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Abstract: Sugarcane breeding for drought tolerance is a sustainable strategy to cope with drought.
In addition to biotechnology, high-throughput phenotyping has become an emerging tool for plant
breeders. The objectives of the present study were to (1) identify drought-tolerant cultivars using
vegetation indices (VIs), compared to the traditional method and (2) assess the accuracy of VIs-based
prediction model estimating stomatal conductance (Gs) and chlorophyll content (Chl). A field trial
was arranged in a randomized complete block design, consisting of seven cultivars of sugarcane. At
the tillering and elongation stages, irrigation was withheld, and then furrow irrigation was applied to
relieve sugarcane from stress. The physiological assessment measuring Gs and Chl using a handheld
device and VIs were recorded under stress and recovery periods. The results showed that the same
cultivars were identified as drought-tolerant cultivars when VIs and traditional methods were used
for identification. Likewise, the results derived from genotype by trait biplot and heatmap were
comparable, in which TCP93-4245 and CP72-1210 cultivars were classified as tolerant cultivars, while
sensitive cultivars were CP06-2400 and CP89-2143 for both physiological parameters and VIs-based
identification. In the prediction model, the random forest outperformed linear models in predicting
the performance of cultivars in untested crops/environments for both Gs and Chl. In contrast, it
underperformed linear models in the tested crops/environments. The identification of tolerant
cultivars through prediction models revealed that at least two out of three cultivars had consistent
rankings in both measured and predicted outcomes for both traits. This study shows the possibility
of using UAS mounted with sensors to assist plant breeders in their decision-making.

Keywords: high throughput phenotyping; drought tolerance; sensors; plant selection

1. Introduction

With global warming, drought is expected to become more intense, unpredictable,
and long-lasting in many regions around the world [1]. As a result, technologies in plant
science enabling the maintenance of high yields in limited water resources are essential
to ensure food sustainability. These are, for example, smart agriculture, soil conservation,
as well as drought tolerance of cultivars. In plant science, drought stress is known as
one of the most detrimental abiotic stresses for the growth and development of plants [2].
Sugarcane is primarily grown in tropical and subtropical regions up to approximately
35◦N to 35◦S of the equator [3] and mostly in rain-fed conditions. With its long life
cycle (12 to 18 months), sugarcane encounters water-deficit stress at some points in its
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lifetime. In the process of evolution, plants have developed complex regulatory mechanisms
to overcome drought, including escape, avoidance, tolerance, and recovery after stress.
Drought avoidance and drought tolerance are the main mechanisms for the improvement
of plant drought resistance [4]. Morphologically, sugarcane mainly responds to drought by
leaf rolling, cell wall shrinking, leaf senescence, and deep root growth [5]. Stomatal closure
to prevent internal water loss, damaged chloroplast caused by reactive oxidative species
(ROS), and reduction in plant relative water content (RWC) have been reported as major
effects of drought on the physiology of sugarcane [6]. In addition, reduction in biochemical
activities in the mesophyll and bundle sheath cell such as phosphoenolpyruvate carboxylase
(PEPCase), RuBisCo, malic enzyme (NADP-ME), fructose-1, 6-bisphosphatase (FBPase),
and pyruvate orthophosphate dikinase (PPDK) is responsible for photosynthesis reductions
under severe stress [6]. Eventually, drought significantly reduces sugarcane yield, and up
to 80% yield reduction was reported [7]. Breeding for drought tolerance is an economic
and sustainable mitigation strategy against the current and projected drought stress [8].

When it comes to selecting a genotype for drought tolerance, not only how geno-
types perform under stress is monitored, but consideration of the ability to recover from
the stress is also important. The recovery from drought is a complicated process involv-
ing the reorganization of several metabolic pathways to repair drought-induced damage
and resume plant growth [9]. Various methods have been proposed to assess drought
stress on sugarcane for identification of drought-tolerant genotypes. Unlike yield and
its components, drought tolerance cannot be directly quantified; instead, it is indirectly
measured in the plant through drought-related traits, including yield, crop height, visual
assessment, and physiological and biochemical traits. Drought intensity and crop tolerance
response could also be evaluated by estimating the total water applied to the crop and
comparing it with estimated crop evapotranspiration. Conventionally, sugarcane breed-
ing for drought tolerance has been primarily based on cane yield [10]. However, yield
is the final performance, which is impossible to measure during the stress period, such
as at the vegetative growth stage. Visual assessment to quantify the drought tolerance
of sugarcane was reported by Wagih and Kaiulo [11]. As is well known, this assessment
is very subjective and prone to human error. Although biochemical parameters such as
proline and amino acids have been widely used to assess the effect of drought in many
crops, they are limited to only experiments conducted in a greenhouse or small sample
size with the disadvantage of being time-consuming, labor-intensive, destructive, and
expensive. As a result, this assessment is impractical when thousands of genotypes in a
segregating population need to be screened. Physiological traits are the most widely used
parameters to identify drought-tolerant genotypes, especially in field trials as they could
be non-destructively measured using a handheld device. Identification of drought-tolerant
genotypes of sugarcane using this means has been reported by Silva et al. [12], Gomathi
et al. [13], and Sajid et al. [14]. As non-destructive measurements, it used to be considered
a fast tool for the identification of drought-tolerant genotypes [12]. However, it is currently
viewed as being time-consuming, labor-intensive, and expensive these days, since there
is an emerging phenotyping tool able to assess more phenotyping in a relatively shorter
time [15], compared to traditional measurements. Unmanned aerial systems (UAS)-based
vegetation indices (VIs) have been widely used as an efficient tool to assess the effect of
drought on many crops, such as wheat [15,16], corn [17], and sugarcane [18].

With UAS-based VIs, two types of applications have been widely used as a plant
breeder’s toolbox for the identification of drought-tolerant genotypes. Firstly, UAS-based
VIs are used directly to differentiate drought-tolerant genotypes, where the plant breeder’s
decision is solely based on the performance of those UAS-based VIs. This application
has been applied in many crops, such as wheat [19,20]. Wen et al. [20] identified drought-
tolerant wheat genotypes using VIs instead of plant physiological and biological traits
and found that VIs can be used as alternative and inexpensive measures for identifying
drought tolerance in wheat. Although recent work reported the use of aerial phenotyping
for sugarcane yield and drought tolerance, Hoffman et al. [18] did not compare the aerial
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method with traditional assessment. So far, we are not aware of any studies that have iden-
tified drought-tolerant genotypes of sugarcane by using VIs, compared to the physiological
methods. Secondly, these VIs are used to establish a prediction model and the model is used
to estimate the performance of traits such as chlorophyll content, biomass, and yield that
are related to drought tolerance. Then, the plant breeder’s decision is based on predicted
values derived from such a model. This application solely relies on a prediction model, and
the accuracy of the model depends on the association between independent variables with
target traits, as well as the reliability of the model. The success of this application has been
reported in many crops such as sugarcane [21] and corn [17]. However, few approaches
and applications were designed in a plant breeding context, where genotype ranking based
on their performance is our priority in addition to genotype x environment interaction.

Moreover, even though the study of using VIs to assess drought tolerance is well stud-
ied, there are still gaps in plant breeding application, as explained previously. Therefore, the
objectives of the present study were (1) to identify drought-tolerant and susceptible cultivars
using UAS-based VIs and compare them with traditional physiological traits for valida-
tion, and (2) to evaluate the accuracy of VIs-based prediction models predicting stomatal
conductance (Gs) and chlorophyll content (Chl) through different cross-validation schemes.

2. Materials and Methods
2.1. Plant Materials and Experimental Design

A characteristic description of the seven commercial cultivars of sugarcane used in
this study is presented in Table 1. The cultivars used for this study were chosen to include
recently released sugarcane cultivars planted in commercial areas in both Florida and Texas,
two of the three states where sugarcane is commercially grown in the USA. In addition,
this set includes cultivars known to have contrasting reactions to drought stress (which is
considered the main limiting factor for the Texas sugar industry, where the area allocated to
the crop requires irrigation) either drought sensitive (as in the case of CP89-2143) or tolerant
(as in the case of TCP93-4245), representing a substantial range on the reaction to this par-
ticular abiotic stress, to allow the comparison between physiological and high throughput
phenotyping parameters. These cultivars were planted in a randomized complete block
design (RCBD) with four replications at the Texas A&M AgriLife Research and Extension
Center in Weslaco, Texas (26◦9.78′N, 97◦56.40′W, 21 m AMSL). This experiment was carried
out in a field with a known variation within the field. To reduce experimental error, the
RCBD design was chosen in this study because, with this design, variation within the block
is accounted for in homogenous blocks. The study area and experimental plots of this trial
were described previously by Khuimphuhieo et al. [22]. The study area is humid subtropi-
cal with an average annual precipitation of 632 mm [23]. This study involves data from the
2nd (May 2022–May 2023) and the 3rd ratoon of sugarcane (May 2023–December 2023).

Table 1. The characteristic description of cultivars used in this study.

Cultivars Characteristic Description References

CP72-1210 Cold susceptible and yellow leaf disease [24,25]

HoCP04-838
Resistant to smut, mosaic caused by Sorghum mosaic virus,
brown rust, sugarcane borer, ratoon stunt but susceptible to
yellow leaf

[26]

CP06-2400
High cane, sucrose yields, acceptable levels of resistance to
brown rust, orange rust, leaf scald, ratoon stunt, smut, and
freeze tolerance

[27]

CP07-1824 Resistant to sugarcane borer in South Texas [28]
CP89-2143 High, stable sucrose concentration and sucrose yield [29]

CP08-1968
High cane and sucrose yield on sand soils. Acceptable levels of
brown rust, smut, mosaic, yellow leaf, ratoon stunt, moderate to
good freeze tolerance but susceptible to orange rust

[30]

TCP93-4245 High sugar yield, acceptable ratoon ability, resistance to ratoon
stunting disease, Mexican rice borer, and sugarcane borer [31]
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2.2. Drought Stress and Recovery Determination

Twelve watermark sensors (Irrometer Company Inc., Riverside, CA, USA) were in-
stalled in the ground at 4 locations with 3 soil depths per location (15, 46, and 79 cm).
Two locations of the sensor were installed at an experimental unit of the cultivar CP89-2143
(susceptible), while the other two were installed at the cultivar TCP93-4245 (tolerant).
The drought stress and recovery cycles were applied during tillering to elongation stages
because these stages are most sensitive to water stress in sugarcane [32]. Drought stress
was triggered when two of the four positions of soil moisture meters embedded at 15 cm
reached over 70 kPa. Then physiological parameters were assessed using handheld devices
as explained below in Section 2.4, and UAS mounted with sensors was flown as explained
below in Section 2.3. During this phase, they were considered under stress. Afterward,
furrow irrigation was applied to relieve sugarcane from stress. Then, the UAS mission and
physiological parameters were conducted again as the recovery phase (Figure 1). Dates of
stress started, irrigation applied, and data collection for each drought cycle are provided in
Table 2. A weather station was located approximately 20 m away from the trial to record
rainfall and temperature throughout the studied period. Approximately 40 mm were
applied through furrow irrigation.
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Table 2. Dates of stress triggered, irrigation applied, and unmanned aerial systems (UAS) data
collection for each drought cycle.

Ratoons Cycles Stress
Triggered

UAS Data
Collection

Physiological
Data Collection

Irrigation
Applied

UAS Data
Collection

Physiological
Data Collection

2nd crop
1st 30 July 2022 10 August

2022 11 August 2022 14 August
2022 †

18 August
2022 17 August 2022

2nd 1 October
2022

12 October
2022 - 26 October

2022
2 November

2022 -

3rd 22 January
2023

27 January
2023 25 January 2023 9 February

2023
14 February

2023 15 February 2023

3rd crop 21 July 2023 16 August
2023 17 August 2023 4 September

2023
22 September

2023
19 September

2023
† Received water from rain.
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2.3. UAS Data Collection and Processing
2.3.1. UAS Image Acquisition

The UAS image data collection was performed between 10.00 AM to 2.00 PM on sunny
days with wind speeds below 10 mph. We flew DJI Phantom 4 Pro and DJI Phantom 4 RTK
(SZ DJI Technology Co., Ltd., Shenzhen, China) attached with 20 megapixels one-inch
CMOS (complementary metal-oxide-semiconductor) red, green, and blue (RGB) for RGB
sensor in this study. A DJI P4 Multispectral mounted with P4 Multispectral sensor and a
SlantRange 4P+ sensor (SlantRange, Inc., San Diego, CA, USA) mounted on DJI Matrice
M 200 was used for multispectral (MS) data collection. For georeferencing, four ground
control points (GCPs) were placed in each corner of the trial, and we used a V-map system
(Micro Aerial Projects, Gainesville, FL, USA) to obtain the accurate coordinates of each GCP.

2.3.2. Image Processing

The SlantView 2.17.4.3605 software (SlantRange, Inc., San Diego, CA, USA) was used
to obtain radiometrically calibrated MS images. These images, along with RGB images,
were processed using Agisoft Metashape Professional 1.7.1 software (Agisoft LLC, St. Pe-
tersburg, Russia) to obtain RGB and MS orthomosaics. We incorporated the coordinates of
each GCP into Agisoft Metashape Professional 1.7.1 software for georeferencing. The DJI
Terra software 2.3.0 (SZ DJI Technology Co., Ltd., Shenzhen, China) was used to process
MS images obtained by the P4 Multispectral sensor. Georeferencing was also implemented
by incorporating the coordinates of GCPs into DJI Terra 2.3.0 software. For radiometric
calibration of P4 multispectral images, they were implemented automatically when they
were processed with DJI Terra 2.3.0 software [33]. Afterwards, MS orthomosaics were
exported. Shapefile polygons were drawn in QGIS 3.16 software (QGIS project, Böschacher-
strasse, Switzerland), and VIs as average values from each polygon were extracted from
those orthomosaics. Ten VIs used in the present study are shown in Table 3. These VIs
were chosen because they have been previously reported as promising VIs in assessing
physiological traits of plants [17,34,35].

Table 3. Vegetation indices (VIs) were used in this study.

Vegetation Indices (VIs) Equation † References

Green chlorophyll index GIG = (NIR/G) − 1 [36]
Green normalized difference vegetation index GNDVI = (NIR − G)/(NIR + G) [37]

Leaf chlorophyll index LCI = (NIR − RE)/(NIR + R) [21]
Normalized difference red edge index NDRE = (NIR − RE)/(NIR + RE) [38]

Normalized difference vegetation index NDVI = (NIR − R)/(NIR + R) [39]
Normalized green, red difference index NGRDI = (G − R)/(G + R) [40]

Optimized soil-adjusted vegetation index OSAVI = (1 + 0.16) × (NIR − R)/(NIR + R +0.16) [41]
Transformed chlorophyll absorption in

refection index TCARI = 3 × [(RE − R) − 0.2 × (RE − G) × (RE/R)] [42]

Red-edge chlorophyll index CIRE = (NIR/RE) − 1 [36]
Simple ration index SPI = NIR/G [43]

† B, G, R, RE, and NIR represent the blue, green, red, red edge, and NIR bands, respectively in the above formulas.

2.4. Physiological Assessments
2.4.1. Stomatal Conductance (Gs)

Gs was measured using a leaf porometer (SC-1 Decagon Devices, Inc., Pullman, WA
USA). For each measurement, Gs of the youngest fully expanded leaf of twelve plants
from each experimental unit were measured between 10:00 h and 14:00 h, according to the
previous study reported by Basnayake et al. [44].

2.4.2. Chlorophyll Content Meter (Chl)

Chl was quantified by using an MC-100 Chlorophyll Concentration Meter (Apogee
Instrument, Inc., Logan, UT, USA). For each measurement, Chl of the youngest fully
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expanded leaf of twelve plants from each experiment unit was randomly measured between
10:00 h to 14:00 h.

2.5. Data Analysis

Analysis of variance according to RCBD was performed for Gs and Chl. The least
significant difference (LSD) method was analyzed for mean separation at 0.05 level. The
relationship between physiological traits with tons of cane per hectare (TCH) and VIs was
implemented using Pearson’s correlation. A t-test analysis was used to determine if there
was a significant difference between the means of the two periods (stress and recovery).

2.5.1. Identification of Drought-Tolerant Cultivars of Sugarcane

Genotypes by traits biplot (GT biplot) were graphically analyzed using ten VIs and
physiological parameters (Gs and Chl) and combined all traits. The RStudio 4.2.2 software
(RStudio, Boston, MA, USA), along with the “metan” package, was used to obtain this GT
biplot. A heatmap analysis was also implemented using RStudio. The scale() function in
RStudio was used to standardize the data. Once all data were standardized, a heatmap was
graphically generated using the “ComplexHeatmap” package in RStudio.

2.5.2. Vegetation Indices (VIs)-Based Gs and Chl Prediction Model

The validation scheme used in this study was specially designed for plant breeding
applications. This cross-validation scheme was recently presented by Adak et al. [45]
where both genotypes and environments were considered. This information is crucial to
plant breeders, as it provides significant information on how accurate the models we can
expect in various scenarios. Moreover, the performance of a given genotype is likely to
be inconsistent across environments, so both genotypes and environments are important
considerations in plant breeding. Therefore, the scheme used to validate the models in
the present study considered both genotypes and crop/environment. The raw data was
divided into four datasets (A, B, C, and D) (Table 4). Datasets A and B were derived from the
2nd ratoon, while C and D were derived from the 3rd ratoon. All models were trained using
datasets A and C. Additionally, to get reliable results, twenty-one iterations were performed.
For example, the 1st iteration; CP06-2400 and CP07-1824 were chosen as datasets B and
D, while the other five cultivars were chosen as datasets A and C. Similarly, for the 21st
interaction; we used HoCP04-838, and TCP93-4245 as dataset B and D, while the other five
cultivars were chosen as dataset A and C. With this approach, accuracies were obtained
from all possible combinations of datasets (Table 4). Five cross-validation schemes (CVs)
were implemented as follows: tested cultivar in tested crop/environment (CV1), tested
cultivar in untested crop/environment (CV2), untested cultivar in tested crop/environment
for the 2nd ratoon (CV3), untested cultivar in tested crop/environment for the 3rd ratoon
(CV4), and untested cultivar in untested crop/environment (CV5) (Figure 2). For validation,
to have the consistency of sample size for model validation making it comparable to each
other, forty percent of datasets A and C was used for CV1 and CV2 validation, while all
data points of datasets B and D were used for the CV3, CV4, and CV5 schemes. As a result,
there were 16 data points in the testing dataset for all CVs.

Table 4. Iterations and data partitions are used for model validation.

C2 C3 C4 C5 C6 C7

C1 † C1, C2 (I1 ‡) (I1) C1, C3 (I2) C1, C4 (I3) C1, C5 (I4) C1, C6 (I5) C1, C7 (I6)
C2 C2, C3 (I7) C2, C4 (I8) C2, C5 (I9) C2, C6 (I10) C2, C7 (I11)
C3 C3, C4 (I12) C3, C5 (I13) C3, C6 (I14) C3, C7 (I15)
C4 C4, C5 (I16) C4, C6 (I17) C4, C7 (I18)
C5 C5, C6 (I19) C5, C7 (I20)
C6 C6, C7 (I21)

† C1 = CP06-2400, C2 = CP07-1824, C3 = CP08-1968, C4 = CP72-1210, C5 = CP89-2143, C6 = HoCP04-838,
C7 = TCP93-4245. ‡ I = Iteration. Two cultivars in each iteration above were assigned to the validation dataset.
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Figure 2. Five cross-validation schemes (CVs) were designed for the breeding context used in
this study.

A linear regression (stepwise regression, lasso, and ridge) and non-linear regression
(random forest) were adopted to establish the prediction model estimating Gs and Chl,
using ten VIs as independent variables. Prediction accuracies (correlation coefficient; r and
root mean square error; RMSE) were evaluated based on mean numeric values from those
21 iterations. Because the same set.seed number was used for different algorithms, as well
as the sample size of the model validation, they are directly comparable. We used the lm
function in RStudio to obtain the stepwise regression. The “randomForest” package was
used to establish random forest while we used the “glmnet” package to obtain lasso and
ridge regression using RStudio. All model establishments were performed using RStudio.

3. Results
3.1. Soil Moisture and Weather Data across the Growing Season

Precipitation was recorded at 855.98 mm for the 2nd ratoon crop, while only 366.52 mm
was received for the 3rd ratoon crop (Figure 3). This was because the 3rd ratoon crop was
four months shorter than the twelve months of the 2nd ratoon crop. An early harvest
was implemented at the 3rd ratoon crop to prevent data loss because of suspected ratoon
stunting disease (RSD). However, the 3rd ratoon season was still dryer than the 2nd ratoon
season. Considering rainfall plus irrigation, sugarcane received only 1015.98 and 446.52 mm
during the 2nd and 3rd ratoon, respectively. At the 2nd ratoon crop, the cane encountered
drought stress for three cycles. One cycle was recorded at the tillering stage, and the
other two were observed at the elongation stage (Figure 4). Only one drought stress cycle
was observed at the tillering stage for the 3rd ratoon crop because of the interruption of
seasonal rain. Moreover, we observed symptoms of RSD at this ratoon, so early harvest
was implemented to prevent data loss.
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Figure 4. Soil moisture (Kpa) at 15 (a), 46 (b), and 79 cm (c) soil depth were collected throughout
the growing season and in four locations for each depth for the 2nd and the 3rd ratoon crops.
Numbers in parenthesis are the total duration of drought stress and the duration of stress at the
time of data collection, respectively. TS = tillering stage, ES = elongation stage, MS = maturity stage,
GS = germination stage. R1 and R2 after cultivar names represent replication of experimental units
where sensors were embedded.

3.2. Analysis of Variance and Correlation among the Studied Traits

Analysis of variance showed significant differences among the studied cultivars for
Gs under recovery at the 1st cycle and under stress at the 3rd cycle for the 2nd ratoon.
Significant differences among the seven cultivars of Chl for both periods for the 3rd cycle
were found at this ratoon. Overall, CP72-1210 and TCP93-4245 had the highest performance
for Gs, as well as Chl for both periods at the 2nd ratoon crop (Table 5). In contrast, CP89-
2143 and HoCP04-838 appeared to have the worst performance for those traits. At the 3rd
ratoon crop, a significant difference among the seven cultivars was found for Gs during the
recovery period, while that was found for Chl during the stress period. Overall, CP72-1210
and HoCP04-838 were found to have the best physiological performance, while Gs and Chl
of CP06-2400 and CP83-2143 were the worst (Table 6).

Table 5. Mean ± SD of stomatal conductance (mmol m−2s−1) and chlorophyll content (µmol m−2)
for the 2nd ratoon crop.

Cultivars
The 1st Cycle The 3rd Cycle

Gs.S † Gs.R Gs.S Gs.R Chl.S Chl.R

CP06-2400 240.6 ± 120.9 280.4 ± 37.0 c 164.9 ± 36.6 bc 211.1 ± 32.9 258.0 ± 10.5 abc 204.1 ± 17.5 ab

CP07-1824 292.0 ± 88.8 440.0 ± 96.4 a 206.2 ± 12.2 ab 221.9 ± 50.1 244.4 ± 35.6 bc 209.2 ± 25.7 a

CP08-1968 282.7 ± 71.7 329.7 ± 98.8 bc 209.5 ± 61.1 ab 246.0 ± 18.3 278.9 ± 31.7 ab 228.6 ± 43.7 a

CP72-1210 308.6 ± 131.8 394.3 ± 95.8 ab 207.3 ± 8.1 ab 231.4 ± 28.9 278.3 ± 2.7 ab 235.1 ± 38.6 a

CP89-2143 289.2 ± 106.9 286.8 ± 83.1 c 139.4 ± 22.7 c 198.8 ± 18.0 227.2 ± 21.8 c 198.7 ± 19.6 ab

HoCP04-838 280.5 ± 78.0 301.9 ± 83.9 bc 182.6 ± 59.6 bc 182.5 ± 63.3 226.3 ± 31.1 c 169.5 ± 31.8 b

TCP93-4245 336.8 ± 83.9 326.7 ± 38.4 bc 239.9 ± 45.1 a 240.1 ± 33.5 288.9 ± 30.3 a 216.7 ± 10.2 a

F-test ns ‡ * * ns ** *

CV (%) 28.57 19.05 19.78 16.09 9.87 12.78

† Gs.S = stomatal conductance collected under stress period, Gs.R = stomatal conductance collected under recovery
period, Chl.S = chlorophyll content collected under stress period, Chl.R = chlorophyll content collected under
recovery period. ‡ ns, * and ** indicate non-significant, significant difference at 0.05 and 0.01%, respectively. Means
in the same column with the same letters are not significantly different by LSD at p ≤ 0.05.
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Table 6. Mean ± SD of stomatal conductance (mmol m−2s−1) and chlorophyll content (µmol m−2)
for the 3rd ratoon crop.

Cultivars
The 3rd Ratoon Crop

Gs.S † Gs.R Chl.S Chl.R

CP06-2400 217.9 ± 38.1 195.6 ± 62.5 b 203.4 ± 19.3 bc 230.1 ± 14.2
CP07-1824 275.5 ± 22.7 300.6 ± 60.4 a 201.0 ± 13.7 c 262.1 ± 18.0
CP08-1968 233.0 ± 28.9 223.3 ± 48.3 b 224.2 ± 33.6 abc 249.2 ± 51.2
CP72-1210 259.2 ± 46.9 235.5 ± 29.6 ab 240.7 ± 39.0 ab 260.2 ± 19.7
CP89-2143 228.3 ± 25.6 179.2 ± 37.2 b 194.4 ± 17.1 c 232.3 ± 6.2

HoCP04-838 218.4 ± 18.3 294.4 ± 36.0 a 253.9 ± 30.0 a 295.9 ± 39.1
TCP93-4245 244.5 ± 52.7 241.4 ± 29.8 ab 226.4 ± 13.5 abc 241.4 ± 17.5

F-test ns ‡ * * ns

CV (%) 14.02 19.46 11.95 11.18
† Gs.S = stomatal conductance collected under stress period, Gs.R = stomatal conductance collected under recovery
period, Chl.S = chlorophyll content collected under stress period, Chl.R = chlorophyll content collected under
recovery period. ‡ ns and * indicate non-significant and significant difference at 0.05%, respectively. Means in the
same column with the same letters are not significantly different by LSD at p ≤ 0.05.

Gs during the recovery period was significantly greater than stress for both cycles
of stress at the 2nd ratoon crop (Figure 5). However, no significant difference was found
between these two periods at the 3rd ratoon crop. Unexpectedly, Chl under stress was
significantly greater than that of the recovery period at the 2nd ratoon crop, whereas the
contrast result was observed at the 3rd ratoon crop.
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Figure 5. Stomatal conductance (Gs) and chlorophyll content (Chl) averaged across seven sugarcane
cultivars under stress and recovery periods. (a,b,d) for the 2nd ratoon, (c,e) for the 3rd ratoon.

The correlation between physiological traits with tons of cane per hectare (TCH) is
shown in Figure 6. Gs was significantly correlated with TCH under the recovery period for
the 2nd ratoon crop, and under stress for the 3rd ratoon crop. A consistently significant
relationship between Chl with TCH was found for both periods and crops.
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Figure 6. Correlogram showing the association between physiological traits and tons of cane
per hectare (TCH) for the 2nd (a) and the 3rd ratoon crops (b). Gs = stomatal conductance,
Chl = chlorophyll content. S and R after each trait represent data collected at stress and recovery
periods, respectively. The number of 1 and 3 at the end of each trait of the 2nd ratoon crop represents
data collected at the 1st and 3rd cycle, respectively. * and ** indicate significant difference at 0.05 and
0.01%, respectively. n = 28.

The relationship between VIs with Gs and Chl is shown in Figure 7. Correlation
between VIs with Gs showed that all VIs were highly significantly correlated with Gs
(p < 0.01) for the 2nd ratoon. Six out of ten VIs achieved a correlation coefficient above
0.50 in this ratoon. A poorer coefficient was found at the 3rd ratoon, as compared to those
collected at the 2nd ratoon, and six out of ten VIs were found to be significantly related
to Gs, and none achieved above 0.50 of correlation coefficient at this ratoon. The result
shows that NDVI, NGRDI, and OSAVI had the highest coefficient with Gs for both ratoon
crops. For Chl, eight out of ten were significantly correlated with Chl at the 2nd ratoon crop,
while only five VIs were found to be related to Chl at the 3rd ratoon crop. Additionally, LCI,
NDRE, and CIRE had the highest correlation coefficient with Chl for both crops, and only
the TCARI index was negatively correlated with Chl for both crops.

3.3. Identification of Drought-Tolerant Cultivar
3.3.1. Cultivar Ranking Based on the Performance of Vegetation Indices (VIs)

Overall, the identification of drought-tolerant cultivars based on genotype by trait
biplot showed similar results to those derived from heatmap analysis. Genotypes appearing
in a section with specific traits indicate good performance relative to those traits. Based
on VIs, CP72-1210, and TCP93-4245 were classified as tolerant cultivars because most VIs
were located in the same section with those cultivars, while CP08-1968 and CP07-1824 had
a good performance for CIG and TCARI under the recovery period as they appeared in
the same section. No VI appeared in the same section as CP06-2400 and CP89-2143, so
they were classified as sensitive cultivars. A heatmap was generated based on the ten VIs
captured under stress and recovery periods, and this map provides the relative performance
of the seven sugarcane cultivars. A negative value shows poor performance of a given
trait, whereas a good performance is represented by a positive value. Based on VIs, the
heatmap shows that TCP93-4245 and CP72-1210 had an outstanding performance of VIs,
whereas that of CP06-2400 and CP89-2143 was poor. Similar results were observed when
physiological traits were used for identification (TCP93-4245 and CP72-1210 were classified
as a tolerant cultivar, while CP06-2400 and CP89-2143 were classified as a sensitive cultivar)
(Figure 8). More importantly, when all VIs, physiological traits, and TCH were used, the
same result was obtained, confirming that TCP93-4245 and CP72-1210 were tolerant, while
CP06-2400 and CP89-2143 were drought-sensitive cultivars.
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Figure 7. Correlogram showing the association among the independent variables and between
vegetation indices (VIs) with stomatal conductance (Gs) and chlorophyll content (Chl). GIG = green
chlorophyll index, GNDVI = green normalized difference vegetation index, LCI = leaf chlorophyll
index, NDRE = normalized difference red edge index, NDVI = normalized difference vegetation index,
NGRDI = normalized green, red difference index, OSAVI = optimized soil-adjusted vegetation index,
TCARI = transformed chlorophyll absorption in refection index, CIRE = red-edge chlorophyll index,
SPI = simple ration index. * and ** indicate significant differences at 0.05 and 0.01%, respectively.
n = 112 for Gs at 2nd ratoon crop while the rest n = 56.
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Figure 8. Identification of drought-tolerant cultivars of sugarcane-based on ten vegetation indices
(VIs) and physiological traits. (a–c) represent genotypes by traits biplot (GT biplot) based on VIs,
physiological traits, and all traits, respectively. (d–f) represent heatmap analysis based on VIs, physi-
ological traits, and all traits, respectively. GIG = green chlorophyll index, GNDVI = green normalized
difference vegetation index, LCI = leaf chlorophyll index, NDRE = normalized difference red edge
index, NDVI = normalized difference vegetation index, NGRDI = normalized green, red difference
index, OSAVI = optimized soil-adjusted vegetation index, TCARI = transformed chlorophyll absorp-
tion in refection index, CIRE = red-edge chlorophyll index, SPI = simple ration index, Gs = stomatal
conductance, Chl = chlorophyll content, TCH2 and TCH3 = tons of cane per hectare of the 2nd and
the 3rd ratoon crop, respectively. S and R at the end of each trait represent data collected under stress
and recovery stages, respectively.

3.3.2. Model Accuracy and Cultivar Ranking Based on Predicted Values Derived from
Prediction Models

Prediction accuracies (r and RMSE) of Gs and Chl obtained from various machine
learning algorithms are shown in Figures 9–12. CV1, a negative control, had the highest
r and lowest RMSE due to overfitting for all algorithms and traits. For the Gs model, a
stepwise regression was completely off when it was used to predict the performance of
cultivars in an untested crop/environment with errors of 1712 and 1611 mmol m−2s−1

for CV2 and CV5, respectively. Similarly, the RMSE of penalized linear regressions (lasso
and ridge) was also high in such scenarios with an error greater than 300 mmol m−2s−1.
Only the random forest (a non-linear regression) had an acceptable RMSE when it was
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used in those scenarios, although its correlation coefficients were low (0.05 and 0.16).
However, linear models (stepwise, lasso, and ridge) outperformed a non-linear model
in the tested crop/environment (CV3 and CV4). Additionally, decent accuracies were
observed in CV3 for all algorithms. Similar results were observed for the Chl model. An
unreasonably high RMSE was observed when we used linear models to predict Chl in the
untested crop/environment (CV2 and CV5) (Figure 12). Like the Gs model, only random
forest (a non-linear model) seemed promising to be used in such scenarios as it had the
highest r (0.44 and 0.50) and lowest RMSE (36.6 and 29.3 µmol m−2) for CV2 and CV5,
respectively. However, it underperformed linear models when it was tested in the same
crop/environment (CV3 and CV4). All models had higher accuracies when training and
validation data were obtained in the same crop/environment.
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Cultivars ranked based on measured and predicted values are shown in Tables 7 and 8.
Overall, at least two out of three were common cultivars that fell under the top-three ranking
based on both measured and predicted values for both Gs and Chl and under both periods.
Under stress period, TCP93-4245 and CP72-1210 fell into the top three—three cultivars
ranking based on measured values for both Gs and Chl and for both ratoon crops. This result
agreed with those derived from the top-three ranking based on predicted values, although
TCP93-4245 was not included in the ranking for Gs at the 3rd cycle of the 2nd ratoon crop
(Table 7). Under the recovery period, TCP93-4245 and CP72-1210 appeared at the top-three
ranking based on measured values for both Gs and Chl at the 2nd ratoon. Similar results
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were observed when cultivars ranked based on predicted values, although TCP93-4245 was
not included in the ranking for Gs at the 3rd cycle (Table 8). Based on the prediction model,
TCP93-4245 and CP72-1210 were the most frequent cultivars in the top-three ranking, and
this result was in accordance with identification based on VIs performance.

Table 7. Top-three cultivar ranking based on measured (MVs) and predicted values (PVs) for stomatal
conductance (Gs) and chlorophyll content (Chl) under stress period.

Crops Traits Model CVs † Cultivars Ranking
Based on MVs MVs PVs Ranking

Based on PVs

The 2nd
ratoon

Gs
(1st)

Ridge CV3
TCP93-4245 1 336.8 313.3 1
CP72-1210 2 308.6 292.8 2
CP07-1824 3 292.0 274.9 4

Gs
(3rd)

Ridge CV3
TCP93-4245 1 239.9 211.6 4
CP08-1968 2 209.5 215.1 2
CP72-1210 3 207.3 214.0 3

Chl
(3rd) Lasso CV3

TCP93-4245 1 288.9 275.4 2
CP08-1968 2 278.9 242.2 4
CP72-1210 3 278.3 275.8 1

The 3rd
ratoon

Gs Random forest CV5
CP07-1824 1 275.5 210.2 3
CP72-1210 2 259.2 263.5 1

TCP93-4245 3 244.5 246.9 2

Chl Random forest CV5
HoCP04-838 1 253.9 235.9 3
CP72-1210 2 240.7 240.1 2

TCP93-4245 3 226.4 245.4 1
† CV, cross validation.

Table 8. Top-three cultivar ranking based on measured (MVs) and predicted values (PVs) for stomatal
conductance (Gs) and chlorophyll content (Chl) under recovery period.

Crops Traits Model CVs † Cultivars Ranking
Based on MVs MVs PVs Ranking

Based on PVs

The 2nd
ratoon

Gs
(1st)

Ridge CV3
CP07-1824 1 440.0 319.0 5
CP72-1210 2 394.3 339.6 3

TCP93-4245 3 326.7 376.7 1

Gs
(3rd)

Ridge CV3
CP08-1968 1 246.0 237.8 2

TCP93-4245 2 240.1 215.3 5
CP72-1210 3 231.4 228.5 3

Chl
(3rd) Lasso CV3

CP72-1210 1 235.1 243.5 1
CP08-1968 2 228.6 212.2 4

TCP93-4245 3 216.7 230.0 3

The 3rd
ratoon

Gs Random forest CV5
CP07-1824 1 300.6 276.2 2

HoCP04-838 2 294.4 270.3 4
TCP93-4245 3 241.4 277.5 1

Chl Random forest CV5
HoCP04-838 1 295.9 260.1 1
CP07-1824 2 262.1 236.2 4
CP72-1210 3 260.2 239.8 3

† CV, cross validation.

4. Discussion
4.1. Soil Moisture and Weather Data across the Growing Season

Precipitation and soil moisture data are important to determine whether sugarcane
is under drought. Drought incidents were observed for the studied years with rainfall of
855.98 and 366.52 mm, for the 2nd (12 months) and 3rd (8 months) ratoon crops, respectively.
Sugarcane received water from rainfall combined with supplemental irrigation recorded



Remote Sens. 2024, 16, 1433 16 of 21

only 1015.98 and 446.52 mm for the 2nd and the 3rd ratoon, respectively, in which they
were lower than the water requirement of 1500 to 2000 mm per season [46], confirming
that sugarcane in this study had been under drought stress. As sugarcane is most sensitive
to water-deficit stress during tillering and elongation stages [32], all four drought cycles
imposed in this study were at those stages (two cycles per each stage). The 3rd ratoon crop
experienced drought more severe and longer than the 2nd ratoon crop (Figures 3 and 4),
regardless of the number of cycles. Duration of stress varied from cycle to cycle due to an
interruption of rain, and availability of irrigation resources. Because of this, we were not
able to keep it consistent.

4.2. Analysis of Variance and Correlation among the Studied Traits

Physiological traits such as Gs and Chl have been suggested as potential selection
criteria in sugarcane breeding programs for abiotic stress [12,44,47]. Although the number
of cultivars used in the experiment was small, differences among them for Gs and Chl
were observed, indicating that variation in those traits existed for this germplasm. Overall,
CP72-1210 and TCP93-4245 were outstanding for both periods (stress and recovery) as
well as both traits, whereas CP06-2400 and CP89-2143 were on the opposite side. After
drought relief, stomata were open with a higher conductance under-recovery (Figure 5).
The same result was observed in rice reported by Dien et al. [48]. Most cultivars had higher
Gs after drought relief, compared to those under stress, but no difference between stress
and recovery of Gs for TCP93-4245 was observed for both ratoons. Our hypothesis is
that mild to moderate drought stress (6 to 27 days at the time of data collection) imposed
in this study was not severe enough to trigger the stomata closing mechanisms of that
cultivar, being drought tolerant. Surprisingly, a Chl reduction was observed during the
recovery period at the 2nd ratoon crop (Figure 5). This was because sugarcane was entering
a maturity phase when the assessment during recovery was being performed, in which
chlorophyll breakdown was ongoing due to leaf senescence. Correlations of Gs with TCH
were variable ranging from 0.06 to 0.61 (Figure 6). Our results were in accordance with
Basnayake et al. [44], who found a correlation among these traits ranging from −0.29 to
0.94 in sugarcane, depending on the date of assessment. Similarly, correlations between Gs
and sugarcane yield, ranging from 0.06 to 0.91 in well-water, and −0.81 to 0.77 in water
deficit were recently reported by Hoffman et al. [18]. In addition, positive correlations
between Gs and yield have been observed in other crops such as rice [49], wheat [50,51],
and cotton [50]. However, positive correlations of Chl with TCH were consistent across
periods (stress and recovery) and ratoon crops. Comparable findings were observed in
sugarcane [52] and in other crops such as wheat [53] and rice [54]. Maintaining high Gs
and retaining Chl are indicators of drought-tolerant genotypes [55] because crop biomass
and yield depend upon CO2 assimilation and photosynthesis [49].

On average, lower correlations between VIs with Gs and Chl were observed in the 3rd
ratoon crop, where drought stress was more severe and prolonged, compared to those in the
2nd ratoon crop, indicating higher correlations between those traits were observed when
they were measured under mild to moderate drought stress, rather than severe condition.
This observation provides a lead for further investigations. NDVI, NGRDI, and OSAVI had
the greatest correlation coefficient with Gs for both ratoon crops. This result was similar to
those reported by Zhang et al. [17] who found that NDVI and OSAVI had the consistently
highest correlation with Gs among eight VIs in maize for both studied years. The formulas
of those three VIs have a red band in common. The literature review that supports this
observation is that the red-light response is considered the primary mechanism linking
stomatal behavior with mesophyll demands for CO2 [56]. In the same way, the promising
VIs that showed the highest correlation with Chl for both crops were LCI, NDRE, and CIRE.
In addition, NIR and red edge were common bands in their formulas. Red edge has been
found to be highly related to Chl by many reports [34,57,58].
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4.3. Identification of Drought-Tolerant Cultivar

Traditional plant phenotyping becomes a bottleneck in plant breeding due to its labor-
intensive, and time-consuming nature. In this study, we utilized the VIs as indicators to
identify drought-tolerant cultivars, compared to the traditional hand-held method, aiming
to investigate if the traditional method could be replaced by the VIs. Additionally, geno-
type by traits biplot and heat map analyses were used as a statistical tool for identification.
Biplot is an appropriate tool for identifying cultivars and traits interaction, where cultivars
are considered as lines and traits as testers [59], while the Heatmap analysis provides the
relative performance of the cultivars [20] as well as the ranking of cultivars based on their
performance. A potentially important finding of this study was the fact that when the tradi-
tional method and VIs were used for the identification of drought-tolerant cultivars, similar
results were observed (Figure 8), indicating its potential for a replacement of the traditional
method. Even though many studies have reported the use of physiological [12,47,60] and
VIs parameters [15,19] for identifying drought-tolerant genotypes, very few studies have
compared the efficiency of these two criteria in such identification. Recent research reported
by Wen et al. [20] was in accordance with our study in which they found that using VIs
for identifying drought-tolerant genotypes of wheat provided similar results, compared to
the yield-based drought tolerance indices criteria. Elfanah et al. [61] used hyperspectral
reflectance, along with agro-physiological traits for the identification of salt-tolerant wheat
genotypes, but their objectives were not to compare the efficiency among these two criteria.
Our results confirmed the recent findings by Wen et al. [20], indicating the potential of VIs
to be used as an alternative, inexpensive, and high throughput assessment in screening
drought-tolerant cultivars. Additionally, TCP93-4245 and CP72-1210 were identified as
drought-tolerant cultivars, whereas CP89-2143 and CP06-2400 were identified as drought-
sensitive cultivars, according to heatmap and biplot analyses. As expected, cultivars with
good performances under stress also resulted in decent performances during the recovery
period and vice versa.

Gs and Chl prediction models have been successfully reported in the literature [17,21],
but no validation scheme designed especially for plant breeding applications has been re-
ported where not only genotypes but also crop/environment, are considered. In this study,
we designed validation, especially for the plant breeding context. Based on r and RMSE,
linear models (stepwise, lasso, and ridge) outperformed non-linear for both the Gs and Chl
models in a situation where training and validation datasets were obtained from the same
crop/environment. However, that was not the case when those datasets were derived from
different crops/environments (CV2 and CV5). In such a scenario, random forest showed the
highest accuracy among those algorithms. This result was in accordance with our previous
findings in yield predictions [62]. Therefore, when it comes to using the prediction model
applied to a new environment (untested), a random forest would be recommended. On
average, all models performed better when they were applied in a tested crop/environment
(CV3 and CV4) compared to those in an untested crop/environment (CV2 and CV5). Sim-
ilar results were reported by Adak et al. [45] and Khuimphukhieo et al. [62]. This result
supported the previous findings by Adak et al. [63] who suggested that the most chal-
lenging scenario is predicting the performance of genotypes under untested genotypes in
untested environments (CV5).

When it comes to selecting genotypes for the further stage of plant breeding, genotype
ranking of target traits is the ultimate consideration for such selection. Therefore, the
cultivars were ranked based on measured and predicted values. Overall, the prediction
model was able to differentiate the cultivars with good performance from those with poor
performance, as the results based on measured values, in relation to predicted values,
were roughly comparable. At least two out of three cultivars (66.7%) were common in the
top-three ranking for Gs and Chl based on measured and predicted values. Moreover, all
cultivars were common in the rankings for those traits under stress at the 3rd ratoon. This
indicates the potential to predict Gs and Chl of sugarcane using VIs derived from UAS for
genotype selection.
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The result of this study showed that both identification methods (VIs performance and
prediction model) are applicable for identifying drought-tolerant cultivars. Considering
identification based on a prediction model, traditional phenotyping is still needed to
obtain a reliable model because this method relies on the association between independent
variables with target traits and the reliability of a prediction model, where a large number
of the training datasets (ground truth data) is required to obtain such a model. In contrast,
with identification based on VIs performance, traditional phenotyping may not be necessary
as the selection is solely made on VIs itself.

4.4. Limitations and Future Investigations

The inconsistent result of a prediction model is always challenging (Figures 9–12),
and this is because plant phenotypes are complex and governed by multiple genes, envi-
ronments, and their interaction. Additionally, there were possibilities in which prediction
models could mislead plant breeders in the wrong direction (Tables 7 and 8). For the
identification based on VIs, this approach might not be useful in a situation where there is
very little variation of VIs among the studied genotypes. This situation is likely to happen
when siblings and offspring, which are genetically similar, are screened.

Further investigation is needed to evaluate if the results of the present study could
be replicable in the early stage of genotype selection, where more diverse genotypes are
tested. Additionally, the proposed approach should be validated in multiple locations to
see if the approach is still reliable in extreme environments. Moreover, the identification
of drought-tolerant genotypes based on VIs, compared to biochemical parameters and
molecular markers is also interesting.

5. Conclusions

This study revealed positive correlations between Gs and Chl with sugarcane yield,
confirming previous research. NDVI, NGRDI, and OSAVI were promising indices to
assess Gs, while LCI, NDRE, and CIRE had the potential to assess Chl, indicating the
ability of VIs in assessing drought stress. Moreover, the same result was obtained when
VIs and physiological parameters were used for the identification of drought-tolerant
cultivars, indicating that VIs derived from UAS have the capacity to perform equally
to the traditional method for such identification. In prediction models, linear models
outperformed the non-linear model when training and validation data were derived from
the same crop/environment, whereas the non-linear model was outstanding in untested
crop/environment for both Gs and Chl. The results from this study suggest that VIs could
be used as an alternative, high throughput, and inexpensive assessments for identifying
drought tolerance in sugarcane breeding. More importantly, this approach would be
the most useful in a situation where there are a ton of genotypes to be screened with
limited resources.
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