters include the target
position gm and the positions of the sensors po. Therefore, under the assumption that the
angle-only measurements’ noise and the sensor self-positioning noise are independent and
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all subject to the zero-mean Gaussian distribution, we would like to derive the CRLB of
the parameter vector Θ = [goT

m , poT]T ∈ R(3Lm+3)×1. The measurement vector consists of
Lm angle-only measurements θ and corresponding position measurements p of sensors,
denoted by m = [θT, pT]T ∈ R5Lm×1. Under the given parameters Θ, the logarithm of the
joint probability density function of m is

lnp(m|Θ) = lnp(θ|Θ) + lnp(p|Θ)

= κ − 1
2
(θ− θo)TR−1

θ (θ− θo)− 1
2
(p − po)TR−1

p (p − po) (89)

where κ is a constant.
According to (89), the Fisher information matrix (FIM) of Θ is

FIM(Θ) = −E
[

∂ln2 p(m|Θ)

∂Θ∂ΘT

]
(90)

The CRLB matrix of an estimate of Θ is the inverse of FIM(Θ):

CRLB(Θ) = FIM−1(Θ)

=


[

∂θo

∂go
m

]T
R−1

θ
∂θo

∂go
m

[
∂θo

∂go
m

]T
R−1

θ
∂θo

∂po[
∂θo

∂po

]T
R−1

θ
∂θo

∂go
m

[
∂θo

∂po

]T
R−1

θ
∂θo

∂po + R−1
p


−1

=

[
X Z

ZT Y

]−1

(91)

where

∂θo

∂go
m

= blkdiag
(

∂θo
1

∂go
m

,
∂θo

2
∂go

m
, . . . ,

∂θo
Lm

∂go
m

)
= blkdiag(B1, B2, . . . , BLm) ∈ R3Lm×2Lm (92)

∂θo

∂po = blkdiag

(
∂θo

1
∂po

1
,

∂θo
2

∂po
2

, . . . ,
∂θo

Lm

∂po
Lm

)
= −blkdiag(B1, B2, . . . , BLm) ∈ R3Lm×2Lm (93)

where

Bn =
∂θo

n
∂go

m
=

[
∂θo

n
∂go

m
,

∂φo
n

∂go
m

]
(94)

∂θo
n

∂go
m

=

[
yo

n,s − yo
m,g

(xo
m,g − xo

n,s)2 + (yo
m,g − yo

n,s)2 ,
xo

m,g − xo
n,s

(xo
m,g − xo

n,s)2 + (yo
m,g − yo

n,s)2 , 0

]T

(95)

∂φo
n

∂go
m

=

[
−cos θo

n sin φo
n

do
n

,− sin θo
n sin φo

n
do

n
,

sin φo
n

do
n

]T
(96)

According to the block matrix inversion formula, we can obtain the CRLB of target
position gm as

CRLB(go
m) = (X − ZY−1ZT)−1 (97)

According to the matrix inversion lemma, (97) can be rewritten as

CRLB(go
m) = X−1 + X−1Z(Y − ZTX−1Z)−1ZTX−1 (98)

where X−1 represents the CRLB of the target position estimate if there is no self-positioning
error of the sensors, and X−1Z(Y − ZTX−1Z)−1ZTX−1 is the increase in the target position-
ing error caused by the sensor self-positioning error.
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3. Results

In this section, we compare the target localization performance of the above estimators
in different scenarios and different noise levels. We first considered a scenario that included
four sensors and one target, and the sensors could only provide the angle information of
the target. For simplicity and without loss of generality, false alarms and missed detections
were not considered. As shown in Table 1, we established the positions of the sensors and
the target.

Table 1. Positions of sensors and target.

Position (m)

Sensor #1 po
1 = [0, 0, 0]T

Sensor #2 po
2 = [3000, 3000, 0]T

Sensor #3 po
3 = [1000,−1000, 0]T

Sensor #4 po
4 = [−1000,−1000, 0]T

Target #1 go
1 = [1000, 2000, 1000]T

We assumed that the sensor self-positioning noise levels of the four sensors were the
same, and their covariance matrices was denoted as Rs,n = diag(σ2

s , σ2
s , σ2

s ), n ∈ {1, 2, 3, 4},
where σs represents the sensor self-positioning noise level. It was also assumed that the
angle measurement noises of each sensor, including azimuth and elevation angles, followed
a zero-mean Gaussian distribution and were independent of each other. The variances of
angle measurements were denoted as σ2

∆θn
= σ2

∆φn
= σ2

θ , n ∈ {1, 2, 3, 4}, where σθ represents
the angle measurement noise level. All the following simulations were performed on a
laptop with an Intel core i7-12700H and 32-GB RAM. The software version was MATLAB
R2020a. In the simulations, except for the TLS method using the built-in singular value
decomposition (SVD) function in MATLAB, no other specialized toolboxes were used.

3.1. Statistical Metrics

The bias norm (BNorm) and root-mean-square error (RMSE) were used to evaluate the
target localization accuracy of the estimators. BNorm reflects the bias performance of the
estimators, and a smaller BNorm indicates a smaller localization bias. BNorm and RMSE
can be calculated by L Monte Carlo simulations as

BNorm =

∥∥∥∥∥ 1
L

L

∑
l=1

(ĝ(l) − go)

∥∥∥∥∥ (99)

RMSE =

(
1
L

L

∑
l=1

∥ĝ(l) − go∥2

)1/2

(100)

where ĝ(l) represents the estimated value of the real target position go at the lth Monte Carlo
simulation. At different error conditions, we set the number of Monte Carlo simulations
to L = 20, 000. The square root of the trace of the CRLB matrix of (98) was referred
to as root CRLB and was used as the theoretical boundary for the RMSE of the target
position estimators.

3.2. The Impacts of Sensor Self-Positioning Noise and Angle Measurement Noise

To evaluate the influence of the measurement noise level on the target localization
accuracy, we compared the RMSE and BNorm performance of the above algorithms under
different error conditions. First, we evaluated the impact of the angle measurement noise
level on the target localization accuracy of each algorithm. We fixed the sensor self-
positioning noise level σs at 10 m, and the angle measurement noise level varied from 0.1◦
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to 6.1◦ at intervals of 0.5◦. Figure 2 illustrates the impact of angle measurement noise level
on the target localization performance of the above target position estimators.

Form Figure 2, it appears that the proposed intersection localization algorithm and
the LS algorithm had the same BNorm and RMSE, verifying the inference that the target
position solutions of the two algorithms were equal. The BNorm of the TLS and WLS
algorithms was very close, slightly better than that of LS algorithm. In addition, the
BCWLS algorithm had the smallest BNorm among several algorithms, which showed the
effectiveness of the proposed algorithm. We can see that the BNorm of all the methods was
less than 5 m if the angle measurement noise level was less than 1.1◦. However, with the
increase in σθ , the BNorm of the other methods, other than the BCWLS algorithm, increased
rapidly. When the σθ was 4.1◦, the BNorm of the WLS and TLS algorithms was close to
40 m, the BNorm of the LS algorithm and intersection localization algorithm was close
to 60 m, while the BNorm of BCWLS algorithm was still less than 5 m. Form Figure 2b,
it can be seen that the proposed BCWLS algorithm had the best RMSE among the above
algorithms, and its RMSE was much closer to the root CRLB.
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(a) BNorm
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Figure 2. The BNorm and RMSE of the target position estimators with σs fixed at 10 m and σθ varying
from 0.1◦ to 6.1◦.

Next, we evaluated the impact of sensor self-positioning accuracy on target localization
performance. We fixed the angle measurement noise level σθ at 2◦, and the sensor self-
positioning noise level σs varied from 5 m to 30 m, at intervals of 5 m. Figure 3 illustrates the
impact of the sensor self-positioning noise level on the target localization performance of
the above target position estimators. Figure 3a gives the BNorm results of the estimators. It
shows that the BCWLS algorithm had the best BNorm performance among the considered
algorithms. The BNorm results of the TLS and WLS methods were very close to each other
and slightly better than the BNorm of the LS method and intersection localization method.
In addition, we can see that the BNorm of the above various algorithms remained stable
as the sensor self-positioning noise level σs increased. The reason is that the bias of the
target position estimators is caused by the nonlinearity of the angle-only measurement
and the target position. The impacts of the sensor self-positioning noise level on the RMSE
of several estimators are shown in Figure 3b. It is obvious that the BCWLS method had
the best RMSE results among several algorithms. The RMSE of the TLS algorithm, LS
algorithm, and intersection localization method was very close and larger than that of the
WLS method. In addition, the LS algorithm and intersection localization algorithm had the
same RMSE and BNorm results, which further verified the inference that both algorithms
had the same target position estimates.

To illustrate the advantages of the BCWLS algorithm in terms of bias, we directly
show the target position estimates of the WLS and BCWLS algorithms. Figure 4 shows
the 100 target position estimates of the two methods under the conditions σθ = 4◦ and
σs = 10 m. The shapes ⃝ and □ represent the target position estimates obtained by the
WLS and BCWLS methods, respectively. The shape △ represents the true position of the
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target. The shape ✩ is the mean of the 100 target position estimates obtained by the WLS or
BCWLS method. It should be noted that the measurements used for the 100 target position
estimates by these two methods were the same. We can see that the mean of the target
position estimates by the WLS method deviates from the true position of target. In contrast,
the mean of the target position estimates by BCWLS method is closer to the true value of the
target position. Thus, the BCWLS method generally has a better localization performance
than the WLS method.
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Figure 3. The BNorm and RMSE of the target position estimators with σθ fixed at 2◦ and σs varying
from 5 m to 30 m.
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(a) X-O-Y plane of WLS estimates
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(b) X-O-Z plane of WLS estimates
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(c) X-O-Y plane of BCWLS estimates
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Figure 4. The target position estimates of the WLS and BCWLS algorithms on the X-O-Y plane
and X-O-Z plane. ⃝ represents the WLS estimates of the target position. □ represents the BCWLS
estimates of the target position. △ represents the true position of the target. ✩ represents the mean of
target position estimates.
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3.3. The Impact of the Number of Sensors

It is well known that target localization performance depends to a large extent on the
number of sensors and the geometry of the sensors and the target. Therefore, we changed
the number of sensors to three, removed the fourth sensor in Table 1, and kept the positions
of the remaining sensors and the target unchanged.

Figure 5 illustrates the target localization performance of the considered algorithms
with σs fixed at 10 m and σθ varying from 0.1◦ to 6.1◦ in the case of three sensors. Form
Figures 2a and 5a, it is obvious that after the removal of sensor #4, the BNorm of several
algorithms changed under different angle measurement noise levels. Under the condition
of σθ = 4.1◦, when the number of sensors was four, the BNorm of the LS algorithm
and intersection localization algorithm was about 45 m, and the BNorm of the BCWLS
algorithm was about 5 m. However, after removing sensor #4, the BNorm of the intersection
localization algorithm, LS, TLS, and WLS methods was very close, only about 30 m, and
the BNorm of BCWLS was also about 5 m. Therefore, according to the results, increasing
the number of sensors may not necessarily improve the BNorm performance of target
position estimators, and the geometry between the sensors and the target needs to be
considered. Form Figures 2b and 5b, it is obvious that after removing sensor #4, the RMSE
of BCWLS algorithm was also the smallest among the considered algorithms. In addition,
after removing sensor #4, under the different conditions of angle measurement noise level,
the root CRLB of the target position estimates remained almost unchanged compared to
that without removal. For example, in the case of σθ = 4.1◦, before removing sensor #4, the
root CRLB of target position estimates was 243.2 m, and after removing sensor #4, the root
CRLB was 252.1 m, with only a difference of about 8.9 m.
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Figure 5. The BNorm and RMSE of the target position estimators with σs fixed at 10 m and σθ varying
from 0.1◦ to 6.1◦ in the case of 3 sensors.

Figure 6 shows the target localization performance of the considered algorithms at
a fixed σθ of 2◦ and σs varying from 5 m to 30 m in the case of three sensors. Form
Figures 6a and 3a, we can see that the BNorm of the BCWLS algorithm was the smallest
among the tested algorithms. In addition, by comparing Figures 6a and 3a, we can see that
after removing sensor #4, the BNorm of the intersection localization method and LS method
decreased approximately from 14 m to 7 m, and the BNorm of the TLS and WLS methods
decreased approximately from 10 m to 7 m. Therefore, the results further demonstrate that
increasing the number of sensors may not necessarily improve the BNorm performance of
target position estimates, and it is necessary to consider the geometry of the sensors and
the target. Form Figures 6b and 3b, we can see that the RMSE of these methods was very
close before and after removing sensor #4. The RMSE of the BCWLS method was also the
smallest among the considered algorithms in different cases of sensor self-positioning noise
levels. The results verify the superiority of the positioning accuracy of the BCWLS method
among the above methods.



Remote Sens. 2024, 16, 1319 19 of 22

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

(a) BNorm

5 10 15 20 25 30
122

124

126

128

130

132

134

136

138

140

(b) RMSE

Figure 6. The BNorm and RMSE of the target position estimators with σθ fixed at 2◦ and σs varying
from 5 m to 30 m in the case of 3 sensors.

3.4. The Computational Cost

According to the analysis in Section 2.3, as the size of the coefficient matrices E and A of
the intersection localization method and LS method is 3 × Lm and 2Lm × 3, respectively, the
intersection localization method theoretically involves fewer multiplication and addition
operations and has a lower computational cost. In order to study the computational cost of
the above algorithms, we recorded the required computational time of these algorithms
under the same conditions.

Table 2 shows the total time of various algorithms across 20,000 Monte Carlo runs,
where the positions of the sensors and the target were set as in Table 1. It illustrates that
the time of the intersection localization method was the shortest. Compared with the LS
algorithm, the intersection localization algorithm reduced the total time by about 178.16 ms
in 20,000 simulations, with a reduction ratio of approximately 36%. Therefore, the target
position estimates of the intersection localization algorithm and the LS algorithm were the
same, but the computational cost of the intersection localization algorithm was smaller.
Since the target position estimates were obtained by an SVD of the augmented matrix C,
the computational cost of the TLS algorithm was higher than that of the LS algorithm. In
addition, the time of the BCWLS algorithm increased approximately 385.78 ms compared
to that of the WLS algorithm, because the BCWLS algorithm has a bias-compensation
operation compared to the WLS algorithm, resulting in a higher computational cost.

Table 2. The total computation time of the intersection localization method, LS, TLS, WLS, and
BCWLS algorithms across 20,000 Monte Carlo runs, absolute and relative.

Method Intersection LS TLS WLS BCWLS

Absolute time (ms) 312.05 490.21 675.60 1130.04 1515.82
Relative time 0.64 1 1.38 2.31 3.09

4. Discussion

In this paper, we first presented an intersection localization method to estimate the
target position based on angle-only measurements. A theoretical analysis showed that this
method had the same target position solution as the LS method, but due to the smaller size
of the coefficient matrix, the computational cost was lower. The simulation results verified
that the intersection localization method and the LS method had the same target position
solution and a lower computational cost under the same conditions. Since the size of the
coefficient matrices for both the intersection localization and the LS methods is proportional
to the number of angle-only measurements, the more angle-only measurements there are,
the more computational cost of the intersection localization decreases compared to the
LS method.
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In addition, through a theoretical analysis, we found that the WLS target localization
method with angle-only measurements was biased due to the correlation between the
coefficient matrix and the noise vector. Therefore, we further presented a BCWLS method
by estimating the bias of the WLS method. This method could reduce the localization
bias to a certain extent. The simulation results showed that in different scenarios, the
BCWLS method had a smaller BNorm and RMSE compared to the intersection localization
method, LS method, TLS method, and WLS method. In addition, the results showed that
the BCWLS method could approximately achieve the CRLB. However, due to the addition
of a bias-compensation step in the BCWLS method, the computational cost was higher than
that of the WLS method.

In order to investigate the impact of the number of sensors on the target positioning
accuracy, we removed one sensor from the original sensor network in a simulation and
compared the positioning accuracy of various algorithms before and after removal. The
results showed that the RMSE and BNorm of various algorithms under different error
conditions before and after removal were very close, and the BNorm of various algorithms
after removal was even smaller. Therefore, when increasing the number of the sensors to
improve the target positioning accuracy, it should be noted that the geometry of the sensors
and the target plays an important role. If the placement of new sensors is improper, it is
likely to have the opposite effect.

5. Conclusions

This paper studied the source localization problem with angle-only measurements in
a passive sensor network. We first presented an intersection localization method that was
obtained by minimizing the distances between lines formed by angle-only measurements.
Starting from the angle measurement formula, we studied the LS algorithm by solving the
target position equations constructed from angle measurements. Comparing the closed-
form solutions of the intersection localization algorithm and the LS algorithm, we proved
that the two algorithms had the same target position solution. However, since the coefficient
matrix of the intersection localization method was smaller, its computational cost was lower
than that of the LS method. Furthermore, we studied the TLS method, which takes into
account not only the errors in the data vector but also the errors in the coefficient matrix.
In contrast, the LS method only considers the error in the data vector. The intersection
localization method, LS, and TLS methods do not take into account the difference in
measurements errors of different sensors. In practice, the measurement noise level of
each sensor may be different. We studied the WLS method by considering the difference
in measurement accuracy of sensors. Since the coefficient matrix and the pseudolinear
noise vector of the WLS method are correlated, the WLS method is biased, especially at
high measurement noise level. To reduce the bias, we presented a BCWLS method by
estimating the correlation between the coefficient matrix and pseudolinear noise vector. The
BCWLS method had a higher accuracy of the target position estimate than the WLS method.
On the other hand, due to the addition of bias-compensation steps, the computational
cost of the BCWLS method also increased. Finally, we derived the CRLB of the target
localization based on angle-only measurements to evaluate the positioning performance of
the above algorithms.

The numerical simulations showed that the intersection localization algorithm and LS
algorithm had the same localization results, verifying the theoretical derivation. We also
analyzed the impacts of the measurement noise level on the target localization performance
of the above target position estimators, including angle measurement noise and sensor self-
positioning noise. The target localization performance advantages of the BCWLS method
were verified by a numerical simulation. Furthermore, the running time of the considered
methods was compared, and the results showed that the intersection localization method
had the lowest computational cost.

In this paper, we assumed that the self-positioning noise and the angle measurement
noise both followed a zero-mean Gaussian distribution. However, in practice, this assump-



Remote Sens. 2024, 16, 1319 21 of 22

tion may not be valid. In particular, if the passive sensor is mounted on a motion platform,
the sensor self-positioning noise may not be zero-mean. Therefore, in the future, we will
study the target localization based on angle-only measurements with a non-Gaussian
noise background.
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