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Abstract: In this paper, a lightweight deep neural network (DNN) for direction of arrival (DOA)
estimation is proposed, of which the input vector is designed to remove data redundancy as well as
remaining DOA information. By exploring the Vandermonde property of the steering vector of a uni-
form linear array (ULA), the size of the newly designed input vector is greatly reduced. Furthermore,
the DOA estimation is designed as a regression problem instead of a classification problem; that is,
the lightweight DNN designs the output vector as the estimated DOAs of sources, of which the size
is much shorter than that of the spatial spectrum used as the output vector in the conventional DNN.
The reductions in the sizes of input and output vectors lead to a reduction in the sizes of hidden layers,
achieving lightweightness of the neural network. The analysis illustrates that when the number of
sensors is 22, the number of parameters in the lightweight DNN is three orders of magnitude less
than that in the conventional DNN. The simulation results demonstrate the lightweight DNN can
provide high DOA estimation accuracy with the shortest testing time. It performs better than the
conventional DNN. Furthermore, it is superior to traditional solutions such as the multiple signal
classification (MUSIC) method and conventional beamforming (CBF) method in harsh conditions
like low signal-to-noise ratios (SNRs), closely spaced sources, and few snapshots.

Keywords: DOA estimation; lightweight deep neural network; data redundancy; deep learning;
regression

1. Introduction

Direction of arrival (DOA) estimation is a widely studied topic in the signal processing
area, which performs a key role in wireless communications, astronomical observation,
and radar applications [1–5]. The conventional beamforming (CBF) method is a classical
solution for DOA estimation. However, it suffers from Rayleigh limit. Subsequently, many
traditional methods were proposed to meet the accuracy requirement and high resolution
of DOA estimation, such as the minimum variance distortionless response (MVDR) beam-
former (also referred to as the Capon beamformer) [6], multiple signal classification method
(MUSIC) algorithm [7], estimation of signal parameters using rotational invariance tech-
niques (ESPRIT) algorithm [8] and their variants [9–13]. However, the above-mentioned
traditional methods require operations such as singular value decomposition and/or the
inversion on the array covariance matrix of the received signal and/or spatial spectrum
searching. As a result, their computational complexity is high, which makes it difficult
for them to meet real-time requirements. Moreover, most of them have large estimation
errors under harsh scenarios such as when the DOAs of source signals have small angular
intervals or the signal-noise ratio (SNR) is low. To overcome the drawbacks of the tradi-
tional solutions, many studies use machine learning methods to solve the problem of DOA
estimation, these methods first establish a training dataset with DOA labels, and then utilize
existing machine learning techniques such as radial basis function (RBF) [14] and support
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vector regression (SVR) [15] to apply the derived mapping to the test data for DOA esti-
mation. These methods require significant effort to learn the mapping during the training
stage. However, once the mapping is learned and fixed after the training stage, they directly
apply the mapping to process the testing data without labels to obtain DOA estimates. It is
noted that the mapping only involves calculations of additions and multiplications, which
avoids matrix inverse, decomposition, and spectrum searching. Thus, in the testing stage,
they acquire higher computational efficiency compared to traditional methods [16], but
they heavily rely on the generalization characteristics of machine learning technology. That
is, only when the training data and test data have almost the same distribution, satisfactory
test results can be obtained.

In recent years, DOA estimation based on deep learning methods has gained great
attention due to its high accuracy and high computational efficiency during the testing
phase. In 2015, a single-layer neural network model based on classification was designed
to implement DOA estimation [17]. Since then, more and more improved neural networks
aiming at solving DOA estimation have been proposed. In 2018, a deep neural network
(DNN) was proposed, which contains a multitask auto-encoder and a set of parallel multi-
layer classifiers, with the covariance vector of the array output as an input to the DNN, the
auto-encoder decomposes the input vectors into sub-regions of space, then the classifiers
output the spatial spectrum for DOA estimation [18]. In 2019, a deep convolutional neural
network (CNN) was developed for DOA estimation by mapping the initial sparse spatial
spectrum obtained from the covariance matrix to the true sparse spatial spectrum [19].
In 2020, a DeepMUSIC method was proposed for DOA estimation, by using multiple
CNNs each of which is dedicated to learning the MUltiple SIgnal Classification (MUSIC)
spectra of an angular sub-region [20]. In 2021, a CNN with 2D filters was developed for
DOA prediction in the low SNR [21], by mapping the 2-D covariance matrix to the spatial
spectrum labeled according to the true DOAs of source signals. In 2023, a DNN framework
for DOA estimation in a uniform circular array was proposed, using transfer learning
and multi-task techniques [22]. The existing results show that deep learning frameworks
provide better performance than traditional methods in harsh conditions such as low SNRs
and small angle intervals between the DOAs of two source signals.

It is noted that all of the above-mentioned DNN-based DOA estimation methods
choose to use the whole array covariance matrix of the received signal or its upper trian-
gular elements or their transformation as the input of the network, which contains lots of
redundant information when the array is uniformly linear. In addition, most of them try to
match DOA estimation with the classification problem and thus use the spatial spectrum
(labeled by the true DOAs of source signals or given by the existing traditional MUSIC
method) as their output vector. Therefore, in the existing DNN-based DOA estimation
approaches, the data redundancy in the input vector and the large size of the output vector
lead to large sizes of hidden layers and make the DNN models complex overall, resulting
in low computational efficiency.

There are a few works [23–25] that use neural networks with regression for DOA
estimation. In [23], the neural network and a particle swarm optimization (PSO) were
combined for DOA estimation, which might be trapped into a minimum solution. In [24], a
DNN with regression was developed to estimate the DOA of a single source signal, without
considering the situation of multiple source signals. In [25], a DNN with regression was
designed for DOA estimation of multiple source signals. However, it does not consider the
data redundancy in a uniform linear array (ULA).

In this paper, we consider a ULA, which is the most generally adopted array geometry
for DOA estimation due to its regular structure and well-developed techniques according
to the Nyquist sampling theorem [26]. By exploring the property of the ULA, a lightweight
DNN is proposed by designing an input vector with data redundancy removal and using
the regression fashion for DOA estimation. The lightweight DNN significantly reduces the
sizes of the input vector, hidden layers, and output vector, which leads to a reduction in the
number of trainable parameters of the neural network and computational load. Meanwhile,
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the proposed lightweight DNN can preserve DOA estimation accuracy and performs better
than the method in [25]. It is noted that by considering that the array signal is different
from the image signal and DOA information is hidden in each element of the input vector
obtained from the covariance matrix of the array signal, we utilize a fully connected deep
neuron network to obtain the mapping from the input vector to the DOAs of source signals.

Throughout this paper, *, T, H, and E represent the conjugate, transpose, conjugate
transpose, and expectation operations, respectively.

2. Background

Assume that K-independent far-field source signals {sk(t)}K
k=1 with a wavelength

λ and DOAs of {θk}K
k=1 impinge on an M-element uniform linear array (ULA) with an

inter-element spacing d. Moreover, it is assumed that the source signals and the array
sensors are on the same plane. The received data of the array can be expressed as

r(t) = As(t) + n(t), (1)

where n(t) is an additive and zero-mean white Gaussian noise vector, A = [a(θ1), ..., a(θK)],
s(t) = [s1(t), ..., sK(t)]T; In particular, a(θk) is an M-dimensional steering vector, which is
defined as

a(θk) = [1, e−j2π
dsinθk

λ , ..., e−j2π
dsinθk

λ (M−1)]T. (2)

The array covariance matrix R can be expressed as

R = E[r(t)rH(t)] = ARsAH + σ2
nIM, (3)

where Rs = E[s(t)sH(t)], σ2
n is the noise power, and IM is an identity matrix with a size of

M × M. In practice, due to the finite snapshots, the covariance matrix R can be estimated as

R̂ =
1
N

N

∑
t=1

r(t)rH(t), (4)

where N is the number of snapshots, and •̂ means the approximation of the quantity above
which it appears.

Equation (4) illustrates that R̂ is a conjugate symmetric matrix. Utilizing this feature,
many real-valued deep learning methods use the upper triangular elements as their input
vectors [18,20]. Define the vector composed of the off-diagonal upper triangular elements
of R̂ by z, that is

z = [R̂(1, 2), · · · , R̂(1, M), R̂(2, 3), · · · , R̂(2, M), · · · , R̂(M − 1, M)]T. (5)

It is noted that for a real-valued DNN network, the input vector needs to be real-valued.
Therefore, by concatenating the real and imaginary parts of z, we obtain z̃ below.

z̃ = [Real(zT), Imag(zT)]T/∥z∥2, (6)

where ∥ · · · ∥2 defines L2 norm. Real{•} and Imag{•} represent the real and imaginary
parts of a complex value, respectively.

In [18], a fully connected DNN method with classification was developed for DOA
estimation, and it utilizes the vector z̃ as its input, named as the conventional DNN in this
paper. Note that the input vector z̃ contains data redundancy and costs the computational
load without performance improvement. Moreover, since the conventional DNN is based
on classification fashion, its output is equal to ⌈ θmax−θmin

η ⌉, where [θmin, θmax) is the angle-
searching range of the sources, and η is the grid; with ⌈x⌉ is equal to the smallest integer
not smaller than x. Therefore, the size of its output vector is much larger than the number
of DOAs of sources, which further increases the computational load.
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In the following, we analyze the data redundancy in the ULA and design a new input
vector that removes data redundancy and retains DOA information. In a sequence, the
lightweight DNN is proposed by using the newly designed input vector and employing
the regression fashion for DOA estimation.

3. Data Redundancy Removal
3.1. Development of Data Redundancy Removal

In this section, we first prove that the conventional input vector z̃ in Equation (6)
contains data redundancy. Afterwards, we propose a new input vector that removes data
redundancy and retains DOA information.

According to Equations (2) and (3), the array covariance matrix R can be expanded as

R =
K

∑
k=1

a(θk)a
H(θk)σ

2
sk
+ σ2

nIM, (7)

where σ2
sk

is the power of the k−th source signal.
Define the matrix Bk = a(θk)aH(θk) and its element at m-th row and l-th column as

Bk(m, l). According to Equation (2), we obtain that

Bk(m, l) = eφk(m−l)σ2
sk

, (8)

where φk = −j2π d sin θk
λ . Therefore, by substituting Equation (8) into Equation (7), we have

R(m, l) =
K

∑
k=1

Bk(m, l) + sgn(m, l)σ2
n =

K

∑
k=1

eφk(m−l)σ2
sk
+ sgn(m, l)σ2

n . (9)

where sgn(m, l) =

{
1 i f m = l

0 i f m ̸= l
. As a result, from Equation (9), we observe Lemma 1 below.

Lemma 1. When the array is ULA, all the elements along the sub-diagonal, super-diagonal and
diagonal lines of the covariance matrix R are equal.

Lemma 1 can be illustrated in Equation (10) below.

R =



ρ β v · · · ϵ

β∗ ρ β
. . .

...

v∗ β∗ . . . . . . v
...

. . . . . . ρ β
ϵ∗ · · · v∗ β∗ ρ


(10)

where ρ, β, v, and ϵ are elements of the covariance matrix R.
As shown in Equation (5), the conventional input vector uses all the upper triangular

elements of the covariance matrix R, which contains duplicate information and leads to
data redundancy according to Lemma 1.

On the other hand, from Equation (9), it is observed that the elements along the
diagonal lines are affected by noise power and source signal power. However, they do not
contain information about DOAs of sources. Thus, they shall not be involved in the input
vector of the DNN model. In addition, by observing Equation (9), we define

z1 = [R̂(1, 2), R̂(1, 3), R̂(1, 4), · · · , R̂(1, M)]T. (11)

By considering the above-mentioned observation, Lemma 1, and the conjugate sym-
metric feature of the covariance matrix R, we obtain that indeed for a real-valued DNN
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model and the expected covariance matrix R, z1 contains all the useful elements relevant to
the DOAs of sources and discards duplicate data in the vector z in Equation (5), leading to
the removal of data redundancy.

It is worth noticing that in practice, due to the limit of the number of snapshots, the
elements along any off-diagonal line of the estimated covariance matrix R̂ are not exactly
equal. On the other hand, as shown in Equation (9), the elements along each super-diagonal
line contain the same information about DOAs. Thus, we propose to take the average of all
the elements along each super-diagonal line of the estimated covariance matrix R̂ to obtain
a new vector without data redundancy, denoted as zsum. Define the i-th element of zsum as
zsum(i), we have

zsum(i) =
1

M − i

M−i

∑
m=1

R̂(m, m + i), i = 1, 2, ..., M − 1. (12)

Therefore, according to Equations (11) and (12), we can construct two vectors (that is,
z̃1 and z̃sum) as shown in Equations (13) and (14).

z̃1 = [Real(zT1), Imag(zT1)]
T/∥z1∥2, (13)

z̃sum = [Real(zTsum), Imag(zTsum)]
T/∥zsum∥2. (14)

It is noted that both z̃1 and z̃sum remove data redundancy and can be used as the
input vector of the DNN network theoretically. However, due to the limit of the number
of snapshots in practice, the lightweight deep neural network (DNN) proposed in the
following does not converge when the vector z̃1 is used as the input vector of the DNN.
Therefore, we choose the vector z̃sum as the input of the proposed DNN in the following,
which ensures convergence. On the other hand, it is noted that the conventional input
vector z̃ using upper triangular elements as shown in Equation (5) has a dimension of
M(M − 1). In contrast, the new input vector z̃sum has a dimension of 2(M − 1). Therefore,
the new input vector reduces the dimension to M/2 times that of the conventional input
vector. This implies that the nodes in the following hidden layers can be correspondingly
reduced, which contributes to forming a lightweight DNN.

As a sequence, the data redundancy removal developed for the ULA above can be
applied to the matrix R̂ to obtain the input vector without data redundancy (i.e., z̃sum).

3.2. Analysis of Data Redundancy Removal

According to Equations (3) and (4), R̂ is the maximum-likelihood estimate of the
expected R, and thus the estimation error ∆R always exists [27]; that is,

∆R = R̂ − R. (15)

In addition, the proposed lightweight DNN is based on the z̃sum in Equation (14). In
contrast, the method in [25] uses the vector composed of the off-diagonal upper triangular
elements; that is, z̃ in Equation (6). Both z̃sum and z̃ are based on the estimated covariance
matrix R̂. Consequently, these elements are also subject to estimation inaccuracies, which
subsequently precipitate errors in DOA estimation. It is expected that a larger estimation
error of z̃sum or z̃ leads to a higher DOA estimation error. We define the estimation error of
z̃sum by ∆z̃sum, which is given as

∆z̃sum = z̃sum − z̃exp
sum, (16)

where the elements of z̃exp
sum are obtained by replacing the estimated covariance matrix R̂

with the expected one R in Equation (12).
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Similarly, we define the estimation error of z̃ by ∆z̃, which is written as

∆z̃ = z̃ − z̃exp, (17)

where the elements of z̃exp are obtained by replacing the estimated covariance matrix R̂
with the expected one R in Equation (5). Define the 2-norm of the vectors ∆z̃sum and ∆z̃ as
∥∆z̃sum∥2 and ∥∆z̃∥2, respectively.

In the following, a comparative analysis of the numerical outcomes for ∥∆z̃sum∥2 and
∥∆z̃∥2 is presented. Assuming that the ULA consists of 22 elements with an inter-element
spacing equal to λ

2 . Supposing that there are two source signals with the same SNR impinge
onto the array with DOAs of θ1 = −40.55◦ and θ2 = −36.3◦, respectively. The number of
snapshots equals 400. The number of trials is 200.

When SNR = −10 dB, we obtain ∥∆z̃sum∥2 = 0.19, and ∥∆z̃∥2 = 0.37. When
SNR = 5 dB, we obtain ∥∆z̃sum∥2 = 0.06, and ∥∆z̃∥2 = 0.09. Overall, ∥∆z̃sum∥2 < ∥∆z̃∥2.
This fact leads to better performance of the proposed lightweight DNN with its input as
z̃sum, as comparisons of the method in [25] with its input as z̃. This fact matches with
numerical results in Section 5.

Furthermore, from the analysis above, we obtain that ∥∆z̃sum∥2 decreases as the SNR
increases, which implies that the performance of the lightweight DNN with z̃sum gets better
as the SNR increases.

4. Lightweight DNN for DOA Estimation

In this section, we propose a lightweight DNN for DOA estimation, which is illustrated
in Figure 1. As shown in Figure 1, the proposed lightweight DNN model utilizes the
newly developed input vector z̃sum as its input vector. Furthermore, different from the
conventional DNN model with classification [18–21], the new DNN model is a regression
model and has an output vector with a dimension equal to the number of sources, which
approaches to the vector of true DOAs of sources in a regression fashion. It is noted
that by considering the DOAs of sources are continuous values, the DNN model with
regression can match the task of DOA estimation naturally. It is noted that in practice,
prior to DOA estimation, the estimation of the number of sources can be accomplished by
the classical methods such as the Minimum Description Length (MDL) and the Akaike
Information Criterion (AIC) methods [28]. In addition, by considering that the array signal
is different from the image signal and DOA information is hidden in each element of the
input vector which is obtained from the covariance matrix of the array signal, we select a
fully connected deep neuron network to extract the mapping from the input vector to the
DOAs of source signals.

Figure 1. Proposed lightweight DNN for DOA estimation in a ULA array.

As shown in Figure 1, the proposed lightweight DNN is a fully connected network
with regression and contains an input layer, several hidden layers with activation functions,
and an output layer. Furthermore, each node of each layer in the network is connected
to each node of the adjacent forward layer. The input data flows into the input layer,
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passes through the hidden layers, and turns into the output of the network, which gives
DOA estimates. The detailed structure of the proposed lightweight DNN model and its
construction of the training data set are given as follows. It is noted that both the proposed
lightweight DNN method and the method in [25] use regression for DOA estimation. The
difference between the proposed lightweight DNN method and the one in [25] is that
the proposed lightweight DNN method removes the data redundancy and significantly
reduces the trainable parameters, by analyzing the property of the covariance matrix of a
ULA and the parameters of the network.

4.1. Detailed Structure of Lightweight DNN

The computations of hidden layers are feedforward as

hl = gl(Wl,l−1hl−1 + bl), l = 1, 2, ..., L − 1, (18)

where L is the total number of the layers except for the input layer; hl represent the output
vector of the l-th layer; Wl,l−1 is the weight matrix between the (l-1)-th layer and l-th layer;
bl is the bias vector of the l-th layer; gl is the activation function of the l-th layer. The
activation function is set as gl(•) = tanh(•), which is expressed as

tanh(α) =
eα − e−α

eα + e−α
, (19)

where α is a real value. The output vector of the output layer is given as

hL = WL,L−1hL−1 + bL. (20)

In the training phase, the proposed DNN is performed in a supervised manner with
the training data-label set, and the parameters of the DNN are adjusted to make the output
vector hL approach to the label, which is composed of the DOAs of source signals. We
define the number of input vectors by I. Then, the training data set can be expressed as
Γ = {x(1), ..., x(I)} with its label set Ψ = {θ̄(1), ..., θ̄(I)} , x(i) and θ̄(i) are the i-th input vector
and its label, respectively. x(i) is equal to z̃sum generated in the i-th numerical experiment.
θ̄(i) is a K-dimensional vector composed of the true DOAs of sources in the i-th numerical
experiment.

The set of all the trainable parameters in the lightweight DNN model can be collectively
referred to as Ω. The update of Ω follows back-propagation towards minimizing the Mean
Square Error(MSE) loss function as follows.

Ω̂ = argminΩ
1

IK

I

∑
i=1

∥hL,(i) − θ̄(i)∥2
2, (21)

where ∥•∥2 represents 2-norm, which measures the distance between the output vector of
the network and the corresponding label, hL,(i) represents the output vector of the network
corresponding to the i-th input vector. In the testing phase, the output vector of the output
layer gives the estimated values of the DOAs of source signals explicitly.

For the lightweight DNN model, we define the size of the input vector by J̃ = 2(M− 1).
Note that with more layers and larger sizes of layers, the expressivity power of the network
is increased during the training stage. However, the network tends to overfit the training
data. As a result, in the testing stage, the performance is obviously degraded due to the lack
of generalization. Furthermore, referring to [18], for the balance between the expressivity
power with deeper network and aggravation with more network parameters, we set the
number of hidden layers to be 2 and their sizes are equal to ⌊ 2

3 J̃⌋ and ⌊ 4
9 J̃⌋, respectively,

where ⌊x⌋ is equal to the largest integer not larger than x.
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4.2. Construction of Training Data Set

Assuming that the searching angle range of the source signals is from θmin to θmax,
the angular interval between two source signals in this range is defined as △, which is
sampled from a set of [△min,△min +△d,△min + 2△d, ...,△max], where △min, △max, and
△d are the minimum angle interval between the DOAs of two source signals, the maximum
angle interval, and an angle increment, respectively. In this way, any two source signals
in this range that are spatially close to each other and those with large spacing can all be
included in the training data set. Since the elements used as the input vector from the
covariance matrix are not affected by the order of DOAs of source signals, with the DOA of
the first source signal is sampled with a grid η from θmin to θmax − (K − 1)△, and the DOA
of the k-th source signal is θ1 + (k − 1)△, k = 2, ..., K. Furthermore, in order to adapt to the
performance fluctuations in low SNRs, input vectors with multiple SNRs lower than 0dB
are trained at the same time, making the lightweight DNN better adapted to unknown low
and high SNRs during the testing phase.

4.3. Analysis of Number of Trainable Parameters

In this section, we present a comparative analysis of the proposed lightweight DNN,
against the method in [25], the conventional DNN in [18], deep convolution network (DCN)
in [19], and DeepMUSIC in [20], focusing on the number of trainable parameters. For the
conventional DNN model in [18], we follow the setting in [18]. That is, for the autoencoder,
we denote the size of each of the input and output layers as J = M(M − 1), define the
number of each encoder and decoder has one hidden layer with a size of ⌊ J

2⌋, and define the
number of spatial subregion as p. As a sequence, we obtain that for each of the multilayer
classifiers after the autoencoder, the sizes of two hidden layers are equal to ⌊ 2

3 J⌋ and ⌊ 4
9 J⌋,

respectively. In addition, the size of output layer (denoted as γ) for each multilayer classifier
is equal to

γ = ⌈ θmax − θmin
ηp

⌉. (22)

Correspondingly, according to the analysis in Section 3.1 for the proposed lightweight
DNN, we have J̃ = 2

M J. By following the above-mentioned definitions and the structure of
the lightweight DNN, conventional DNN, and method in [25], we can obtain the number
of parameters in the three fully connected DNN models, as shown in Table 1.

Table 1. Analysis of number of trainable parameters in fully-connected DNN methods.

Number of Parameters Autoencoder Hidden Layer 1 Hidden Layer 2 Output Layer

Lightweight DNN N.A. ( J̃ + 1)× ⌊ 2
3 J̃⌋ (⌊ 2

3 J̃⌋+ 1)× ⌊ 4
9 J̃⌋ (⌊ 4

9 J̃⌋+ 1)× K

Method in [25] N.A. (J + 1)× ⌊ 2
3 J⌋ (⌊ 2

3 J⌋+ 1)× ⌊ 4
9 J⌋ (⌊ 4

9 J⌋+ 1)× K

Conventional DNN
(J + 1)× ⌊ J

2 ⌋+ (⌊ J
2 ⌋+

1)× J × p (J + 1)× ⌊ 2
3 J⌋ × p (⌊ 2

3 J⌋+ 1)× ⌊ 4
9 J⌋ × p (⌊ 4

9 J⌋+ 1)× γ × p

Table 2 shows the number of trainable parameters in DeepMUSIC and DCN by
following the parameter settings in [19,20], which are mainly from the convolution layers
and dense layers. For DeepMUSIC, Cin1 represents the number of input channels, Ks1 is the
kernel size of the first two convolution layers, and Ks2 is the kernel size of convolution layer
3 and convolution layer 4. N f is the number of filters. Cout1 and Cout2 represent the sizes of
the first and second dense layers, respectively. For DCN, Ks3, Ks4, Ks5 and Ks6 represent the
kernel size of the first till fourth convolution layers, of which the number of filters are N f 1,
N f 2, N f 3, and N f 4, respectively. There is no dense layer.
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Table 2. Analysis of number of trainable parameters in CNN-based methods.

Number of
Parameters

Convolution
Layer 1

Convolution
Layer 2

Convolution
Layer 3

Convolution
Layer 4 Dense Layer 1 Dense Layer 2

DeepMUSIC K2
s1 × Cin1 × N f K2

s1 × N f × N f K2
s2 × N f × N f K2

s2 × N f × N f
M2 × N f ×

Cout1
Cout1 × Cout2

DCN
Ks3 × Cin2 ×

N f 1

Ks4 × N f 1 ×
N f 2

Ks5 × N f 2 ×
N f 3

Ks6 × N f 3 ×
N f 4

N.A. N.A.

When θmin = −60◦, θmax = 60◦, p = 6, η = 1◦, K = 2, Cin1 = 3, Cin2 = 2, Ks1 = 5,
Ks2 = 3, Ks3 = 25, Ks4 = 15, Ks5 = 5, Ks6 = 3, N f = 256, N f 1 = 12, N f 2=6, N f 3 = 3,
N f 4 = 1, Cout1 = 1024, Cout2 = 120, the total parameters of the above-mentioned five deep
learning methods versus the number of sensors are shown in Figure 2. From Figure 2, we
can see that the number of trainable parameters in the lightweight DNN is significantly
reduced compared to those of the conventional DNN, method in [25], and DeepMUSIC. In
particular, when the number of sensors is 22, the number of parameters in the lightweight
DNN is three orders, two orders, and five orders of magnitude less than that in the
conventional DNN, the method in [25], and DeepMUSIC, respectively. This fact contributes
to fitting the DNN-based DOA estimation into the embedded system. In addition, the
lightweight DNN method has fewer parameters than the DCN method when the number
of sensors is less than 22. The DCN method remains constant regardless of the number of
sensors. This is because the input of the DCN method is the spatial spectrum proxy, which
has a fixed length equal to ⌈ θmax−θmin

η ⌉. On the other hand, the inputs of other methods
are all explicitly relevant to the dimension of the array covariance matrix. Thus, their
parameters are related to the number of sensors.
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Conventional DNN 
Method in [25]
DeepMUSIC
DCN

Figure 2. Trainable parameters in the DNN models versus number of sensors.

4.4. Analysis of Computational Complexity

Analogous to the approach detailed in [11], we quantify the primary computational
complexity through the calculation of real-valued multiplications, as given in Table 3. In
this table, L pertaining to the DCN denotes the length of the input vector, which is set as
120. In addition, we define

γ̃ = ⌈ θmax − θmin
η

⌉. (23)

Note that when η = 0.1 and M = 22, we have γ̃ ≫ J > J̃ > M > K [11] and
(M − 1)(M − K) ≈ (M + 1)M ≈ J. According to the settings in Section 4.3, it is found
from Table 3 that the computational complexity of the CBF, MUSIC, DeepMUSIC, and
DCN methods is significantly higher than that of the fully-connected DNN-based methods,
which corresponds to the testing time in Table 4 below.
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Table 3. Analysis of primary computational complexity.

Algorithms Primary Computational Complexity

Lightweight DNN O[ J̃ × ⌊ 2
3 J̃⌋+ ⌊ 2

3 J̃⌋ × ⌊ 4
9 J̃⌋+ ⌊ 4

9 J̃⌋ × K]

Method in [25] O[J × ⌊ 2
3 J⌋+ ⌊ 2

3 J⌋ × ⌊ 4
9 J⌋+ ⌊ 4

9 J⌋ × K]

Conventional DNN O[J × ⌊ J
2 ⌋+ ⌊ J

2 ⌋ × J × p + J × ⌊ 2
3 J⌋ × p + ⌊ 2

3 J⌋ × ⌊ 4
9 J⌋ × p + ⌊ 4

9 J⌋ × γ × p]

MUSIC 4 ×O[(M + 1)(M − K)γ̃ + M2K]

CBF 4 ×O[(M + 1)Mγ̃]

DeepMUSIC
O[K2

s1 × Cin1 × N f × M2 + K2
s1 × N f × N f × M2 + K2

s2 × N f × N f × M2 × 2 +
M2 × N f × Cout1 + Cout1 × Cout2]

DCN O[Ks3 × Cin2 × N f 1 × L + Ks4 × N f 1 × N f 2 × L + Ks5 × N f 2 × N f 3 × L + Ks6 × N f 3 × N f 4 × L]

Table 4. Averaged testing time for one trial.

Method
Light

Weight
DNN

Method
in [25] Conventional DNN

MUSIC
with

Gird 1◦

CBF
with

Grid 1◦

MUSIC
with
Gird
0.1◦

CBF
with
Grid
0.1◦

Deep
MUSIC DCN

Testing
time/ms

0.9 1.1 3.3 3.7 2.3 22.9 17.9 26.3 20.4

5. Results

In this section, by conducting simulation experiments, the proposed lightweight DNN
is compared with the conventional DNN [18], the method in [25], DeepMUSIC in [20]
and DCN in [19] in terms of testing time and the root-mean-square-error (RMSE) of DOA
estimation. In addition, the traditional spectrum-based methods such as MUSIC and
CBF are also included for comparisons. Furthermore, the Cramér–Rao Bound (CRB) of
DOA estimation [2] is given as a lower bound. The DNN models are implemented using
TensorFlow as the backend. In the testing stage, for a fair comparison of testing time, all
the above-mentioned methods are executed on the Intel(R) Core(TM) i7-8750H CPU at
2.20 GH.

5.1. Simulation Settings

Assuming that the ULA consists of 22 elements with an inter-element spacing equal to
λ
2 . Supposing that there are two source signals impinging onto the array, of which the DOA
range is from θmin = −60◦ to θmax = 60◦. The angular interval between the DOAs of two
source signals is from △min = 2◦ to △max = 40◦, with △d = 2◦ and η = 1◦. The SNRs for
different source signals are equal and SNRk is defined as the power ratio of the k-th source
signal to noise in dB, which is given below.

SNRk = 10log10

σ2
sk

σ2
n . (24)

For the DNN models, in the training phase, the snapshots are set as 400. In addition,
using input vectors from multiple SNRs of {−13 dB, −10 dB, −5 dB, 0 dB} to train the
network simultaneously. Moreover, 10 groups of covariance vectors are collected for each
direction setting with random noise. Therefore, (118 + 116 + ... + 80)× 4 × 10 = 79, 200
input vectors are collected in the training dataset in total. The learning rate is µ = 0.001
and the mini-batch size is 32, the order of training data is shuffled in each epoch.

5.2. MSE Loss during Training and Validation

In this section, as given in Figure 3, we provide the training and validation MSE loss
of the proposed lightweight DNN versus the number of epochs by randomly dividing
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the training data into 80% for training and 20% for validation. From Figure 3, we observe
that the training loss and validation loss gradually reduce when the number of epochs
increases and converges at about 400 epochs. Furthermore, they are close to each other.
Therefore, we conclude that the proposed lightweight DNN with the input vector after the
removal of data redundancy can accomplish the task of DOA estimation well. The detailed
performance of DOA estimation in the testing stage is given as follows.

0 100 200 300 400 500 600
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
M

SE
 lo

ss
(

)
Training loss
Validation loss

Figure 3. MSE loss versus epoch given by the proposed lightweight DNN.

5.3. RMSE versus SNRs and Testing Time

In the testing phase, in order to verify the generalization of the DNN models, the
noises and source signals are different from those that appeared in the training phase. In
addition, the DOAs of sources are set to be non-integer (that is, off-grid), which does not
appear in the training stage. The DOAs of source signals are (θ1, θ2) = (−40.55◦,−36.3◦).
The RMSE is used to measure the testing performance of different methods, defined as

RMSE =

√√√√ 1
GK

G

∑
g=1

K

∑
k=1

|θ̂k,g − θk|2, (25)

where G is the number of Monte Carlo simulation experiments, which is set as 200. K = 2.
θ̂k,g represents the DOA estimation value of the k-th source signal in the g-th experiment.
In this part, SNR is taken from −16 dB to 10 dB with an interval of 2 dB and the number
of snapshots is 400. The RMSE of DOAs estimated by the above-mentioned methods
under different SNRs is given in Figure 4. Table 4 shows the averaged testing time for
one trial. Figure 4 illustrates that the proposed lightweight DNN performs better than the
method in [25], conventional DNN and the MUSIC and CBF methods with a grid of 1◦. Its
superiority is obvious when the SNR is lower than −8 dB. Moreover, the time spent by the
lightweight DNN is about four times less than that spent by the MUSIC method with a grid
of 1◦. On the other hand, the proposed lightweight DNN has estimation accuracy lower
than the MUSIC method with a grid of 0.1◦. This is because the DNN-based approach yields
biased estimators [20]. In contrast, the MUSIC method provides unbiased estimation when
the source signals are uncorrelated and the number of arrays and snapshots is large [29,30].
It is noted that in Figure 4, the CBF method always fails because it suffers from the Rayleigh
limit. In addition, the MUSIC method with a grid of 0.1◦ performs closely to the CRB when
the SNR is larger than −8 dB. On the other hand, its performance deviates from the CRB
when the SNR is larger than 5 dB. This phenomenon is caused by the limit of the searching
grid in the MUSIC Method. Furthermore, as illustrated in Figure 4, the performance of
the DeepMUSIC method is similar to that of the MUSIC method with a grid of 1◦. This is
because the label of the DeepMUSIC is the spatial spectrum of the MUSIC method and the
grid in the DeepMUSIC method is equal to 1◦ to be consistent with the grid for other DNN
methods. In addition, the DCN method performs better than the other methods except the
lightweight DNN method, in most cases. In terms of testing time as given in Table 4, both
DeepMUSIC and DCN methods cost much more than the lightweight DNN method.
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It is noted that the higher estimation accuracy of the MUSIC method with a grid of
0.1◦ costs more spectrum searching load and the time it takes is about 25 times more than
that by the lightweight DNN, as shown in Table 4. In addition, it is observed the time spent
by the lightweight DNN is about 3 times less than that by the conventional DNN.
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Figure 4. RMSE versus SNR when (θ1, θ2) = (−40.55◦,−36.3◦).

5.4. RMSE versus DOA Separations

In this part, the RMSE of different methods is shown with the variation of intervals
between the DOAs of two source signals. The DOA of the first source signal is set to be
−40.55◦ and the DOA of the second source signal is equal to −40.55◦ + ∆̃, where ∆̃ is
taken from the set of {2.25◦, 4.25◦, 8.25◦, · · · , 32.25◦, 36.25◦} in sequence. The number of
snapshots is 400. When SNR is −2 dB, the RMSE of DOA estimated by the above-mentioned
methods under different DOA separations is shown in Figure 5. From Figure 5, it can be
seen that the lightweight DNN performs better than the MUSIC method and CBF method
when their searching grid is set to be 1◦. Furthermore, it is always superior to the method
in [25], conventional DNN method, DeepMUSIC method, and DCN method. Similar to
the Figure 4, the MUSIC method with a grid of 0.1◦ approaches the CRB in most cases.
However, it is noted that in a very small DOA separation such as 2.25◦, even the MUSIC
method with a grid of 0.1◦ fails. In contrast, the lightweight DNN performs well. In
addition, it is shown that the CBF method with a grid of 0.1◦ gradually approaches the
CRB when the DOA separation increases.
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Figure 5. RMSE versus DOA separation when SNR = −2 dB.
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5.5. RMSE versus Number of Snapshots

In this part, the number of snapshots is selected from the set of {30, 50, 100, 200, 300,
400, 500, 600, 700, 900, 1200, 1500, 1800, 2000}, the DOAs of the two source signals are
(θ1, θ2) = (−40.55◦,−36.3◦). Figure 6 shows the RMSE of all methods against the number
of snapshots when the SNR is equal to −2 dB. From Figure 6, it is found that except for the
CBF method, the other methods perform better when the number of snapshots increases.
In addition, it is observed that the DNN models trained in the scenario of 400 snapshots
are applicable to the scenarios of more snapshots and fewer snapshots. Furthermore, the
lightweight DNN behaves significantly better than the conventional DNN when the number
of snapshots is less than 900. As the number of snapshots increases, the estimation accuracy
of lightweight DNN is still slightly higher than that of the conventional DNN, method
in [25], DeepMUSIC method, and DCN method. It is worth noting that the lightweight
DNN is always superior to the MUSIC method with a grid of 1◦ and it performs better than
the MUSIC method with 0.1◦ when the number of snapshots is less than 100.
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Figure 6. RMSE versus number of snapshots when SNR = −2 dB.

5.6. RMSE versus Power Ratio of Two Source Signals

The DOAs of the two closely spaced source signals are (θ1, θ2) = (−40.55◦,−38.3◦).
The number of snapshots for both source signals is 400. The SNR for the first source signal
is fixed as −2 dB. Figure 7 demonstrates the RMSE versus the power ratio of the second
source signal to the first source signal. From Figure 7, we observe that the RMSE of the
lightweight DNN method increases from 0.2◦ to about 1.5◦ when the power ratio of the
second source signal to the first one increases from 1 to 14. Similarly, the RMSE of the
conventional DNN, the method in [25], DeepMUSIC, and DCN methods increase slightly
with the increment of the power ratio. As shown in Figure 7, the MUSIC and CBF methods
always fail because the DOAs of source signals are very close. It is noted that the CRB
reduces a bit when the power ratio increases. This is because the power of the second
source signal is increased with the increment of the power ratio. However, the CRB is
limited by the closely spaced source signals.



Remote Sens. 2024, 16, 1423 14 of 16

2 4 6 8 10 12 14
Power ratio

10 2

10 1

100

101

102

103

R
M

SE
 o

f D
O

A
 e

st
im

at
es

 (d
eg

re
e)

Lightweight DNN 
Conventional DNN  
Method in [25]
MUSIC with grid 1
CBF with grid 1
MUSIC with grid 0.1
CBF with grid 0.1
CRB
DCN
DeepMUSIC

Figure 7. RMSE versus power ratio of second source signal to the first one when (θ1, θ2) =

(−40.55◦,−38.3◦).

6. Discussion

From the analysis above, it can be seen that the number of total parameters in the
lightweight DNN model is significantly reduced compared to those DNN models that use
the upper triangular elements of the covariance matrix as input. In particular, when the
number of sensors is 22, it is 2 and 3 orders of magnitude less than that in the conventional
DNN model and the method in [25], respectively. This fact makes the proposed lightweight
DNN suitable for real-time embedded applications. Furthermore, it is noted that the
lightweight DNN can preserve high accuracy of DOA estimation and perform better than
the conventional DNN and method in [25]. In addition, it provides higher estimation
accuracy and costs less trainable parameters and computational load than CNN-based
methods such as DeepMUSIC and DCN. Also, it is illustrated that the lightweight DNN
performs better than the spatial spectrum-based methods such as MUSIC and CBF method
under harsh conditions such as low SNRs and/or closely spaced source signals and/or
few snapshots. Moreover, its testing time is obviously shorter than that of the MUSIC and
CBF method, due to the avoidance of spectrum searching and matrix decomposition. On
the other hand, under good conditions such as high SNRs, the estimation accuracy of the
lightweight DNN is lower than the MUSIC method with a grid of 0.1◦. This is because the
DNN-based methods are biased estimators while the MUSIC method can provide unbiased
DOA estimation. It is noted that the MUSIC method with a grid of 0.1◦ provides higher
estimation accuracy with a cost of a testing time of about 25 times more than that of the
lightweight DNN. On the other hand, as shown in simulation results, the lightweight DNN
can achieve high estimation accuracy such as 0.2◦ when the SNR is not extremely low (not
lower than −6 dB) and the number of snapshots is not very small (not smaller than 100).

7. Conclusions

In order to make the DNN-based DOA estimation approaches real-time and less costly,
we proposed a lightweight DNN model for a ULA. Compared to the conventional DNN
model, the proposed lightweight DNN model has two improvements. Firstly, its input
vector is designed by using the knowledge of ULA (that is, the steering vector of the
ULA has the property of Vandermonde) to implement the removal of data redundancy
as well as retain the DOA information. Therefore, the input vector is M

2 times less than
the conventional DNN model, which contributes to reducing the sizes of the following
hidden layers. Secondly, the output vector of the lightweight DNN model is designed in a
regression fashion instead of classification, which has a size equal to the number of sources.
Overall, the number of total parameters in the lightweight DNN model is significantly
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reduced compared to that in the existing DNN models. Furthermore, the lightweight DNN
model performs better than the existing DNN models because the lightweight DNN model
explores the characteristics of the signal received by the ULA for designing its input.
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