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Abstract: The performance of semantic segmentation in remote sensing, based on deep learning
models, depends on the training data. A commonly encountered issue is the imbalanced long-tailed
distribution of data, where the head classes contain the majority of samples while the tail classes
have fewer samples. When training with long-tailed data, the head classes dominate the training
process, resulting in poorer performance in the tail classes. To address this issue, various strategies
have been proposed, such as resampling, reweighting, and transfer learning. However, common
resampling methods suffer from overfitting to the tail classes while underfitting the head classes,
and reweighting methods are limited in the extreme imbalanced case. Additionally, transfer learn-
ing tends to transfer patterns learned from the head classes to the tail classes without rigorously
validating its generalizability. These methods often lack additional information to assist in the
recognition of tail class objects, thus limiting performance improvements and constraining gener-
alization ability. To tackle the abovementioned issues, a graph neural network based on the graph
kernel principle is proposed for the first time. By leveraging the graph kernel, structural information
for tail class objects is obtained, serving as additional contextual information beyond basic visual
features. This method partially compensates for the imbalance between tail and head class object
information without compromising the recognition accuracy of head classes objects. The experimen-
tal results demonstrate that this study effectively addresses the poor recognition performance of
small and rare targets, partially alleviates the issue of spectral confusion, and enhances the model’s
generalization ability.

Keywords: graph neural network; long-tailed distribution; graph kernel; remote sensing

1. Introduction

The distribution of different classes of geographical objects often exhibits a characteris-
tic of imbalance, naturally leading to the manifestation of long-tailed distributions in many
datasets [1,2]. In these datasets, head classes typically have a large number of samples,
while the tail classes are characterized by a comparatively lower sample count [3]. During
the training process, influenced by the dominance of quantity, deep neural network models
typically perform better in learning and recognizing head classes. Conversely, tail classes
struggle to achieve effective learning and recognition due to their scarce sample counts.
Semantic segmentation, a key task in computer vision, is affected by the long-tailed phe-
nomenon, where certain classes are underrepresented in the data. To visually demonstrate
this long-tailed distribution, we provide an illustrative diagram of long-tailed datasets (as
shown in Figure 1).
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Figure 1. Schematic diagram of a long-tailed distribution dataset. This figure depicts the overall 
proportion of objects for each class in the experimental dataset. 

Many researchers have made enthusiastic attempts to address the problem of identi-
fying long-tailed data. Numerous strategies such as resampling [4–8], reweighting [9–11], 
and transfer learning [12–17] have been successfully explored to address the issue of class 
imbalance. Resampling strategies aim to address the issue of data imbalance, mainly in-
cluding oversampling, undersampling, and hybrid sampling [18]. Oversampling or un-
dersampling may lead to overfitting or underfitting issues, with the risk of overfitting on 
the tail classes when the tail class samples are frequently oversampled, resulting in weaker 
generalization [5,19]. Reweighting methods are relatively lightweight and can be easily 
integrated into various frameworks, their effectiveness is limited, especially in highly im-
balanced scenarios [20]. Transfer learning endeavors to transfer features from head classes 
to representations and predictions of tail classes. However, the knowledge obtained from 
head classes may not necessarily match the actual features of tail classes. 

These methods have not further specifically extracted effective information for tail 
classes, addressing the issue of insufficient information in tail classes. Therefore, a more 
effective solution for long-tailed effect is to supplement additional information for tail 
classes to compensate for the insufficient information in these classes. Graph kernel ena-
bles the introduction of subgraph structural information derived by the tail objects and 
their neighboring nodes to enrich the information of tail classes, thus achieving infor-
mation balance between tail and head classes. This study proposes a new method to ad-
dress the long tail effect based on the graph kernel method. Next, we will introduce the 
related research of graph kernel. 

In geographical scenarios, different classes of remote sensing objects often exhibit 
certain stable relationships with each other [21,22]. In this study, based on the statistical 
analysis of the dataset, we outline the stable relationships of each class, referred to as the 
eigenstructure. In subsequent methods, during the training process, we apply a graph 
kernel function to measure the similarity between the subgraphs of samples and the ei-
genstructure corresponding to that class, thereby assessing the effectiveness of the model 
in learning object structural information. 

Figure 1. Schematic diagram of a long-tailed distribution dataset. This figure depicts the overall
proportion of objects for each class in the experimental dataset.

Many researchers have made enthusiastic attempts to address the problem of identi-
fying long-tailed data. Numerous strategies such as resampling [4–8], reweighting [9–11],
and transfer learning [12–17] have been successfully explored to address the issue of class
imbalance. Resampling strategies aim to address the issue of data imbalance, mainly
including oversampling, undersampling, and hybrid sampling [18]. Oversampling or
undersampling may lead to overfitting or underfitting issues, with the risk of overfitting
on the tail classes when the tail class samples are frequently oversampled, resulting in
weaker generalization [5,19]. Reweighting methods are relatively lightweight and can
be easily integrated into various frameworks, their effectiveness is limited, especially in
highly imbalanced scenarios [20]. Transfer learning endeavors to transfer features from
head classes to representations and predictions of tail classes. However, the knowledge
obtained from head classes may not necessarily match the actual features of tail classes.

These methods have not further specifically extracted effective information for tail
classes, addressing the issue of insufficient information in tail classes. Therefore, a more
effective solution for long-tailed effect is to supplement additional information for tail
classes to compensate for the insufficient information in these classes. Graph kernel enables
the introduction of subgraph structural information derived by the tail objects and their
neighboring nodes to enrich the information of tail classes, thus achieving information
balance between tail and head classes. This study proposes a new method to address the
long tail effect based on the graph kernel method. Next, we will introduce the related
research of graph kernel.

In geographical scenarios, different classes of remote sensing objects often exhibit
certain stable relationships with each other [21,22]. In this study, based on the statistical
analysis of the dataset, we outline the stable relationships of each class, referred to as the
eigenstructure. In subsequent methods, during the training process, we apply a graph
kernel function to measure the similarity between the subgraphs of samples and the
eigenstructure corresponding to that class, thereby assessing the effectiveness of the model
in learning object structural information.
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To address the challenges posed by long-tailed datasets, this paper proposes a graph
neural network based on graph kernel principles applied to remote sensing semantic
segmentation tasks. It leverages graph kernels to extract graph structure information from
the tail class objects and their neighboring nodes, which serves as supplementary and
enhancing information about the environment beyond basic visual features. Through this
approach, we are able to partially compensate for the information imbalance between tail
and head classes.

The main contributions of this work are as follows:

1. A mechanism for representing the structural features of tail classes is proposed for the
first time. By recognizing and extracting the eigenstructures of tail classes objects as
supplementary information, the information imbalance between tail and head classes
is alleviated.

2. To further optimize the model’s training process, graph kernel is incorporated into our
model, which dynamically adjusts the effect of graph structure information within the
loss function, avoiding excessive suppression of head class objects and the information
imbalance between head and tail classes.

3. A remote sensing image semantic segmentation model based on graph kernel princi-
ples and graph neural networks (GKNNs) is designed on the basis of the aforemen-
tioned contributions to address the challenge of recognizing specific remote sensing
objects of importance that are scarce and small in scale.

2. Related Work
2.1. Long-Tailed Visual Recognition

Long-tailed datasets introduce significant bias in the recognition of tail classes in deep
learning models [1,23], which attracts widespread attention and research interest from
scholars. The current solutions primarily focus on addressing the impact of class imbalance
and can be broadly categorized into the following directions:

Resampling. Researchers have proposed some resampling strategies to directly alter
the imbalanced distribution presented by the data, such as random oversampling, un-
dersampling, and class-balanced sampling [4,5]. Oversampling involves increasing the
number of minority class samples by replication or synthesis techniques such as SMOTE
and Borderline-SMOTE [6,24]. Undersampling, on the other hand, reduces the number of
majority class samples by randomly deleting or selectively removing samples far from the
decision boundary. Chang et al. [25] proposed a joint resampling strategy, RIO. Wei [26]
introduced open-sampling, a method that leverages out-of-distribution data to rebalance
class priors and encourage separable representations. Yu et al. [27] revived the use of
balanced undersampling, achieving higher accuracy for worst-performing categories. The
method of resampling was proposed as early as the era of machine learning, constituting a
traditional strategy. Solely undersampling the head classes or oversampling the tail classes
without introducing new features inevitably leads to underfitting or overfitting issues,
resulting in weak model generalization capability.

Reweighting (cost-sensitive methods). The literature has introduced a variety of cost-
sensitive loss functions to adjust the weighting of majority and minority instances [11,20,28–31].
These methods enhance the model’s attention towards the tail classes by assigning ap-
propriate loss weights to head and tail classes, such as adjusting the loss based on class
frequencies, sample difficulty, distances to centroids, or class margins. Fernando [30] intro-
duced a dynamically weighted balanced loss function for deep learning, which self-adapts
its weights based on class frequency and predicted probability. AdaCost algorithm [28]
incorporates misclassification costs into the weight update rules of the Boosting algorithm,
improving its recall and precision for tail classes.

Transfer learning. Due to the differences in both the characteristics and sample size
between tail and head classes, many researchers are dedicated to extracting knowledge from
head classes and transferring it to tail classes to mitigate this imbalance. Wang et al. [12]
introduced a meta-network that dynamically transfers meta-knowledge from head to tail
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classes. GistNet [13] combines random sampling loss with class-balanced sampling loss to
transfer geometric information from the head to the tail. The LFME framework proposed
by Xiang et al. [32] trains more balanced “Expert” models through multiple subsets and
adaptively transfers knowledge to the “Student” model. With the introduction of transfer
learning methods, it becomes possible to transfer knowledge from head classes to tail
classes. However, further validation is required to assess whether the knowledge distilled
from the head classes aligns with the actual tail classes.

2.2. Graph Kernel

Graphs are data structures composed of nodes and the edges that connect these nodes.
Typically, a graph can be defined as G = (V, E), where V represents the set of nodes and
E represents the set of edges. Nodes represent entities or objects, while edges represent
the relationships between nodes. Graph kernel is a method used to compute the similarity
of graphs, originating from the research by David Haussler et al. in 1999 [33], which first
introduces the concept of kernel functions and applies convolution kernels on discrete
structures.

Based on the differences in the decomposition of graphs when computing graph
similarity, common graph kernel methods can be categorized into three types: path-based
graph kernels, subgraph-based graph kernels, and subtree-based graph kernels. Among
them, the path-based graph kernel, such as the random walk kernel [34,35], measures
the similarity between graphs by calculating the common paths; the subgraph-based
graph kernel [34,36] calculates the similarity between graphs by comparing the similarity
of substructures within the graphs, for example, the graphlet kernel [36] measures the
similarity between graphs by comparing the distributions of all possible k-node subgraphs
(referred to as graphlets) within the graphs; the subtree-based graph kernel, such as the
WL kernel [37], based on the similarity of subtrees, captures local structural information by
iteratively labeling and aggregating nodes. These methods are commonly used for graph
classification and matching.

The application of graph kernels in graph neural networks aims to enhance model
recognition performance. KCNNs [38] embed local neighborhood features of graphs using
graph kernels, while GNTK [39], as an extension of infinite-width GNNs, combines the
expressiveness of GNNs with the advantages of graph kernels. Feng et al. [40] proposed
KerGNNs, which enhance the representation capability of GNNs by integrating random
walk kernel and trainable latent graphs as graph filters.

The graph kernel method provides a means for quantitatively measuring the effective-
ness of the model in learning environmental structural information, enabling the model to
acquire additional prior knowledge about tail classes, and further balancing the disparity
in feature quantities between the head and tail.

3. Materials and Methods

This section begins by providing an overview of the network architecture of the model.
In Section 3.2, we delve into the design of the structural information enhancement module
and its pivotal role in the model. Finally, in Section 3.3, we provide a detailed introduction
to the graph kernel structural loss function, elucidating how to dynamically adjust the
structural loss to achieve optimal model performance.

3.1. The GKNNs Model Architecture

We propose a remote sensing semantic segmentation model based on graph kernel
principles and graph neural networks (GKNNs), with the model architecture illustrated in
Figure 2. When training remote sensing long-tailed datasets, GKNNs is able to augment
the structural information of tail classes and achieve information balance with head classes,
thereby improving the recognition performance of tail classes.



Remote Sens. 2024, 16, 1398 5 of 23Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 2. Overall network architecture of the GKNNs model. 

The model mainly consists of four modules: the visual feature extraction module, the 
feature aggregation module, the tail classes filtering module, and the structural infor-
mation enhancement module. 

The visual feature extraction module and feature aggregation module are jointly 
completed by the backbone network and GAT (graph attention network). The backbone 
network adopts ResNet34. Considering that objects of tail classes in long-tailed datasets 
usually have small areas, to avoid smoothing their features, we select a 112 × 112 feature 
map as the input for GAT and combine it with object masks to obtain aggregated object 
features. The tail classes filtering module is designed for selecting tail class objects that 
require information augmentation within a threshold, which only sends the tail classes 
objects to the subsequent structural information enhancement module. The structural in-
formation enhancement module is designed to enhance structural information for tail 
classes. In the structural information enhancement module, we initially generate neigh-
borhood structural subgraphs for each object, followed by the extraction of the eigenstruc-
ture of the tail classes. Subsequently, the graph kernel algorithm is utilized to compute 
the similarity between the eigenstructure and the neighborhood subgraphs of the tail class 
objects. 

The detailed explanation of structural information enhancement module is provided 
in Section 3.2. During training, we introduce a loss function called the graph kernel struc-
tural loss function, and its detailed explanation is provided in Section 3.3. 

3.2. Structural Information Enhancement Module 
The structural information enhancement module is specifically designed to address 

the issue of identifying tail classes in long-tailed distribution datasets with relatively few 
training samples and weak model attention. Its main purpose is to provide additional 
structural enhancement for these tail classes. This module mainly consists of two core 
components: eigenstructure generation and graph isomorphism between eigenstructure 
and one-hop neighborhood subgraph of the target node. 

3.2.1. The Eigenstructure Generation Algorithm 
The tail class filtering module filters out objects belonging to tail classes that require 

special attention. Subsequently, by extracting the neighborhood subgraph structures of 
these objects, we generate the neighborhood subgraph structure of the central object. This 
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The model mainly consists of four modules: the visual feature extraction module, the
feature aggregation module, the tail classes filtering module, and the structural information
enhancement module.

The visual feature extraction module and feature aggregation module are jointly
completed by the backbone network and GAT (graph attention network). The backbone
network adopts ResNet34. Considering that objects of tail classes in long-tailed datasets
usually have small areas, to avoid smoothing their features, we select a 112 × 112 feature
map as the input for GAT and combine it with object masks to obtain aggregated object
features. The tail classes filtering module is designed for selecting tail class objects that
require information augmentation within a threshold, which only sends the tail classes
objects to the subsequent structural information enhancement module. The structural infor-
mation enhancement module is designed to enhance structural information for tail classes.
In the structural information enhancement module, we initially generate neighborhood
structural subgraphs for each object, followed by the extraction of the eigenstructure of the
tail classes. Subsequently, the graph kernel algorithm is utilized to compute the similarity
between the eigenstructure and the neighborhood subgraphs of the tail class objects.

The detailed explanation of structural information enhancement module is provided in
Section 3.2. During training, we introduce a loss function called the graph kernel structural
loss function, and its detailed explanation is provided in Section 3.3.

3.2. Structural Information Enhancement Module

The structural information enhancement module is specifically designed to address
the issue of identifying tail classes in long-tailed distribution datasets with relatively few
training samples and weak model attention. Its main purpose is to provide additional
structural enhancement for these tail classes. This module mainly consists of two core
components: eigenstructure generation and graph isomorphism between eigenstructure
and one-hop neighborhood subgraph of the target node.

3.2.1. The Eigenstructure Generation Algorithm

The tail class filtering module filters out objects belonging to tail classes that require
special attention. Subsequently, by extracting the neighborhood subgraph structures of
these objects, we generate the neighborhood subgraph structure of the central object. This
structure not only contains spatial relationships between the central object and its neighbor-
ing nodes, but also encompasses relationships among the neighboring nodes themselves.
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These neighborhood subgraph structures are then fed into the tail class eigenstructure gen-
eration module which outputs the eigenstructures of the target tail classes, representing the
core and representative structural features. The eigenstructures will serve as supplementary
information for tail classes, compensating for the information imbalance with head classes.
Algorithm 1, shown below, elaborates on the generation process of the eigenstructure.

Algorithm 1 Generating Eigenstructures for Tail Class

Input: Dataset D = {(gti, adji, obji)}
n
i=1. Set of all Tail Classes T

▷ Sample Ground Truth: gti. Adjacency Matrix: adji. Object Mask: obji
Output: eigen structure E

1. E[n1]← 0 ▷ Initialize the candidate set of eigenstructures
2. for i = 1 to n do ▷ Iterate through each object in

each sample
3. if gti ∈ D and gti ∈ T then
4. neighbors ← GetFirstOrderNeighbors (adji ∈ D,i)

▷ Retrieve the first-order neighboring nodes of the
target object along with their adjacency relationships

5 T_subgraphi ← ExtractSubgraph (adji, neighbors, gti)

▷ Extracting the subgraph of the tail class object

6 E[n1]← Append(E[n1], T_subgraphi)

7 f requency[n1]← CountFrequency(E[n1])

8 E← SortByFrequency( f requency[n1])

9 Return E

The eigenstructure refers to the collective characteristic structure of a certain class. In
order to incorporate it as supplementary information into the model’s loss function, it is
necessary to quantitatively describe its similarity to the subgraph composed of instances of
this class and their one-hop neighboring nodes. Therefore, we design a graph isomorphism
algorithm.

3.2.2. The Graph Isomorphism Algorithm of Subgraph Structure

We utilize the graph isomorphism algorithm of subgraph structure to compute the
graph kernel coefficient between the one-hop neighborhood subgraph structure of the
target object and its eigenstructure. The pseudocode of the algorithm is shown below. This
process aims to quantify the similarity between the two structures, providing a crucial
component for subsequent loss function computation. This approach effectively enhances
the structural features of tail classes during training, thereby better compensating for the
information imbalance between tail and head class.

In the next section, we will provide a detailed explanation of the graph kernel structural
loss function proposed in this paper. This function will incorporate the aforementioned
structural enhancement module to collectively improve the overall performance of the
model on long-tailed distribution datasets.

3.3. Structural Loss Function

This subsection provides a detailed explanation of the definitions, computation pro-
cesses, and roles of two proposed loss functions in this study, namely, the class-balanced
structural loss (CBS loss) and the graph kernel structural loss (GKS loss). They both aim to
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incorporate structural information into the loss function. Specifically, the GKS loss, built
upon the CBS loss, introduces an adaptive dynamic adjustment mechanism dependent on
the eigenstructure, allowing for dynamic adjustment of the role of structural information in
the loss function, thus further enhancing the model’s performance.

3.3.1. Class-Balanced Structural Loss

The design of the class-balanced structural loss aims to address the challenge of
insufficient sample weights and lack of information in tail class samples in long-tailed
distribution. In the traditional model training process, due to the considerably fewer
samples in tail classes compared to head classes, these tail classes often fail to receive
sufficient attention from the model. Coupled with the inadequate feature representation
of tail classes, this results in significantly lower recognition performance for tail classes
compared to head classes, known as the “long-tailed effect” [23].

For an object-based semantic segmentation model, given a sample containing multiple
objects, with the ground truth label y for one object and the model’s predicted probability
distribution p, the calculation of CBS loss for a batch of samples inputted into the model is
as follows:

CBS L(y, p) = Lall + Ltail (1)

As shown in Equation (1), it comprises two components: the loss of all objects Lall and
the tail structural loss Ltail . The CBS loss function is improved upon the cross-entropy loss
function, which is widely used in training models for classification tasks in deep learning.

Lall =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yiclog(pic) (2)

Lall measures the discrepancy between the overall sample model predicted probability
distribution and the true labels. In Equation (2), yic represents the probability of class c in
the true label of the i-th object, where c ∈ {1, 2,. . ., M}, M denotes the number of categories.
It is typically a one-hot encoded vector where the element corresponding to the true label
class is 1 and all other elements are 0, indicating the true label of the object. pic represents
the probability of class c in the predicted probability distribution for the i-th object. Li
denotes the loss value of object i, and N represents the total number of objects in a training
batch inputted into the model.

Ltail =
1
Q∑

j
Lj = −

1
Q∑

j

M

∑
c=1

yjclog
(

pjc
)

(3)

Ltail evaluates the prediction performance of tail classes. It incorporates the structural
information of the one-hop neighbor nodes of the tail class central objects to enhance the
prediction effectiveness of tail classes. In Equation (3), Q represents the total number of
tail class objects and their one-hop neighbor objects addressed, where j refers to a specific
object within the scope of Q, and Lj represents the loss value of object.

During training, minimizing the CBS loss function helps the model’s predictions
to closely match the true labels and enhances the model’s attention towards tail classes,
thereby improving the classification accuracy of tail classes.

3.3.2. Graph Kernel Structural Loss

The CBS loss aims to enhance the classification effectiveness of tail classes by strength-
ening the structural information of tail-class objects and reweighting them. However, due
to its emphasis on the importance of tail classes, the CBS loss may affect the overall classes,
especially the head classes. To address this issue and achieve balanced enhancement of both
tail and head class recognition, thereby ensuring overall balance, we propose an adaptive
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tail structural enhancement loss function based on the graph kernel principle, termed graph
kernel structural loss (GKS loss). The calculation formula of GKS loss is shown in below.

GKS L(y, p) = Lall + L′tail (4)

Like CBS loss, GKS loss consists of two components: the loss of all objects Lall and the
tail structural loss L′tail . The difference between CBS loss and GKS loss is the introduction
of the graph kernel coefficient in the calculation of the structural loss of the tail class. The
calculation process of L′tail is as follows.

L′tail =


1−h

h
1
Q ∑

j
Lj, h > 0.25

3 1
Q ∑

j
Lj, h ≤ 0.25

=


− 1−h

h
1
Q ∑

j

M
∑

c=1
yjclog

(
pjc

)
, h > 0.25

−3 1
Q ∑

j

M
∑

c=1
yjclog

(
pjc

)
, h ≤ 0.25

(5)

In Equation (5), h represents the graph kernel value between the neighborhood sub-
graph structure of the target object and its eigenstructure to enhance eigenstructure in-
formation. The L′tail term encompasses two types of information: sample context and
eigenstructure. The sample context 1

Q ∑
j

Lj involves the error of the central object in the tail

classes and its one-hop neighbor nodes, serving as a structural loss term to provide sample
context information for tail classes training. The calculation formula for the graph kernel
coefficient h is shown below.

h = Algorithm2(subgraph, eigen structure) (6)

In Equation (6), subgraph refers to the neighborhood subgraph of the central object,
eigen structure refers to the eigenstructure of the central object class, and Algorithm2
denotes Algorithm 2 in the structural information enhancement module, specifically the
graph isomorphism algorithm between eigenstructures and neighborhood subgraphs of
tail classes. The eigenstructure information, computed based on Algorithm 2 from the
dataset, surpasses the contextual information contained in individual samples, providing
stable eigenstructural features of target objects to control the interference caused by specific
sample atypical environments. The relationship between the graph kernel coefficient h and
the inflation and suppression of GKS loss is illustrated in Figure 3.

Algorithm 2 Isomorphism between Eigenstructures and Neighborhood Subgraphs of Tail Classes

Input: Subgraph S = {(adji, gti)}
n1
i=1. Eigenstructure E = {(s_edgesi, fi)}n2

i=1
▷ Adjacency Matrix: adji. Target Node Class: gti.

eigenstructure edges: e_edgesi. eigenstructure edges frequency: fi
Output: kernel coefficient h

1 h← 0 ▷ Initialize the value of graph kernel score
2 for i = 1 to n1 do
3 s_edges[i]← GraphToEdges (adji, gti ∈ S)

▷ Convert the subgraph neighborhood into edge-based computation

4 for j = 0 to n2 do
5 if s_edges[i] is in e_edgesj ∈ E then
6 h += f j

7 if h > 1 then
8 h← 1
9 Return h
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while the blue segment indicates the suppression stage.

From Figure 3, it can be visually observed that the dynamic adjustment curve can
be divided into two stages: expansion and suppression. When h < 0.5, it is the expansion
stage; when h > 0.5, it is the suppression stage. During the expansion stage, to limit the
expansion effect, when h < 0.25, the expansion effect is restricted to 3. Next, the adaptive
dynamic adjustment mechanism of GKS loss and the role of graph kernel coefficient in
detail is shown in Figure 4.

From Figure 4, we can observe that in the adaptive dynamic adjustment mechanism
of GKS loss, two factors are introduced, namely, the suppression factor (1 − h) and the
inflation factor (1/h), for adaptively adjusting the tail structure loss. As depicted in the
flowchart, the effect of the graph kernel coefficient derived from the eigenstructure mainly
manifests in two aspects.

Firstly, in the expansion stage, when the graph kernel coefficient is less than 0.5, the
inflation factor (1/h) dominates, amplifying the contribution of 1

Q ∑j ∑M
c=1 yjclog

(
pjc

)
to

the total loss. Simultaneously, it also discriminates foreign objects of same spectra based
on differences in the eigenstructure. This mechanism forces the model to focus more on
learning the features of tail class objects and their environments during training, thereby
improving the model’s performance in tail class recognition.

Subsequently, in the suppression stage, when the graph kernel coefficient exceeds
the threshold of 0.5, the inflation factor begins to play a dominant role, suppressing the
contribution of 1

Q ∑j ∑M
c=1 yjclog

(
pjc

)
to the total loss, thus balancing the impact of one-hop

redundant node errors caused by resampling on head classes. When tail class objects are
accurately identified and their eigenstructures are isomorphic to the ground truth (GT), the
specific loss term 1

Q ∑j ∑M
c=1 yjclog

(
pjc

)
is forcibly zeroed out from the overall loss, aiming

to reduce the potential impact of tail class errors on head class accuracy and, thus, improve
overall recognition accuracy.
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In summary, by combining the effects of the above two aspects, the eigenstructure
not only acquires additional environmental structural information for tail class objects but
also, after improving the accuracy of tail class objects, effectively balances the interference
of redundant nodes in their environment through the introduction and regulation of the
inflation and suppression factors. This enables our model to enhance the recognition
performance of tail classes effectively while maintaining the recognition accuracy of head
classes, thus achieving a more accurate and balanced classification outcome.

4. Results

This section details our experimental protocol and results. First, in Section 4.1, we
provide a comprehensive overview of the dataset and details of the experimental imple-
mentation, with a focus on the target tail classes in the experimental. Next, Section 4.2 will
explore the training loss of the experiment in depth, and conduct a detailed analysis on the
loss of the target tail classes. Then, in Section 4.3, we will validate the effectiveness of the
model by comparing its classification accuracy. Subsequently, in Section 4.4, we will further
investigate the recognition performance of the target tail classes by comparing different
depths of backbone networks. Finally, in Section 4.5, we will conduct a case-by-case analysis
of individual samples.
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4.1. Experiment Settings

In this subsection, we introduce the details related to the experiment. Firstly, we
present the experimental dataset and its long-tailed effect analysis, validating the necessity
of studying the dataset and discussing the tail classes that the experiment focuses on.
Subsequently, we outline some implementation details of the experiment.

(1) Dataset and long-tailed effect analysis

We collect remote sensing data from various regions such as oceans, coastal areas,
and other types of areas using Google Earth to create an ocean dataset for this experiment.
The obtained remote sensing images have a resolution of approximately 0.6 m and cover
multiple regions including the East China Sea, South China Sea, East China region, Yangtze
River Delta, and Pearl River Delta. The dataset consists of a total of 3601 images, each with
a size of 224 × 224 pixels, and encompasses 30 different classes. The experimental dataset
was randomly divided into training and validation sets in a ratio of approximately 8:2.

Due to the characteristic of the nearshore dataset, which predominantly consists of
marine scenes, seawater is one of the main classes within the marine scene. As depicted in
Figure 5, seawater accounts for the highest pixel occupancy among all classes, with a pixel
area of approximately 90 million and its pixel occupancy reaching approximately 51.2%. In
contrast, tail classes such as mooring line and protection net exhibit pixel occupancy all
below 0.1%, with object occupancy in these classes measuring below 0.02%. This indicates
an imbalance in the distribution of samples among classes in the dataset, where, apart
from the samples in the head classes, the tail classes of samples are insufficient, with most
samples concentrated in head classes. Therefore, it can be concluded that the experimental
dataset belongs to a long-tailed distribution.
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The features of small objects will be assimilated by the features of large objects after
multiple layers of convolution. Figure 6 describes the distribution of object occupancy and
the average object size for each class. Hence, this experiment mainly focuses on applying
subsequent information enhancement to classes with a weak proportion of objects and
small average object sizes. In this study, classes with object occupancy less than 1% and
average object area less than 500 are selected as the target tail classes for this experiment:
protection net and mooring line. The remaining classes are referred to as the head classes.
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The long-tailed effect of the dataset has negative impact on the training and perfor-
mance of deep learning models. Figure 7 shows the confusion matrix of the baseline model
(GAT) on the validation set after training on this long-tailed dataset. From Figure 7, it can
be observed that the precision of tail class objects is significantly lower than that of head
class objects.
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(2) Implementation Details

During the model training phase, we empirically set the training epoch to 130, utilized
the AdamW optimizer, and employed a batch size of 128 for training data. The learning
rate strategy follows StepLR, which multiplies the learning rate by 0.8 every 20 epochs. All
experiments were conducted in a consistent environment consisting of a 3090 GPU and an
i9-10920X CPU.

4.2. Training Loss Analysis

This subsection mainly introduces the changes in the loss during the training process
of the model.

4.2.1. Training Loss of the Baseline Model

By displaying the variations in the loss, it reflects the progress and convergence
performance of the model training. Figure 8 shows the variation curve of the loss function
during the training phase of the baseline model.
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In Figure 8, the blue curve represents the variation of the loss value of the baseline
model. During the training process, the curves of the loss values for the target tail class
(referred to as the tail classes hereafter) and the remaining classes (referred to as the head
classes hereafter) are separately recorded, as shown by the green and red curves in the
figure. It can be observed from the figure that the total loss curve of the baseline model
rapidly decreases before 15 epochs and then gradually levels off until convergence. At
the same time, compared by the red curve and green curve, it can be seen that the loss
values for the target tail classes in the baseline model are very weak, with no significant
downward trend in the loss values for the tail classes. This indirectly confirms that the tail
classes in the long-tailed distribution are not receiving sufficient attention during model
training. Therefore, it is necessary to enhance the information and weight of the tail classes.
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4.2.2. Tail Loss Comparative Analysis of the Models

For the sake of facilitating subsequent comparative analysis of the models, the model
trained by CBS loss is referred to as the StrNNs model, while the model trained by GKS
loss is referred to as the GKNNs model. To assess the emphasis of different models on the
target tail class, Figure 9 illustrates the variation of tail class loss with increasing training
epochs for three models: the baseline model, the StrNNs model, and the GKNNs model.
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The following conclusions can be drawn from Figure 9.

1. Both the StrNNs model and the GKNNs model exhibit significant improvements in
attention to tail classes. It can be observed from the figure that the tail loss curve of
the baseline model consistently remains below the other two loss curves.

2. Compared to the StrNNs model, the GKNNs model can achieve dynamic and adaptive
adjustments of attention to tail classes. The tail structural loss value of the StrNNs
model is initially around 1, while that of the GKNNs model, under the expansion
effect of inflation factor, starts higher, at around 2.6. The tail structural loss curve
of the GKNNs model experiences rapid descent initially, reaching parity with the
StrNNs model around the 17th epoch. Subsequently, due to the dynamic suppression
effect of the suppression factor, tail structural loss of the GKNNs model gradually
decreases and becomes lower than that of the StrNNs model.

4.2.3. Training Loss of the GKNNs Model

The training process of the tail classes in the GKNNs model is further analyzed below
to illustrate the adaptive dynamic adjustment capability of the tail structural loss.

Figure 10 illustrates the tail structural loss curve of the GKNNs model under the
influence of inflation and suppression factors, along with the tail loss curves of the StrNNs
model and the head loss curves of GKNNs. Upon initial training, the model’s focus on the
tail classes increases significantly due to the influence of the inflation factor, resulting in the
tail structure loss for GKNNs being comparable to the loss of GKNNs in head classes. As
training progresses, the tail structural loss of GKNNs decreases rapidly. Subsequently, to
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preserve the performance advantage of the head classes, the suppression factor becomes
dominant, leading to a lower tail structure loss of GKNNs compared to StrNNs.
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With the increase in training epochs, the training process can be divided into the
following stages.

1. Expansion stage: In the initial stages, the tail structural loss values of GKNNs and
StrNNs are 2.6 (red point B in Figure 10) and 1.0 (red point A in Figure 10), while the
loss of head classes is 2.9. By effect of the inflation factor, the initial tail structural
loss is increased from 1.0 to 2.6, reaching the same order of magnitude as the head
classes. This ensures that the tail class objects receive sufficient training. As the
model continues to train, the graph kernel coefficient rapidly increases from 0 to 0.5,
resulting in a simultaneous swift decline in the tail loss value of GKNNs. Around the
17th epoch, the graph kernel coefficient stabilizes around 0.5. Under the combined
influence of the suppression and inflation factors, the tail structural loss value of
GKNNs remains consistent with that of the StrNNs model.

2. Suppression stage: After the 17th epoch, the graph kernel coefficient gradually ap-
proaches 1. Due to the dynamic suppression effect of the suppression factor, the tail
structural loss of the GKNNs model gradually decrease and becomes lower than that
of the StrNNs model for tail classes. Therefore, GKNNs can maintain the advantage
of head classes without affecting the model’s focus on them.

4.3. Model Classification Precision Analysis

To demonstrate the object recognition performance of the model, the following argu-
ments are provided from various semantic segmentation metrics.

(1) Comparison of Overall Metrics

To quantitatively assess the performance of different models in semantic segmen-
tation tasks, Table 1 presents the specific performance of GAT, StrNNs, and GKNNs on
four evaluation metrics: overall object accuracy (OA (object)), overall pixel accuracy (OA
(pixel)), kappa coefficient, and average object accuracy (AA (object)). GKNNs outperforms
other models across all evaluation metrics, achieving an OA (object) of 68.82% and an
impressive OA (pixel) of 86.02%. Compared to the baseline model (GAT), GKNNs shows
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improvements of 1.76% and 1.18% in OA (object) and OA (pixel), respectively. GKNNs
also performs best in terms of kappa coefficient and AA (object), with values of 0.6567 and
47.85%, respectively, further confirming the reliability of GKNNs in semantic segmentation
tasks. Although there is only a 1.76% improvement in OA(object), GKNNs shows a 6.16%
increase in AA(object) over GAT. This indicates that GKNNs has a more balanced and stable
classification performance across different classes, further demonstrating the effectiveness
of GKPNN in addressing long-tail issues.

Table 1. Comparison of overall metrics of the models.

Model OA (Object) OA (Pixel) Kappa AA (Object)

GAT 67.06% 84.84% 0.6366 41.69%
StrNNs 66.89% 84.18% 0.6364 44.60%
GKNNs 68.82% 86.02% 0.6567 47.85%

In contrast, StrNNs slightly underperforms compared to the baseline model, with
decreases of 0.27% and 0.66% in OA (object) and OA (pixel), respectively. However, its AA
(object) was 2.91% higher than that of GAT, indicating that StrNNs exhibits better average
performance at the object level. This indirectly suggests that StrNNs effectively enhances
the recognition performance of tail classes. Further explanations of the performance of each
model will be provided subsequently.

(2) Comparison of Class Object Accuracy

A comparative analysis of the semantic segmentation results of the proposed models
is illustrated below, focusing on class perspectives. Figure 11 compares OA (object) of the
three models for each class. Key observations about StrNNs include:

1. Significant improvements of 32.8% and 15% are observed for the target tail classes,
mooring line and protection net, respectively, compared to the baseline.

2. As class 1 (seawater) is a crucial class in the eigenstructure of target tail classes, both
StrNNs and GKNNs exhibit a 6% improvement in OA(object).

3. However, excessive emphasis on target tail classes by StrNNs, aiming to balance
training information between tail and head classes, slightly influences the recognition
of some head classes (e.g., greenbelt, construction land, cage). Based on the situation
above, an adaptive dynamic adjustment mechanism is introduced in GKNNs built
upon StrNNs.
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For GKNNs, the introduction of a graph kernel coefficient based on eigenstructure
dynamically adjusts the weight of structural information enhancement for tail classes.
This not only enhances tail classes’ structural information and model’s attention but also
maintains head class performance, leading to a balanced class enhancement. Compared to
StrNNs, the GKNNs model improves head class object accuracy (e.g., greenbelt, construc-
tion land, cage) by 10.6%, 1%, and 1%, respectively. Tail class accuracy also rises by 17.2%
and 5%. The GKNNs model thus achieves balanced enhancement of overall classification
performance while emphasizing tail class information.

The experimental results demonstrate that the proposed method significantly im-
proves the recognition ability of minority and small target objects, thus achieving better
performance when dealing with long-tailed datasets.

4.4. Backbone Model Analysis

To validate the performance of the backbone networks, we conducted a series of
comparative experiments by replacing the backbone network in the GKNNs model. In
GKNNs, the backbone network employs a residual block and a convolutional layer with
stride of 2 from ResNet34, producing feature maps of size 112 × 112. Furthermore, we
compare the differences in extraction performance of target tail class among ResNet34
models of different depths. Specifically, we further compare the performance of extracting
feature maps of sizes 56 × 56 and 28 × 28 using ResNet34 at the output of the third and
seventh residual blocks, respectively.

Based on the data in the Table 2, we can perform the following analysis.

Table 2. Comparison of backbone model performance.

Resnet34-112 × 112
(Ours) Resnet34-56 × 56 Resnet34-28 × 28

Protection net OA(object) 45.00% 60.00% 45.00%
Mooring line OA(object) 75.00% 37.50% 23.44%

AA(object) of target tail classes 60.00% 48.75% 34.22%
OA(object) of all classes 68.82% 72.23% 71.56%

Params 122,925 344,877 1,460,293
Memory(MB) 9002 9704 9776

Time (second/iteration) 18.16 22.44 22.93

Resnet34-112 × 112 achieves an object accuracy of 45.00% for the protection net,
comparable to Resnet34-28 × 28 but lower than Resnet34-56 × 56’s 60.00%. However,
for the mooring line, Res-net34-112 × 112 significantly outperforms the other versions,
reaching 75.00%, compared to 37.50% for Resnet34-56× 56 and 23.44% for Resnet34-28 × 28.
Additionally, Resnet34-112 × 112 exhibits good performance in the average object accuracy
of target tail classes, achieving 60.00%, surpassing Resnet34-56 × 56’s 48.75% and Resnet34-
28 × 28’s 34.22%. In terms of object accuracy for all classes, all three versions of Resnet34
show similar performance, with Resnet34-112 × 112 and Resnet34-56 × 56 at 68.82% and
72.23%, respectively, and Resnet34-28 × 28 at 71.56%.

In terms of resource consumption comparison, regarding the number of param-
eters (Params), Resnet34-112 × 112 has 122,925 parameters, significantly lower than
Resnet34-56 × 56 and Resnet34-28 × 28. For memory consumption (Memory(MB)),
Resnet34-112 × 112 (ours) consumes 9002 MB, also lower than Resnet34-56×56 and Resnet34-
28 × 28. In terms of time per iteration (time (second/iteration)), Resnet34-112 × 112 (ours)
requires 18.16 s, less than Resnet34-56 × 56’s 22.44 s and Resnet34-28 × 28’s 22.93 s.

The experimental results indicate the following:

1. The ResNet34-112 × 112 backbone architecture employed in GKNNs exhibits rela-
tively good performance in identifying target tail classes.

2. Regarding the effectiveness for target tail classes, particularly for the morning line
class with the smallest average object area, it can be observed that deep networks
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are prone to confusing features of small objects, while feature maps from shallower
networks demonstrate better recognition accuracy for tail classes [41].

3. Considering both the extraction performance of target tail classes and the compu-
tational efficiency of the model, we opted for ResNet34-112 × 112 as the backbone
network for GKNNs.

4.5. Instance Analysis

This subsection presents the adaptive dynamic adjustment mechanism of GKS loss
and the semantic segmentation performance of GKNNs from the perspective of examples.

4.5.1. Analyzing Instances with the Structural Loss in Tail Classes

This subsection further analyzes and demonstrates the role of the graph kernel coeffi-
cient in adjusting the tail structural loss. Figures 12 and 13 present the specific sample’s
structural loss curve in each epoch in the archived models, along with the curve of the
graph kernel coefficient of the tail target objects. It can be observed that the tail structural
loss will adaptively adjust with the increase or decrease in the graph kernel coefficient.
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In Sample 1, the central objects of the tail classes consist of one protection net object
and two mooring line objects.

1. Expansion stage: Before the fifth epoch, the graph kernel coefficient is less than 0.5,
and the tail structural loss values of Sample 1 are magnified by the inflation factor.
The tail structural loss decreases rapidly as the graph kernel coefficient increases.

2. Suppression stage: After the fifth epoch, the graph kernel coefficient is greater than
0.5 and gradually approaches 1, and the tail structural loss enters a suppression stage.
The kernel graph coefficient exhibits fluctuation during training, specifically dipping
below 0.5 in epochs 27, 31, and 43.

3. The local analysis of the adaptive dynamic adjustment mechanism: From the 85th
epoch to the 90th epoch (as shown by green lines in Figure 12), it can be observed
that when the eigenstructure objects of the tail classes are correctly predicted step
by step, the graph kernel coefficient increases from 0.57 to 1 accordingly, and the
corresponding tail structural loss decreases from 0.25 to 0. This causes the model to
no longer pay more attention to the tail classes, thereby preserving the performance
advantage of the head classes. By the 90th epoch, both mooring line and protection
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net objects, together with their respective eigenstructures, are correctly predicted and
the graph kernel coefficient reaches 1, achieving adaptive dynamic adjustment of the
tail structural loss.
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Sample 2, identical to Sample 1, also follows the adaptive dynamic adjustment mech-
anism. In Sample 2, the central object of the tail class is the mooring line object. The
prediction result for the 11th epoch accurately identifies the mooring line object and its
neighboring nodes (e.g., merchantman and seawater) as they belong to the eigenstructure
of mooring line. However, nodes outside this structure, such as construction land objects,
are not correctly classified. Despite this, as they reside outside the mooring line’s eigenstruc-
ture, the graph kernel coefficient between the neighborhood subgraph and eigenstructure
attains the value of 1, suppressing the tail structural loss associated with redundant nodes.

4.5.2. Analysis of Multiple Model Prediction Results for Typical Examples

Figure 14 displays the prediction results of typical samples across multiple models to
intuitively illustrate the effectiveness of GKNNs.

In Sample a, GKNNs accurately identifies submarines i, surpassing the baseline model.
The baseline incorrectly classifies region ii objects as mooring line instead of protection net.
Protection nets are typically directly adjacent to ports or independent within the ocean.
By incorporating structural information, both StrNNs and GKNNs correctly identify the
protection nets.

In Sample b, the baseline model erroneously identifies the protection net object i as a
mooring line, while StrNNs and GKNNs correctly recognize it. Moreover, in this sample,
we can observe that GKNNs exhibits better performance in mooring line identification
compared to StrNNs.

In Sample c, StrNNs corrects baseline misidentifications of seawater objects i as moor-
ing lines. GKNNs further improves the mooring line identification compared to StrNNs
and achieves better recognition of port objects ii, which are crucial in the eigenstructure of
mooring line.

In Sample d, the baseline model misidentifies a protection net i adjacent to breakwater
(unlike mooring line) as a mooring line. Incorporating structural information rectifies the
misidentification of this object, ensuring accurate protection net classification.



Remote Sens. 2024, 16, 1398 20 of 23Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 24 
 

 

 
Figure 14. Comparison of predicted results from different models for typical samples; (a–d) repre-
sent four different typical samples. 

In Sample a, GKNNs accurately identifies submarines i, surpassing the baseline 
model. The baseline incorrectly classifies region ii objects as mooring line instead of pro-
tection net. Protection nets are typically directly adjacent to ports or independent within 
the ocean. By incorporating structural information, both StrNNs and GKNNs correctly 
identify the protection nets. 

In Sample b, the baseline model erroneously identifies the protection net object i as a 
mooring line, while StrNNs and GKNNs correctly recognize it. Moreover, in this sample, 
we can observe that GKNNs exhibits better performance in mooring line identification 
compared to StrNNs. 

In Sample c, StrNNs corrects baseline misidentifications of seawater objects i as moor-
ing lines. GKNNs further improves the mooring line identification compared to StrNNs 
and achieves better recognition of port objects ii, which are crucial in the eigenstructure 
of mooring line. 

In Sample d, the baseline model misidentifies a protection net i adjacent to breakwa-
ter (unlike mooring line) as a mooring line. Incorporating structural information rectifies 
the misidentification of this object, ensuring accurate protection net classification. 

5. Discussion and Conclusions 
To address the challenge of effectively recognizing tail classes, our research conducts 

the following work. 
1. This study introduces an effective mechanism for representing the structural features 

based on graph kernel principles to represent the structural features of tail classes 

Figure 14. Comparison of predicted results from different models for typical samples; (a–d) represent
four different typical samples.

5. Discussion and Conclusions

To address the challenge of effectively recognizing tail classes, our research conducts
the following work.

1. This study introduces an effective mechanism for representing the structural features
based on graph kernel principles to represent the structural features of tail classes
and quantitatively describe the learning effectiveness of eigenstructure information.
This mechanism leverages the eigenstructure information of tail class objects, in
conjunction with basic visual features, to supplement and enhance the information
of tail class objects, thereby partially compensate for the imbalance between tail and
head class object information.

2. Implemented with adaptive dynamic adjustment of the loss based on graph kernels,
our designed inflation and suppression factors can dynamically control the strength
of the enhancement information for tail classes. The results demonstrate that this
mechanism ensures sufficient information for the recognition of tail classes while
avoiding adverse impacts on the recognition of head classes.

3. The experimental results show that the accuracy of target tail classes such as protection
net and mooring line were improved by 20% and 50%, respectively, compared to
the baseline model. Moreover, the average accuracy of object classes was increased
by 6.16%. Experimental results demonstrate that the GKNNs model effectively ad-
dresses the recognition problem of minority and small targets, partially mitigates the
phenomenon of foreign objects with similar spectra to tail objects, and improves its
generalization ability and the semantic segmentation performance in remote sensing.
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In the future, our work will focus on the following directions to further address the
long-tail effect issue.

1. The representation method for eigenstructure can be improved. In this research,
the environmental information and eigenstructure of target tail classes objects are
supplemented as background knowledge. The selection of eigenstructure depends on
expert systems and simultaneously requires a certain amount of training samples. In
the future, it is contemplated to use graph embedding models to better represent the
eigenstructure, thereby enhancing the generalization of the model.

2. More information of tail classes needs to be considered. Currently, the supplementary
information for tail classes includes the visual and spatial features of target tail
class objects. In subsequent work, more enriched attributes information such as the
contours, areas, and the effect of corresponding geographical scene of tail classes can
be embedded in the form of knowledge graph to supplement object information and
balance the information gap between head and tail classes.
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