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Abstract: This study assesses the variability of coastal extreme sea levels globally by utilizing nearly
three decades of along-track, multi-mission satellite altimetry data. An altimetry-based global coastal
database of the non-tidal residual sea level component has been produced. The climate variability of
extremes is modeled through a parametric, non-stationary statistical model. This model captures
intra-annual, inter-annual and long-term variations in non-tidal residual return levels. Comparisons
with tide gauge data demonstrate the ability of altimetry data to capture the variability of coastal
extreme sea levels. Our findings reveal a greater complexity in the monthly variability patterns of
non-tidal residual extremes in tropical latitudes, often exhibiting multiple storm periods, contrasting
with coasts in extratropical latitudes, which are mostly controlled by a winter–summer pattern. This
study also highlights the significant influence of established climate circulation patterns on sea level
extremes. The positive phase of the Arctic Oscillation pattern leads to increases of over 25% in
non-tidal residual return levels in Northwestern Europe with respect to a neutral phase. Furthermore,
return levels in the western coast of Central America could be 50% higher during El Niño compared
to La Niña. Our results show a robust increasing trend in non-tidal residual return levels along most
global coastlines. A comparative analysis shows that variations during the 1995–2020 period were
primarily driven by intra-annual variations.

Keywords: extreme sea levels; satellite altimetry; climate variability

1. Introduction

Extreme sea level events pose a significant threat to coastal regions. Flooding episodes
induced by these events cause ocean water to penetrate inland, causing erosion and destruc-
tion, ultimately leading to significant material (e.g., damaged facilities and material goods),
economic (e.g., disruption of economic activities), natural (e.g., wetland degradation),
and human losses [1]. Coastal extreme sea levels (ESLs) primarily occur during stormy
conditions, i.e., at the landfall of low-pressure systems on the coast or as they move close to
them. These events result in a combination of sea level surges induced by low pressures,
surges generated by wind stress over the sea surface (i.e., the storm surge), the setup of
wind waves, other ocean surface dynamic sea level disruptions (e.g., sea level anomalies
due to marine currents), and the astronomical tide. The contribution of the latter is critical
along coasts with macro- and meso-tidal ranges [2], as it may become a major contributor to
the magnitude and occurrence of ESLs [3–5]. Under stormy conditions, sea-level-induced
flooding can also combine with strong winds, heavy rain, and extreme events of other
ocean surface dynamics, such as wind waves and currents, significantly enhancing the
destructive power of storms and exacerbating the resulting consequences in coastal areas.
For example, the ocean flooding generated by Hurricane Katrina in New Orleans in August
2005 resulted in monetary losses of over $40 million and over 1500 deaths [6].

Assessing the coastal impacts due to ESLs and designing and implementing coastal
management strategies to counter them require knowledge of the maximum sea level
magnitudes that can reach the coast [7]. The Extreme Value Theory (EVT) statistically
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models the behavior of extreme events by fitting an extreme sample to an extreme value
distribution, making it possible to estimate the probability of events of an unusual, extreme
magnitude to occur, i.e., return periods [8]. High return period events (e.g., 100-year,
500-year) are estimated to model major flooding episodes and assess related flood risk,
leading to the adoption of adequate protection measures [9,10].

A comprehensive understanding of ESLs, however, requires consideration not only of
the magnitude of the events, but also of their temporal variability. A deep understanding of
ESL variability makes it possible to design protective measures that embrace the evolution
of events over time. In this regard, the magnitude of ESLs may change in different intrinsic
periods, such as seasons, years, or decades, all combining to modulate their occurrence. The
non-stationarity of ESLs has already been demonstrated in previous studies at global [11,12],
regional [13–15], and local scales [16–18] based on tide gauge (TG) records and hindcast
products. The climate variability of ESLs can be assessed through approaches based on
the EVT or alternative methods. The latter requires the establishment of a criterion to
classify water level events as storms. The variability of storm events can be assessed
by analyzing, for example, the frequency of occurrence or the correlation with climate
teleconnection patterns [19]. Approaches based on the EVT typically address ESL variability
by conducting an extreme value analysis using parametric statistical models. These models
can, for example, introduce a non-stationary behavior on extremes based on time-varying
model parameters [16]. Also, pseudo-nonstationary extreme models, such as those fitting a
statistical extreme model to moving windows [20], have been proposed.

The magnitude of ESLs is not constant throughout the year. The most severe events
tend to be concentrated during storm periods (i.e., consecutive months), alternating with
periods characterized by lower magnitudes. This results in a monthly pattern whose com-
plexity depends on the intrinsic variability of the types of events involved. Identifying
months prone to suffering the impact of more significant ESLs is especially crucial where
these extreme events may cause severe coastal damage, such as those affected by tropical cy-
clones, and/or where the differences between the strongest and the weakest events within
the year are notable. These coasts are suitable for the application of seasonal protection
measures. For example, coasts affected by tropical cyclones, i.e., intense events character-
ized by strong winds and sharp pressure gradients (i.e., very high sea level surges), may
adopt measures to reduce their impact, such as the development of seasonal forecasts [21],
the implementation of early alert services [22], and the implementation of evacuation plans
for major events [23,24]. Coasts affected by highly seasonal extratropical cyclones, such
as the northern coasts of the Iberian Peninsula, can also adopt protection measures that
account for the variability within the year, such as scheduling beach regeneration measures
outside of storm periods [7].

The interannual variability of ESLs can be linked to the intrinsic modulation of
atmospheric–ocean circulation patterns. Depending on the phase and intensity of a certain
pattern, there may be greater or lesser probability of ESLs occurring. These relationships
can be estimated using climate teleconnection indices. Previous research has shown that
the position of the Northern Hemisphere (NH) Atlantic extratropical storm track is closely
related to the phase of the North Atlantic Oscillation (NAO) teleconnection pattern [25].
Depending on its phase, storms are expected to make landfall further north or south on
western European coasts, which consequently affects the magnitude of ESLs at these lo-
cations. Similarly, the positive phase of the Southern Annular Mode (SAM) is linked to
the landfall of storms along the south Australian coast, whereas during its negative phase,
storms travel poleward, reducing the storm activity in the mentioned area [26]. The ENSO
phenomenon also modulates storm surges in southeast Asia by altering tropical cyclones
and other forcing factors [27].

Long-term variability should also be considered. Today, the effects of climate change
over the ocean surface are assumed to be unavoidable in the coming years [28]. Assessing
the impact of climate change on ESLs is challenging due to the number of drivers involved.
The mean sea level rise (MSLR) [29,30], along with potential changes in atmospheric
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drivers of ESLs, such as the frequency, trajectory, and intensity of atmospheric storms,
may lead to significant increases in extreme events and, consequently, in the severity of
associated impacts [31,32]. Recent studies have addressed the assessment of changes in
ESLs due to climate change at the global scale based on an ensemble of numerical sea level
projections [33,34] or by only considering MSLR [32,35].

The study of sea levels, and specifically, of extreme events, has traditionally been
conducted using TG recorded data [11,36–38], as they are still regarded as the most reliable
providers of sea level information [39]. However, some limitations restrict their use,
such as the influence of land movements [40], heterogeneous time sampling, irregular
spatial coverage, and the fact that they provide very localized information. Despite these
limitations, TG-recorded data offer valuable information for climate studies, helping to
reveal, for instance, MSLR as the primary driver of changes in ESLs [11,41]. Numerical
models, leveraging technological advancements, have emerged as an alternative to in
situ information for the study of sea levels, enabling EVAs at different spatial scales. For
example, the study by Muis et al. (2016) [42] provided global 100-year return level water
levels based on global simulations of the hydrodynamic numerical model GTSM. Similarly,
10-year return levels are provided using the GTSM3.0 model [33]. Additionally, Zhang and
Sheng (2015) [43] provided 50-year return level total water levels for the northeast Pacific
Ocean using the ocean circulation numerical model POM. Numerical models have also
been extensively used to model the sea level variations generated by individual events [44].
Nevertheless, numerical simulations have not yet been able to accurately characterize the
peak maximum values of ESLs, mainly due to the resolution of atmospheric forcings [42].

Satellite altimetry stands as a new sea level data source that has provided information
since the 1990s globally, thus overcoming one of the major limitations of TG data: heteroge-
nous spatial coverage. Furthermore, the current length of this database, approximately
30 years, makes it possible to partly overcome the characteristic irregular spatial and tem-
poral resolution of altimetry data. Altimeters sample along their tracks at a characteristic
rate (e.g., Altika samples at 1 Hz), so that each altimeter measurement is characterized
by specific coordinates and sampling times. This issue means that satellite products with
processing levels below L4 (i.e., non-gridded products) present irregular spatial and time
coverage. The combination of long records and continuous accuracy improvements, partic-
ularly in coastal areas [45,46], supports the use of altimetry data for validation purposes
(Stammer et al., 2014 [47]) and to develop climate studies. The main climate outcome
based on altimetry data over the last three decades is the estimation of historical MSLR
trends [39,48,49]. Moreover, despite these trends typically being provided for the deep
ocean, both at global [50,51] and regional [52–54] scales, the increasing accuracy nearshore
makes it possible to estimate coastal MSLR trends in coastal areas with notable preci-
sion [55,56]. A clear example is the set of virtual altimetry stations developed within
the Climate Change Initiative, which provides sea level anomaly (SLA) time series and
identifies trends along the global coasts [57–59]. Other sea level climatic features have
also been studied using this type of data, such as the relation between SLAs and climate
teleconnection patterns [60], and the seasonal and mesoscale variability of sea levels [61].
Satellite altimetry data have also been used to analyze the sea level surges induced by
specific cyclonic events, such as Hurricane Isaac in in 2012 in the Gulf of Mexico [62].
However, the use of altimetry data for climate variability studies on ESLs on coastal areas
remains limited [63].

In this context, this study aims to evaluate the global climate variability of ESLs using
satellite altimetry data. Among the different components of ESLs mentioned earlier, this
research specifically focuses on the non-tidal residual (NTR) sea level component, which
represents sea level oscillations with respect to mean sea levels with a non-tidal origin.
Consequently, this study aims to provide global coastal NTR extreme estimates associated
with different return periods, and primarily, to assess their climate variability on various
time scales.



Remote Sens. 2024, 16, 1355 4 of 25

This manuscript is structured as follows: Section 2 describes the data used to develop
the study and presents the methods applied. Section 3 addresses the validation of the
altimetry data and summarizes the main results obtained in the study. Finally, the main
conclusions presented in Section 4.

2. Materials and Methods
2.1. Sea Level Altimetry Data

In this study, a global SLA dataset provided by the Copernicus Marine Environ-
ment Monitoring Service (CMEMS) was used. It includes inter-calibrated, multi-mission
along-track altimetry data measured by more than twenty missions from 1992 onward and
processed through the DUACS multi-mission processing system [64]. The study focused
on a 28-year period from January 1993 to December 2020, which nearly meets the mini-
mum climate period of 30 years recommended by the World Meteorological Organization
(WMO) for climate studies. The SLA dataset is computed by subtracting several sea level
components, such as tides and the atmospheric sea level components, from the still water
levels measured by the altimeters, i.e., by applying the geophysical corrections [65]. Besides
the SLA, this dataset provides dynamic atmospheric correction (DAC), which represents
sea level variations due to the effects of atmospheric pressure and wind. More information
on the corrections applied to altimetry measurements can be found in [65]. The product
can be access at https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L3
_MY_008_062/description (last accessed on 1 March 2024).

2.2. In Situ Data for Validation

The ability of altimetry data to capture the climate variability of NTR extremes was
assessed using data recorded from a global set of 400 TGs. Hourly still water level TG
records from January 1993 to December 2018 were downloaded from the legacy data portal
at the University of Hawaii Sea Level Data Center (UHSLC) webpage (http://uhslc.soest.
hawaii.edu/data, last accessed on 1 June 2022).

At each station, a tidal analysis was performed using the U-tide tool [66] based on a
harmonic fit. The analysis was conducted over a moving two-year time window, with a
central one-year effective period and two half-year overlapping periods at both ends of
the window. Years with less than 60% of hourly data were excluded (further details on the
harmonic analysis procedure can be found in the Supplementary Material). Thus, the NTR
sea level signal measured by the TGs (hereinafter NTRTG) was computed by subtracting
the resulting astronomical tide from the still water level time series.

2.3. Climate Teleconnection Indices Data

Three teleconnection indices were considered to assess the interannual variability of
NTR extremes: the Arctic Oscillation index (AO), the Multivariate ENSO Index (MEI), and
the Dipole Mode index (DMI). Other teleconnection indices, such as the North Atlantic
Oscillation (NAO), the Southern Annular Mode (SAM), and the Niño34, were also analyzed.
The AO, MEI, and DMI indices were selected due to their stronger correlations with NTR
extremes among the explored indices. These three indices are related to the atmospheric
circulation of different ocean regions. AO is related to the atmospheric circulation at NH
extratropical latitudes, while the ENSO climate pattern, through the MEI index, reflects
the interannual climate variability mainly at Pacific tropical latitudes and West Atlantic
tropical latitudes. The Indian Ocean Dipole (IOD) climate pattern, through the DMI index,
relates to the atmospheric circulation at Indian Ocean tropical latitudes.

Monthly values for AO, MEI and DMI indices were downloaded from the NOAA
Physical Sciences Laboratory webpage (https://psl.noaa.gov/gcos_wgsp/Timeseries/,
last accessed on 1 April 2022).

https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L3_MY_008_062/description
https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L3_MY_008_062/description
http://uhslc.soest.hawaii.edu/data
http://uhslc.soest.hawaii.edu/data
https://psl.noaa.gov/gcos_wgsp/Timeseries/
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2.4. Statistical Extreme Model

Based on the EVT and the non-continuous hourly satellite data sample used in this
study, the block maxima approach was selected to model the behavior of NTR extremes
through a generalized extreme value distribution (GEVD; Equations (1) and (2)). Unlike the
standard approach based on annual maxima as block maxima, we used monthly maxima
values as input instead. Monthly maxima, which have been successfully applied in ESL
studies [11,16], and the defined coastal units (Figure 1) to select the altimetry data, provided
enough data density. Furthermore, the selected maxima provided information on monthly
variations within a year.
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Figure 1. The coastal units defined to develop the study are shown in yellow. Pink circles represent
the location of the TG stations selected for validation.

We included parametric time-dependent terms in the model to introduce the non-
stationary behavior of the NTR climate variable. In particular, time-dependent terms to
analyze climate variations in ESLs were incorporated in the GEVD location parameter µ(t),
where t represents the time. The statistical extreme model considered climate variations at
three different time scales: intra-annual, inter-annual, and long-term trends.

A return period is the average time between events of a certain magnitude. Consis-
tently, a return level is the statistical value of a variable associated with a certain return
period. The estimation of time-dependent return levels zR(t, θ) at time t (in years), where
θ represents the GEVD model parameters, associated with the return period R (in years),
can be done as:

ztR = zR(t, θ) = zR(µ(t), σ, ξ) =

µ(t)− σ
ξ

[
1 −

{
−log

(
1 − 1

R

)}−ξ
]

ξ ̸= 0

µ(t)− σ log
{
−log

(
1 − 1

R

)}
ξ = 0

(1)

where µ(t) is the time-dependent location parameter, σ is the scale parameter, and ξ is the
shape parameter.

The estimation of integrated NTR return levels (zR) associated with a return period
(R) for a specific yearly time window [ti, ti + T] can be done as [11]:

1 − 1
R

=

exp
{
−
∫ ti+T

ti

[
1 + ξ

(
zR−µ(t)

σ

)]− 1
ξ dt

}
ξ ̸= 0

exp
{
−
∫ ti+T

ti
exp

[
µ(t)−zR

σ

]
dt
}

ξ = 0
(2)

where T is the time increment in yearly units.
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The intra-annual variability was modeled by combining sinusoidal functions with
periods of one year and half-year, as:

µs(t) =
2

∑
i=1

β2i−1cos 2iπt + β2i sin2iπt (3)

where µs(t) is the time-dependent GEVD location parameter related to the intra-annual
variability, t is the time, and βi are the fitting parameters related to the sinusoidal functions.

The long-term variability (also referred to as long-term trend) was incorporated into
the model through an exponential function. The exponential relationship converges to
a straight line for values close to 0 of the exponential parameter (βLT) and allows the
introduction of acceleration for higher values, as:

µLT(t) = β0exp(βLTt) (4)

where µLT(t) is the time-dependent GEVD location parameter related to the long-term
variability, t is the time, and βLT and β0 are the fitting parameters related to the exponen-
tial function.

The inter-annual variability was explored by analyzing significant relationships be-
tween NTR monthly maxima and well-known climate circulation patterns. Monthly values
of representative teleconnection indices were introduced as a covariate, CI(t), as:

µCI(t) = βCICI(t) (5)

where µCI(t) is the time-dependent GEVD location parameter related to the inter-annual
variability, t is the time, and βCI is the fitting parameter related to the covariate term.

Considering all the climate variability scales, the location parameter can be expressed as:

µ(t) = µs(t) + µLT(t) + µCI(t) (6)

The estimation of the final time-varying location parameter for each location followed
an orderly and efficient optimization process. Different combinations of the parametric
terms considered led to different µ(t). The optimal parameter was selected based on the
maximum likelihood ratio test and the principle of parsimony, namely, minimizing the
number of degrees of freedom to avoid over-parameterization of the model [8].

At the initial stage, µ(t) only considered the intra-annual variability. To find the
simplest model, we applied a forward algorithm starting from a stationary model (model
M0). Various combinations of sine functions were explored until the optimal one was
reached (model M1):

µM1(t) = µs(t) (7)

where µM1(t) is the time-dependent location parameter related to model M1.
Next, we incorporated the long-term trend to define model M2:

µM2(t) = µs(t) + µLT(t) (8)

where µM2(t) is the time-dependent location parameter related to model M2.
Finally, based on M2, we employed the same process to define model M3, this time

introducing the inter-annual variability parametric term through each analyzed climate
index independently. Therefore, M3 encompassed three different time scales in modeling
the climate variability of NTR extremes. The extreme model introduced the influence of
climate teleconnection patterns individually, which translated into a different M3 model for
each climate pattern analyzed.

µM3(t) = µs(t) + µLT(t) + µCI(t) (9)

where µM3(t) is the time-dependent location parameter related to model M3.
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An example of the evolution of ztR considering models M1, M2 and M3 is shown in
Figure S2.

2.5. Non-Tidal Residual Coastal Extreme Sample

As stated earlier, this study aims to assess the climate variability of extreme events of
the NTR component of sea level. Accordingly, a NTR dataset computed from altimetry data
(henceforth NTRSAT) was required. We used the approach followed by previous studies
to compute NTR data from altimetry measurements [63,67–70], which is schematized in
Figure 2. The calculation of the NTRSAT dataset was done by undoing the DAC, in other
words, by re-adding the DAC product to the SLA. The resulting NTRSAT (SLA + DAC)
dataset was an along-track product with irregular time and spatial sampling that covered
the global ocean. Note that the NTRSAT accuracy was inevitably affected by the precision
of the still active corrections [71].
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To assess the global variability of coastal NTR extreme events, we defined 474 coastal
units with an approximate length of 500 km and width of 100 km, covering the global
coastlines (Figure 1). The size of the coastal units was set to provide sufficient data for
the EVA and to correctly capture the climate variability of NTR extreme events. NTRSAT
data were selected within each coastal unit along the global coastlines. Next, monthly
maxima were selected at each coastal unit to be used in the following EVA. In order to avoid
spurious monthly data, months with fewer than 10 measurements after hourly re-sampling
were not considered.

2.6. Extreme Variability Assessment

Several metrics to represent the climate variability of extremes at different time scales
were calculated.

2.6.1. Intra-Annual Variability

The extreme variability within the year was quantified by analyzing the intra-annual
evolution of NTR return levels following Equation (1). In particular, we analyzed the
evolution of the 20-year return level of NTR within a year (zt20 in Equation (1)), in other
words, we assessed the magnitude variations experienced by events with a return period
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of 20 years within a year. This was done by considering model M2 (see Section 2.4) with
no trend (Equation (8)), which implied that, despite the statistical model fitted being M2,
the posterior computation of zt20 was done assuming that βLT = 0. This allowed us to
isolate the intra-annual variability and avoided attributing to seasonal variations changes
associated with long-term trends. The variability was measured through the coefficient of
variation of zt20 within a year, designated as CV20, and computed as:

CV20 =
σR20

xR20 (10)

where σR20 is the standard deviation of zt20 and xR20 is the mean of zt20 within a year.
Higher (lower) values of CV20 indicated a stronger (weaker) intra-annual variability

in ESLs.
In addition, the most likely months to exhibit stronger extremes were identified. This

was achieved by first determining the number of local maxima for zt20 within a year,
followed by identifying the months in which these maxima occur.

2.6.2. Long-Term Trends

Long-term trends in NTR extremes were assessed through the relative change in z20
(Equation (2)) between 1995 and 2020, calculated using model M2, as:

∆z20 =
z2020

20 − z1995
20

z1995
20

(11)

where zy
20 is the 20-year return level NTR at year y.

2.6.3. Inter-Annual Variability

The relationship between NTR return level variations and teleconnection climate
indices was analyzed to assess the inter-annual variability of NTR extremes. In particular,
we evaluated the climate anomalies at monthly time resolution in zt20 relative to the neutral
phase, i.e., the climate index equals zero (CI = 0). The black line of Figure 3 represents an
example of zt20 incorporating all time-scale variations in the extreme model (i.e., model
M3; see Section 2.4). In particular, the data in Figure 3 belong to a coastal unit located on
the north coast of Papua New Guinea, and the climate index introduced in the model was
MEI. The black line time series exemplifies the significant differences in zt20 between years,
with temporal variations higher than 0.3 m. For example, in 2018, a significant increase in
20-year return level NTR corresponded to a very intense La Niña event, whereas in 1997,
an important decrease was associated with a very intense El Niño event.

To quantify the anomalies experienced by NTR return levels in response to climate
patterns, we estimated time-dependent return levels at a monthly scale over the 28-year
period (Equation (1)) using the model M3 with the trend term deactivated (i.e., βLT = 0;
blue line in Figure 3). Consistently, to estimate zt20 for the neutral phase, we used the same
model assuming CI = 0 (red line in Figure 3).

We calculated the percentiles of zt20 at a monthly scale for each month, both consid-
ering the monthly variability of the climate indices (Pk

ci), as well as for the neutral phase
(Pk

n). The comparison between these percentiles allowed us to quantify interannual climate
anomalies, as:

Ak =
Pk

ci − Pk
n

Pk
n

× 100 (12)

where Ak is the monthly climate anomaly for percentile k.
Ak can be positive and negative. It is positive when return levels increase during a

specific phase, and negative for the opposite phase. Our analysis focused on the 10th and
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90th percentiles (i.e., A10 and A90). This analysis was repeated for the three teleconnection
patterns analyzed.
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2.6.4. Extreme Variability Dominance

To assess the dominance among the different time-scale variability patterns on the
changes experienced by NTR return levels over time, the absolute change linked to each
variability scale was calculated for the 1995–2020 reference period.

The contribution of the intra-annual variability was quantified as the maximum ampli-
tude of zt20 within a year considering model M3 (Equation (9)) with βLT = 0 and CI = 0.

The contribution of inter-annual variability was quantified by first estimating the
maximum amplitude of zt20, during the entire period of analysis using model M3 with
βLT = 0. Finally, the contribution of intra-annual variability was subtracted to avoid
considering this information twice.

The contribution of long-term trend was calculated as the difference between the
20-year return level NTR in 2020 and 1995 considering model M3 with CI = 0.

3. Results
3.1. Validation of NTRSAT
3.1.1. Selection of the Validation Extreme Sample

The ability of altimetry data to reproduce the climate variability of NTRSAT extremes
was validated against TG data. From an initial set of 400 TG records, the 123 selected TG
records met a number of requirements to ensure fair validation against satellite altimetry
data. First, the location of the station was evaluated, rejecting those in highly sheltered
and shallow coasts, such as TG stations located inside of atolls or those located upstream
of rivers. TG records at these locations are likely to be significantly impacted by local
processes that are not correctly captured by altimetry measurements. Additionally, the
amount of available data was analyzed, and TG records with less than 75% of hourly data
during the validation period (1993–2018) were rejected.
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Comparable extreme samples from NTRTG and NTRSAT were needed to validate the
altimetry data at each TG station. Both datasets represent sea level variations relative to
the mean sea level. However, while TG data are measured relative to a defined datum
and linked to land-based benchmarks, which implies that land movements affect the
measurements, satellite altimetry data are referenced to a global reference frame, and
hence, are affected by such movements. Additionally, while TGs measure sea levels at
fixed locations with a specific temporal resolution (e.g., 1 h), along-track altimetry data are
collected at different locations with a characteristic sampling rate for each platform.

In order to deal with the spatiotemporal inconsistency between both data sources, a
method to select a NTRSAT dataset around each TG station was defined. These samples were
selected based on the Pearson correlation [72] (r) between both datasets in the vicinity of TG
stations [63]. The correlation between NTRTG and NTRSAT was computed at each node of a
0.25-degree regular grid covering a 7.5-degree circular area centered on the station location.
Correlations of contemporaneous pairs NTRTG-NTRSAT within a 0.25-degree circle centered
at each ocean grid node were computed (scheme in Figure S3). Grid nodes with r values
lower than 0.5 were rejected. The correlation cut-off was then continuously increased from
0.5 until the mean number of altimetry measurements was approximately 1 measurement
per day. To avoid selecting very close-in-time measurements, NTRSAT was re-sampled to
hourly data at each step of the evolution algorithm. The selected 123 TG stations for the
validation process are indicated in the map in Figure 1. Finally, the monthly maxima from
NTRTG and NTRSAT for each station were selected to be used as input in the EVA.

3.1.2. Validation Results

The ability of altimetry data to capture the magnitude of NTR extreme events and their
variability over different time scales is addressed in Figure 4. The location of the analyzed
TG stations is depicted on the map in Figure 4, with a different marker color/shape for each
region. The correlation between monthly maxima from NTRSAT and NTRTG at each TG
station was calculated, as shown in Figure 4a, along with the root-mean square error (RMSE;
more details on the definition of RMSE can be found in [73]). Correlations had a significance
level above 0.99 for all stations. The results indicate that over 80% of the stations exhibited r
values higher than 0.7, and more than 50% showed r values higher than 0.8, evidencing a
strong agreement between both datasets. The stations with the lowest r values, ranging from
0.5 to 0.6, were scattered along the global coastlines and represented less than 5% of the total
TGs, not reflecting any discernible spatial pattern and likely due to local processes that were
not fully captured by altimetry data. In general, the eastern coast of North America showed
the lowest correlation values, with most of TGs exhibiting r values ranging between 0.6 and
0.7, which may be related to the width of the shelf and the protected locations of TGs in this
region [63]. On the other hand, the stations with the highest r values (>0.9) were in equatorial
latitudes in the Eastern Indian Ocean and Western Pacific Ocean. Most TG stations showed
RMSE values lower than 0.125 m. As expected, TGs showing higher RMSE values were, in
general, those located in regions affected by tropical cyclones.

The ability of altimetry data to capture the magnitude of NTR events with a 10-year
return period is evaluated in Figure 4b. The results show a general underestimation of
altimetry data (bias = −0.10 m), particularly for magnitudes exceeding 0.60 m, with good
correlations (r = 0.74) and moderate errors (RMSE = 0.19 m). Errors increased in tropical
latitudes, mainly due to the poor representation of extreme sea levels induced by tropical
cyclones in the altimetry sample. Altimetry data cannot fully capture the magnitude of the
NTR extremes caused by tropical cyclones within coastal units due to the combination of
the irregular time and spatial altimetry data sampling, the inconsistent spatial and time
resolution with respect to TG data, and the small radius and high moving velocity of these
storms. Conversely, the results showed good agreement in mid to high latitudes, where
extreme events are predominantly generated by extratropical storms. On top of this, despite
the thorough selection of TGs, most of them were very likely affected by local processes,
such as interactions between long waves and the sea floor at shallow depths and long wave
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distortions resulting from complex coastal geometries. These issues, along with the fact
that most altimetry measurements are made in offshore zones, led to discrepancies between
extreme estimates from both data sources.
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correlation coefficients (r) vs. RMSE (in m) between monthly maxima from NTRSAT and NTRTG.
(b) 10-year return level NTR (in m). (c) Coefficient of variation of the 20-year return level NTR within
the year—CV20 (Equation (10)). (d) Extreme model parameter βLT (Equation (4)) associated with
long-term trends (in m/year). Extreme model parameter βCI (Equation (5)) associated with the
inter-annual extreme variability (m/index unit) for (e) AO index, (f) MEI index and (g) DMI index.

The validation of climate variability characterization is presented in Figure 4c–g.
Figure 4c shows the validation of the intra-annual variability of NTR extremes using the
metric CV20 (Equation (10)). The results demonstrate good agreement between altimetry
and TG extreme estimates with almost no bias, high correlation (r = 0.89) and low errors
(RMSE = 0.04).

The long-term variations of altimetry extremes were also validated, as shown in
Figure 4d, by comparing the parameter βLT (Equation (4)) estimated from altimetry and
TG data. The greatest differences were found at TG stations located along the coast of
the Gulf of Alaska (dark orange and red empty circles in Figure 4d) due to the uplift
of the continental shelf in this region, which induced decreasing sea level trends in TG
records [74,75]. Thus, these discrepancies could not be attributed to poor altimetry data
skill, but rather, to geodetic processes. Some sparsely distributed TG stations also showed
significant differences in βLT . However, since other TG stations in the same region did not
exhibit these inconsistencies, and the altimetry trends were homogeneous for the rest of
stations in these regions, the differences could not be attributed to the lack of accuracy of
altimetry data.

The validation of interannual variability characterization, as depicted in Figure 4e–g,
was achieved by assessing the agreement in the parameter βCI (Equation (5)) for the AO,
MEI, and DMI climate indices. A good general agreement between altimetry and TG
data was observed. The results showed excellent correlations (r > 0.9), almost no biases
(|bias| < 0.002 m/IU), and very low errors (RMSE < 0.025 m/IU).

3.2. Intensity of Coastal NTR Extremes

This section describes the magnitude of NTR return levels along the global coastlines.
Figure 5 depicts the 5- and 20-year NTR return levels globally (z5 and z20, subpanels a, b, re-
spectively; Equation (2)). The results for all of the analyzed return periods exhibited similar
spatial patterns, so for the sake of simplicity, only the results for z20 are described below.

Extreme NTR events impacting the eastern coast of America were more intense pole-
ward of 40◦ in both hemispheres, with z20 values ranging from 0.6 m to 0.8 m poleward
of 50◦, and from 0.8 m to 1.0 m between 40◦ and 50◦. Along subtropical and intertropical
coasts, z20 values mostly fell between 0.4 m and 0.6 m, the only exception being the Gulf of
California, where values ranged between 0.6 m and 0.8 m. The eastern coast of America gen-
erally experienced more intense NTR extremes than its western counterpart, consistently
exhibiting z20 values greater than 0.6 m north of 30◦N, even exceeding 0.8 m along some
coastal areas north of 45◦N. Despite the probable attenuation of NTR extremes induced
by tropical cyclones (Figure 4b), the coast of the Gulf of Mexico presented significant z20
values. Values above 0.6 m could be observed along the entire coastline of this basin and,
notably, exceeded 1 m on the east coast of Florida (USA). Coasts south of 30◦S generally
exceeded z20 values of 0.6 m, particularly between 30◦S and 45◦S, where highly intense
NTR extreme events yielded z20 values over 1.4 m.

The western coasts of Europe showed a pronounced z20 gradient. The Atlantic coasts
of Spain and Portugal, along with the southeast coast of France, exhibited z20 values ranging
from 0.4 m to 0.8 m. In contrast, the southern coasts of the North Sea exceeded 1.4 m, with
the Dutch, German, and Danish coasts in this basin reaching values over 1.8 m. African
coastlines predominantly showed z20 values below 0.6 m, only exceeding this value on the
South African coast (between 0.6 m and 0.8 m).
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Along Indian Ocean coasts, two main areas stood out due to an intensity of NTR
extremes. The first was the north coast of the Gulf of Bengal, with z20 values ranging
between 0.8 m and 1.2 m. The second was the Persian Gulf, where almost the entire basin
showed values between 0.8 m and 1.0 m. The south coast of Japan and most of Chinese
coast presented z20 values above 0.8 m, also exceeding 1.2 m in some sections of the Yellow
Sea. The Australian coast exhibited significant z20 values over 0.6 m along almost the
entire coast, with particularly intense events impacting the Gulf of Carpentaria and some
areas along the southern and eastern coasts, reaching values between 1.0 m and 1.2 m.
The coastlines of Tasmania and South Island in New Zealand also displayed considerable
magnitudes, ranging between 0.6 m and 0.8 m.

3.3. Climate Variability of Coastal ESLs
3.3.1. Intra-Annual Variability

The intensity of NTR extremes reaching the coast varies throughout the year due
to the intrinsic intra-annual variability of their generating events (e.g., tropical cyclones,
extratropical cyclones). The variability of extreme events within a year is depicted in
Figure 6. Figure 6a shows the month with the highest probability of experiencing the
highest NTR extremes (i.e., the highest return levels within a year; see Section 2.6.1).
It also highlights coastal areas where NTR return levels exhibited more than one local
maximum within a year, indicating that these coasts could be affected by extreme events
of different geneses. The month showing this second maximum is also displayed (white
circles). Additionally, the evolution of zt20 within a year (normalized by xR20) at fourteen
key coastal units (U1 to U14) along the global coastlines is presented in Figure 6b. Five of
these units are in the Pacific Ocean, five are in the Atlantic Ocean, and four are in the Indian
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Ocean. These coastal units were selected with two primary objectives: to homogenously
cover the global coastlines, and to represent distinct NTR extreme behaviors, illustrating the
differences between coastal regions in terms of the shape and complexity of the intra-annual
variability pattern. Coastal units where extremes have a single origin showed simpler
monthly evolution patterns, characterized by a clear annual cycle (e.g., units U1–U3, U7,
U11–U13). On the other hand, coasts impacted by NTR extremes of more than one origin,
mostly observed in subtropical and intertropical coasts, exhibited more complex seasonal
patterns (e.g., units U4–U6, U8–U9).
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Figure 6. Intra-annual variability of NTR return periods. (a) Color indicates the month with the
highest probability of showing the highest NTR extremes, and letters indicate the second month
presenting the highest extremes (the letter representing each month is highlighted at the color bar
label). Individual figures show the evolution of 20-year return level within the year (legend located
at the right upper corner) at fourteen coastal units, denoted as U1-U14. (b) Coefficient of variation of
the 20-year return level within the year—CV20 (Equation (10)).

The primary driver of NTR extremes impacting mid to high latitude coasts are ex-
tratropical cyclones moving from west to east along the extratropical storm tracks [76,77].
These events showed a strong inter-annual variability pattern, with maximum magnitudes
during the corresponding winter season in each hemisphere and minimum magnitudes
during the summer. Most coastal units in these latitudes showed a single maximum within
the year (U1–U3, U11–U13), corroborating the strong winter-summer pattern. Coasts north
of 40◦N (U1–U3) exhibited the highest probability of experiencing more extreme events
from November to February, whereas the pattern in extratropical coasts in the SH was
less clear. However, a significant winter dominance (from May to July) in extreme NTR
occurrence could still be observed in the south coast of Chile, the south and west coasts of
Australia, the southernmost part of the coast of South Africa and the coasts of New Zealand
(U11–U14).
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The eastern coastlines of the continents in subtropical and intertropical latitudes can
be impacted by tropical cyclones [20,78]. Therefore, months within the tropical cyclone
seasons (i.e., approximately from June to November in the NH and from November to
April in the SH) were roughly those showing the highest NTR extreme values. The coasts
of the Gulf of Mexico and the Caribbean Sea experience the highest NTR events mainly
from September to November (U5), whereas along open NH tropical West Pacific coasts
the highest NTR events are most likely to occur in earlier months, from July to September
(U10). Moreover, all mainland coasts in the latter regions exhibited a second maximum in
NTR return levels from April to May, something that was not observed on islands at the
same latitudes, such as in the Caribbean islands, Taiwan, and The Philippines. In the SH,
the coasts of Mozambique, Madagascar, and the Reunion and Mauritius islands showed
maximum values in January and February (U7). Additionally, the northeast and southeast
coasts of Australia suffer the highest events from January to April.

Notable differences were observed within the same basin, mainly depending on the
orientation of the coastline. The Arabian Sea coasts are a clear example of this phenomenon.
The west coast of India experiences the highest NTR events in December–January, while
the highest events along the coasts of Pakistan, East Iran, and Oman occur in May–June.
However, all these coasts showed a second zt20 maximum in November–December (U8),
indicating that they are likely to be affected by the same extreme events as the coast of
West India. Another example is the Gulf of Guinea, where the coasts of Gabon and Angola,
orientated to the west, exhibited the highest NTR events in March with a second maximum
in November (U7), and the coasts of Cameroon, Nigeria, Togo, Ghana, and Ivory Coast,
orientated to the south, showed the highest extremes in October–November, with a second
maximum in March–April. These patterns likely reflect the effect of extreme events on all
these coasts, with the dominance alternating based on coastline orientation.

Figure 6b depicts the strength of the intra-annual variability measured through the
CV20 metric (Equation (10)). Generally, coasts poleward of 35◦ in the NH showed higher
CV20 values compared to their SH counterparts. For example, the coast of the Gulf of Alaska,
the northernmost part of the northeastern American coast, and the northwestern European
coast showed CV20 values ranging between 0.10 and 0.25, whereas the southernmost
part of the Chilean and Argentinean coasts and the coast of South Africa showed CV20

values lower than 0.15. This discrepancy reflects a more pronounced seasonality in NH
extratropical coasts with respect to the SH, as can also be observed by comparing the
intra-annual evolution of zt20 at coastal units in the extratropical NH (U1-U3 in Figure 6a)
and the extratropical SH (U11-U13 in Figure 6a). Additionally, it is noteworthy the low
CV20 values (0.05 to 0.15) observed in the coasts of Uruguay and Argentina and the south
coast of the North Sea, coastal regions affected by very high NTR extremes (Figure 5), which
suffer a sustained significant intensity during the whole year.

There is significant heterogeneity in the CV20 pattern in intertropical and subtropical
coasts, even within the same basin. For example, the coasts in the Arabian Sea exhibited
CV20 values ranging between 0.05 and 0.25. The coasts most affected by extremes induced
by tropical cyclones showed significant CV20 values, roughly from 0.10 to 0.25 on coasts
in the Gulf of Mexico and Caribbean Islands (U5 in Figure 6a), and from 0.15 to 0.35 on
NH tropical West Pacific coasts (U10 in Figure 6a). These results highlight the high NTR
magnitudes induced by tropical cyclones compared to those present the rest of the year.

Finally, it is worth noting the high CV20 values on coasts in semi-enclosed basins, such
as the Gulf of California, the Gulf of Carpentaria, and the Red Sea. The latter stands out for
being affected by NTR extremes of great magnitude (Figure 5).

3.3.2. Long-Term Trends

Figure 7 presents the long-term variability (i.e., long-term trends) of z20 along the
global coastlines (Equation (11)) and also examines whether the inclusion of the trend to
model the behavior of NTR extremes was significant at a 95% confidence level (Equation (4)).
The results revealed a robust positive trend in z20, with most coastal units exhibiting an
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increasing trend, and more than 95% of them showing significant trends. Low-robust trends
were mainly found in the coast of the Gulf of Alaska. These findings are consistent with
previous studies, which suggested that mean sea level rise is the primary driver of changes
in ESLs [11,12,15].
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Figure 7. Increase in 20-year return level NTR from 1995 to 2020. Coastal units where results are not
statistically significant at 95% confidence level are dashed. Individual plots show the evolution of the
20-year return level NTR over the period of analysis (legend can be found at the right upper corner)
at fourteen coastal units, denoted as U1–U14.

The strongest trends in z20 were found in five main coastal regions: the southwestern
African coast; the coasts of North Madagascar, North Mozambique, and Tanzania; the coasts
of Papua New Guinea, Indonesia, and the Solomon Islands; the coast of West India; and the
coast of Brazil. These regions showed increases in z20 greater than 35%, with some coastal
units experiencing increases of more than 50%. On the other hand, the Atlantic European
coasts, the southernmost part of the Chilean coast, the Argentinean and Uruguayan coasts,
the northwestern coasts of America, and the south, west, and north coasts of Australia
showed the lowest increases in z20, ranging between 5% and 25%.

3.3.3. Inter-Annual Variability

Inter-annual variability is present in NTR extreme events. By incorporating climate
teleconnection indices into the extreme statistical model (Equation (5)), we could examine
the individual effect of climate teleconnection patterns on the intensity of NTR extremes.
Figure 8 depicts the relationship between three teleconnection indices and monthly NTR
return levels for three specific regions: AO for North Atlantic Ocean coasts, MEI for Pacific
coasts, and DMI for Indian Ocean coasts (panels a-c, respectively). The maps in Figure 8
show A90 (Equation (12)) for the month with the highest probability of showing the highest
NTR extremes (see Figure 6a), where the color indicates the phase in which this happens
(pink for positive phase; blue for negative phase). In addition, it shows the monthly
impact of the inter-annual variability at six coastal units, two for each climate index (coastal
units UA-UF). For each coastal unit, monthly boxes represent A10 (lower bound) and A90

(upper bound), calculated as indicated in Equation (12), whereas the whiskers represent
the maximum and minimum monthly anomalies during the period of analysis. We also
examined the statistical robustness of introducing the teleconnection index covariate into
the statistical model (Equation (5)), considering the results to be robust when the statistical
significance was greater than 95%.
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Figure 8. Inter-annual variability of NTR return levels for (a) AO index, (b) MEI index and (c) DMI
index. Maps show A90 (Equation (12)) for the stormiest month. Colors in the map indicate the
teleconnection index phase in which the increases in TWL return levels occur- pink for positive phase
and blue for negative phase. Bar graphs represent for specific coastal units (UA–UF) the changes in
zt20 (Equation (1)) for the entire period of analysis. Bars represent A90 (upper limit) and A90 (lower
limit). Bar whiskers represent the maximum increase/decrease in zt20 with respect to the neutral
phase experienced during the period of analysis. The bar for the stormiest month is highlighted.
Coastal units where results are not statistically significant at 95% confidence level are dashed.

The impact of the Arctic Oscillation teleconnection pattern (AO index) on NTR re-
turn levels in the North Atlantic coasts is shown in Figure 8a. A strong correlation was
found between the positive phase of the AO index and NTR extreme events along the
northwestern coasts of Europe (pink colors in Figure 8). This indicated a higher probability
of experiencing higher NTR extreme events during this phase. The AO index, which is
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highly correlated with the NAO index [79], is closely related with the position of the NH
extratropical storm track in the Atlantic Ocean. During the AO positive phase, storms tend
to reach poleward coastlines, which explains the positive correlation found in these coasts.
Increases in zt20 over 15% during this phase with respect to the neutral phase during the
stormiest month, measured through A90 metric, were found in the western Norwegian
coast and the coast of Iceland. The coasts of the North Sea and the north coasts of the
British Islands also showed increases above 10%. The specific analysis conducted at UA
showed that, from January to April, A90 presented values over 15% during the AO positive
phase. Moreover, the results indicate that increases reached values over 30% during these
months in the 28-year period analyzed (whiskers of the bar plots).

Conversely, during the AO negative phase, storms tend to make landfall more to
the south, resulting in a negative correlation with NTR extremes along the southwestern
coasts of Europe, namely those in the Gulf of Biscay, the Atlantic coasts of the Iberian
Peninsula, and the Mediterranean coasts. Increases over 10% were observed during this
phase along these coasts, except for the easternmost Mediterranean coasts, where the
increases were lighter. Coastal unit UB, in the northwestern coast of Spain, showed the
strongest interannual variability from December to March. During these months, A90

showed values over 10% for the negative AO phase. Moreover, increases over 25% were
observed for years with very intense AO index values.

The effect of ENSO teleconnection pattern on the inter-annual variability of NTR
extremes was analyzed through the MEI index, as depicted in Figure 8b. Positive values
of this index are related to El Niño phase and negative values to La Niña phase. A robust
influence of ENSO phenomenon in NTR return levels could be observed in intertropical and
subtropical Pacific coasts, with a clear dipole pattern: positive MEI correlations (i.e., higher
extremes during El Niño phase) along eastern Pacific Ocean coasts and negative correlations
(i.e., higher extremes during La Niña phase) along western Pacific Ocean coasts. The most
intense effect of El Niño phase on the magnitude of NTR extremes was observed along the
Pacific coasts of Mexico, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, and
Panama. Values of A90 exceeding 20% were observed along these coasts during this phase.
A detailed analysis at UD revealed a very strong inter-annual variability throughout the
whole year, exhibiting significant increases during El Niño phase and significant decreases
during La Niña phase. In this regard, although A90 was below 30% for every month, the
analysis of the 28-year period indicated that increases of over 50% in zt20 during this phase
with respect to the neutral phase were occasionally reached. The intensification of NTR
extremes during El Niño phase extended to the entire western coast of America, namely
from Alaska (USA) to Chile, albeit showing lower anomalies in poleward latitudes.

Extreme events of NTR reaching the coasts of Papua New Guinea, The Philippines,
Indonesia, North Sumatra, North Java, East Vietnam, and Northeast Australia showed a
robust correlation with La Niña phase. Increases over 25% could be observed among these
coasts in the stormiest month during La Niña phase in comparison with the neutral phase.
An assessment at UC exhibited a very strong inter-annual variability, even more than along
the eastern Pacific coasts. Our results showed A90 over 25% during La Niña phase for every
month, reaching values beyond 50% for intense La Niña events. As expected, during El
Niño phase, a significant decrease in NTR was observed throughout the year. Further, note
that this negative pattern extended to the Indian ocean along the south coasts of Sumatra
and Java, the north, west, and south coasts of Australia, and the coasts of the Bay of Bengal.

The effect of the Indian Ocean Dipole climate pattern on NTR extremes was examined
using the DMI index (Figure 8c). A dipole pattern along Indian coasts was observed,
characterized by a correlation between NTR extremes with the negative phase of DMI
along eastern Indian Ocean coasts and the opposite along western Indian Ocean coasts.
Nevertheless, it is worth mentioning that the former was stronger than the latter. The
intensity of NTR extremes along the south, east, and north Australian coasts, the south
coasts of Sumatra and Java, and the coasts in the Bay of Bengal showed A90 values above
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25% during the DMI negative phase. Consistently, the results at UF showed that increases
in zt20 during the negative phase reached values above 30% from July to November.

On the other hand, along the coasts of Somalia, Kenya, Tanzania, the south coast of
Madagascar, and the south coast of Oman, a robust positive correlation with DMI index
was observed. In general, increases along these coasts during the stormiest month did not
exceed 10%. At coastal unit UE, the results showed A90 values of over 10% during the
period of analysis from June to December. Decreases during the negative phase of DMI
index were significantly lower than the increases experienced during the positive phase.

3.3.4. Extreme Variability Dominance

After exploring the variability in NTR return levels on individual time scales, we
then qualitatively assessed the importance of each time-scale variability along the global
coastlines during the 1995–2020 period. We aimed to determine the relative importance
of changes in NTR return levels within the year, from one year to another, and over the
long-term within the analyzed period.

The relative importance of the three variability time scales explored in this study is
depicted in Figure 9, for the same regions shown in Figure 8. For each region, inter-annual
variability was analyzed, considering the influence of a different climate teleconnection
pattern (indicated in the upper-left corner of each panel). Along the Western European
and Mediterranean coasts, there was a split dominance between the three variability time
scales (Figure 9a). However, a more pronounced dominance of intra-annual variability was
observed along the coasts of the British Isles, Iceland, and Norway. This indicated that, for
example, variations in NTR return levels during the 1995–2020 period along the coasts of
Iceland were stronger within a single year than over the entire period of analysis.

Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 9. (a) Relative contribution to the extreme variability of 20-year return level NTR from 1995 

to 2020 between the intra-annual variability, the inter-annual variability related to AO index and the 

long-term trend. (b) Same as in (a) but for MEI index. (c) Same es in (a) but for DMI index. 

The Pacific coastal regions, strongly affected by the ENSO phenomenon, exhibited 

notable differences (Figure 9b). The coast of South America south of 10°S revealed a split 

dominance between the three time scales, except for the southernmost part, where trends 

and intra-annual variability dominated over inter-annual changes. The variability along 

the eastern Pacific coasts from 10°S to 20°N was dominated by inter-annual changes in-

duced by the ENSO phenomenon. A split dominance among the three time scales ex-

tended northward up to 40°N, with the only exception of the Gulf of California, mostly 

due to intra-annual variations. The coast of the Gulf of Alaska, the coastal region exhibit-

ing the lowest trends (Figure 7), showed a clear dominance of intra-annual variability, 

with a minor contribution of inter-annual variations. The coasts of East Asia presented a 

clear dominance of intra-annual variability, followed by the long-term trends. The inter-

annual variability dominated along a significant part of the Pacific coasts of the Maritime 

Continent, with long-term trends being the least important contributor. The main varia-

bility scale along the north coast of Australia was found to be the intra-annual, followed 

by the inter-annual. Lastly, the east coast of Australia showed a split dominance between 

trends and intra-annual variability. 

Finally, the Indian Ocean coasts were shown to be mostly governed by intra-annual 

and long-term variations (Figure 9c). The most remarkable exceptions were the southern 

coasts of Sumatra and Java, where the changes related to the inter-annual variability were 

the most important. 

4. Conclusions and Discussion 

Coastal ESLs are an important subject of analysis, due to the severe impacts they may 

cause in coastal areas. Despite the use of tide gauge and modeling data becoming more 

common in the study of these events, improvements in the accuracy of altimetry data and 

its current availability period of over thirty years mean that such data could serve as an 

alternative to address multiple climatic-based purposes, always with consideration of the 

limitations of such an approach. In this context, we have explored the use of this data 

Figure 9. (a) Relative contribution to the extreme variability of 20-year return level NTR from 1995 to
2020 between the intra-annual variability, the inter-annual variability related to AO index and the
long-term trend. (b) Same as in (a) but for MEI index. (c) Same es in (a) but for DMI index.

The Pacific coastal regions, strongly affected by the ENSO phenomenon, exhibited
notable differences (Figure 9b). The coast of South America south of 10◦S revealed a split
dominance between the three time scales, except for the southernmost part, where trends
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and intra-annual variability dominated over inter-annual changes. The variability along the
eastern Pacific coasts from 10◦S to 20◦N was dominated by inter-annual changes induced
by the ENSO phenomenon. A split dominance among the three time scales extended
northward up to 40◦N, with the only exception of the Gulf of California, mostly due to
intra-annual variations. The coast of the Gulf of Alaska, the coastal region exhibiting the
lowest trends (Figure 7), showed a clear dominance of intra-annual variability, with a
minor contribution of inter-annual variations. The coasts of East Asia presented a clear
dominance of intra-annual variability, followed by the long-term trends. The inter-annual
variability dominated along a significant part of the Pacific coasts of the Maritime Continent,
with long-term trends being the least important contributor. The main variability scale
along the north coast of Australia was found to be the intra-annual, followed by the inter-
annual. Lastly, the east coast of Australia showed a split dominance between trends and
intra-annual variability.

Finally, the Indian Ocean coasts were shown to be mostly governed by intra-annual
and long-term variations (Figure 9c). The most remarkable exceptions were the southern
coasts of Sumatra and Java, where the changes related to the inter-annual variability were
the most important.

4. Conclusions and Discussion

Coastal ESLs are an important subject of analysis, due to the severe impacts they may
cause in coastal areas. Despite the use of tide gauge and modeling data becoming more
common in the study of these events, improvements in the accuracy of altimetry data
and its current availability period of over thirty years mean that such data could serve
as an alternative to address multiple climatic-based purposes, always with consideration
of the limitations of such an approach. In this context, we have explored the use of this
data source to examine the climate variability of coastal ESLs. The present study was
intended to maximize the strengths of altimetry data in terms of the climate behavior and
escape from its main weaknesses, i.e., the irregular time and spatial sampling and potential
underestimation of extremes.

In particular, we have focused on the NTR component of sea level. No altimetry based
NTR product is openly available, so a complete dataset using a global, multi-platform, inter-
calibrated along-track altimetry product covering the period from 1993 to 2020 was built.

The analysis was conducted worldwide on more than 400 coastal units that covered
the global coastlines uniformly (Figure 1). The analysis focused on the climate variability of
coastal NTR extremes with very low probability of occurrence (i.e., magnitudes associated
to return periods). To achieve this, a non-stationary EVA was conducted at each coastal
unit using a time varying GEVD statistical model that employed monthly maxima as input.
The extreme variability was introduced in the model through the location parameter as a
parametric function. We considered variations on three time scales (Equation (6)), namely:
intra-annual, by combining sine functions; inter-annual, by introducing teleconnection
indices as covariates; and long-term trends, by fitting an exponential function.

In order to provide robustness to the results, an extensive validation was done by
comparison against TG data. We should note that this comparison could be unfair at some
locations, as altimetry data are mostly measured offshore, and TG data are frequently
affected by local processes due to interactions with the sea floor and coastal features. Addi-
tionally, despite comparable NTR samples from TG and altimetry being thoroughly selected
at each TG location to conduct the validation, inherent spatiotemporal inconsistency be-
tween the two data sources is inevitable. Altimetry measurements will always be made
at different locations than the TG and with a different temporal resolution, which may
translate into differences in the magnitudes measured and delays in the timing of extreme
events. Despite this, our validation results demonstrated the value of altimetry data in
terms of reproducing the variability of NTR return levels (Figure 4). The magnitude of ex-
tremes was also reasonably well captured. The accuracy of the altimetry-based NTR dataset
was unavoidably affected by the corrections applied to altimetry measurements (e.g., tidal
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corrections) and was subjected to further improvements in coastal regions. The poorest
results were obtained, as expected, in coastal regions affected by extreme events generated
by tropical cyclones. Such underestimates mean that the use of altimetry data within these
regions should be done with the necessary critical assessments to avoid misleading results.
It is relevant to highlight that the underestimation of ESLs induced by tropical cyclones is
not exclusive to altimetry, as results from numerical models also experience similar issues
within these regions [42]. In general, our results provide confidence in the subsequent
climate variability analysis conducted along the global coastlines. Moreover, given the
excellent representation of the climate variability based on altimetry data and the probable
underestimation in certain tropical regions, our results were provided and evaluated as
relative magnitudes whenever possible, hence concentrating on variability and avoiding,
at least partially, the influence of underestimation.

Prior to exploring the variability of NTR extremes, the magnitudes of events with
return periods of 5 to 20 years were analyzed (Figure 5). First, it is relevant to mention
that the global spatial distribution of the magnitudes was consistent with findings from
previous studies [33,42]. We observed that the coast of the North Sea and the coasts of
Argentina and Uruguay suffered the highest NTR events, with the former exceeding 1.8 m
and the latter 1.4 m for z20. Despite the magnitude of tropical cyclones not being fully
captured, coasts impacted by this type of storms, such as those in the Gulf of Mexico,
China, south Japan, and the Gulf of Carpentaria, showed notably high NTR return levels,
all exceeding 1 m for z20.

Our assessment of extreme intra-annual variability indicated that coasts in extrat-
ropical latitudes exhibited a clear winter–summer variability pattern, experiencing the
highest NTR events during the corresponding winter month in each hemisphere (Figure 6a).
Additionally, our results suggested that this seasonality is more pronounced in the NH
than in the SH. In contrast, there was significant heterogeneity in the most probable month
for the highest extremes in subtropical and intertropical coasts. Many of these coasts
did not present a simple intra-annual variability pattern (e.g., winter-summer variability),
but rather, showed two distinct storm periods, likely due to extremes of different origins.
For example, the coast in the Gulf of Mexico experiences the impact of the most intense
NTR extremes during the TC season, particularly in September and October, and exhibits
another maximum between May and April (U5 in Figure 6a). Meanwhile, coasts in the
southwestern tropical Pacific affected by tropical cyclones experience the most intense NTR
events earlier than in the Atlantic, mostly in August and September (U10 in Figure 6a).

The long-term variability assessment revealed a clear increasing pattern in NTR return
levels between 1995 and 2020 along the global coastlines (Figure 7). The only coastal region
showing almost null increases (and low statistical robustness) was the northwestern coast
of America. These results reinforce the findings from previous studies stating this to be
the main driver of the changing ESLs due to climate change [11,80]. Moreover, MSLR very
likely also explains the fact that we found significant trends (95% confidence level) in over
95% of the coastal units analyzed. Relative changes higher than 50% were observed along
some parts of the southwestern African coast and Mozambican channel.

The inter-annual variability of NTR extremes was analyzed based on the influence
of three climate teleconnection patterns (Figure 8): the Arctic Oscillation pattern through
the AO index; the ENSO phenomenon pattern through the MEI index; and the Indian
Ocean Dipole pattern through the DMI index. The findings revealed a strong correlation
between AO and NTR extremes. During its positive phase, the northwestern coasts of
Europe experienced over a 20% increase in NTR return levels with respect to the neutral
phase. On the other hand, the negative phase of AO relates to an increase in NTR extremes
along the southwestern coasts of Europe, including the Gulf of Biscay, the Atlantic coasts
of the Iberian Peninsula, and the western Mediterranean coasts, with values over 10%. A
clear dipole pattern was observed in relation to ENSO, with El Niño phase resulting in
NTR increases of over 25% along the eastern Pacific coasts, and La Niña phase leading
to intensified NTR extremes along the western Pacific coasts. Similarly, the IOD pattern
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related to the variability of NTR extremes along the Indian Ocean coasts, exhibiting a
dipole pattern in which its positive phase induced increases in NTR return levels along the
western coasts of the Indian basin and the negative phase doing so for the eastern coasts.

An analysis of the relative influence of the three time variability scales explored on
the variations experienced by NTR return levels between 1995 and 2020 was conducted
(Figure 9). The coasts of the British Isles, Iceland, and Norway showed a clear dominance
of intra-annual variability, with a fluctuating secondary dominance of long-term trends
and inter-annual variability (AO influence). Pacific coastal regions, notably influenced by
the ENSO phenomenon, exhibited varying dominance across time scales, with intra-annual
variability controlling the return levels variability in regions such as East Asia and the Gulf
of Alaska. The ENSO phenomenon, however, dominated along most of the Pacific coasts of
the Maritime Continent and Central America. Indian Ocean coasts were predominantly
governed by intra-annual and long-term variations, but regions such as the southern coasts
of Sumatra and Java were shown to be controlled by inter-annual variability.

Despite the above findings, there is still room for improvement in terms of magnitude
accuracy, and further uncertainty analysis are required. Nonetheless, the results presented
here provide a reliable indication of the potential value of altimetry data in climate studies,
particularly those focusing on ESLs. Altimetry data have been proven to present very
good accuracy in terms of capturing the climate variability extreme events, offering a very
useful database to explore the behavior of extremes on different time and spatial scales.
However, if this information is intended to be used for local assessments, the inherent
limitations of the present study must be considered, especially given the pivotal role played
by the magnitude of the extremes. Currently, the accuracy of altimeters in coastal areas, in
conjunction with the time period covered (~30 years) and the irregular time and spatial
sampling, make altimetry data useful for providing preliminary information about the
magnitude of extremes reaching specific coastal regions. Nevertheless, the promising
results presented here suggest that the extension of this database over time will maximize
its main strength, i.e., continuous global coverage, and minimize its main weakness, i.e.,
irregular sampling (i.e., along track sampling). Furthermore, as the accuracy of coastal
altimetry data increases and data availability improves, it is likely that the characterization
of ESL behavior will be progressively conducted on more localized coastal scales. This
is particularly beneficial in regions where in situ information and numerical modeling
capacity are either limited or unavailable.
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pink, green and black lines represent zt20 estimated from statistical extreme model M1, M2 and
M3. Figure S3: Pierson correlation between NTRTG and NTRSAT around the tide gauge station
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