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Abstract: Unmanned aerial vehicles (UAVs) provide images at decametric spatial resolutions. Their 
flexibility, efficiency, and low cost make it possible to apply UAV remote sensing to multisensor 
data acquisition. In this frame, the present study aims at employing RGB UAV images (at a 3 cm 
resolution) and multispectral images (at a 16 cm resolution) with related vegetation indices (VIs) for 
mapping surfaces according to their illumination. The aim is to map land cover in order to access 
temperature distribution and compare NDVI and MTVI2 dynamics as a function of their illumi-
nance. The method, which is based on a linear discriminant analysis, is validated at different periods 
during the phenological cycle of the crops in place. A model based on a given date is evaluated, as 
well as the use of a generic model. The method provides a good capacity of separation between four 
classes: vegetation, no-vegetation, shade, and sun (average kappa of 0.93). The effects of agricultural 
practices on two adjacent plots of maize respectively submitted to conventional and conservation 
farming are assessed. The transition from shade to sun increases the brightness temperature by 2.4 
°C and reduces the NDVI by 26% for non-vegetated surfaces. The conservation farming plot is found 
to be 1.9 °C warmer on the 11th of July 2019, with no significant difference between vegetation in 
the sun or shade. The results also indicate that the NDVI of non-vegetated areas is increased by the 
presence of crop residues on the conservation agriculture plot and by the effect of shade on the 
conventional plot which is different for MTVI2. 

Keywords: unmanned aerial vehicle (UAV); optical sensor; thermal sensor; multivariate analysis; 
linear discriminant analysis (LDA); agroecology; conservation agriculture; shaded; sunny;  
temperature; vegetation indices (VIs); normalized difference vegetation index (NDVI); modified  
triangular vegetation index 2 (MTVI2) 
 

1. Introduction 
Since the 1960s, remote sensing allowed for a link to be developed between the re-

flectance and absorbance of incident light from leaves and the emittance of vegetation [1]. 
More recently, Hatfield et al. [2], published a review on the evolution of knowledge con-
cerning the spectral properties of vegetation: properties related to leaf thickness, variety, 
canopy shape, leaf age, and nutrient and water status. A relationship has also been 
demonstrated between soil preparation and variations in soil color. This results from the 
impact of surface degradation on cultivated soils and the shading created by micro-relief, 
vegetation, and the coarse elements that form the roughness [3]. The agronomic useful-
ness of remote sensing has thus been applied to both vegetation and soil conditions [4,5]. 
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Following initial investigations that described the optical properties of canopies, ap-
plications have progressively evolved towards the use of vegetation indices (VIs) [5]. 
These indices provide an estimate of the biophysical characteristics of the plant [6] by 
combining the reflectance of two or more spectral bands [7–9]. By applying a VI, an RGB 
or multi-spectral image is converted into a one-dimensional greyscale image. VI sugges-
tions are abundant in the literature [10]. One of the most widely used VIs for estimating 
leaf area is the NDVI (normalized difference vegetation index) [11,12]. Many reviews ap-
proach these indices differently: Hamuda et al. [13] presented a review where VIs were 
used to segment images in order to isolate plant pixels; in a review published in 2017, Xue 
et al. [10] described the advantages and disadvantages of more than 100 vegetation indices 
for explaining the functioning of vegetation cover. Some studies use vegetation indices for 
more specific applications. As an example, Hunt et al. [14] used them for detecting crop 
nitrogen requirements; Giovos et al. [15] used them to track and monitor vineyard health, 
and Jantzi et al. [16] used them for monitoring the development of invasive plant species. 
All these studies were based on different platforms and levels of resolution (satellite, air-
borne, unmanned aerial vehicles (UAVs)) as well as different applications (monitoring, 
estimation of water stress, delimitation of management zones, etc.). Among these applica-
tions for the classification or characterization of canopy functioning, it seems to us com-
plementary to distinguish between elements in the shade or in the sun in order to under-
stand how the canopy functions. This is now possible thanks to the resolution of UAV 
images. 

UAVs can be equipped with a wide range of sensors and can cover a wide range of 
applications [17]. They rapidly provide a global view of the state of crops, enabling farm-
ers to react faster and reduce management costs [18,19]. Indeed, this type of remote sens-
ing does not require any overflight by aircraft; it provides images at decimeter-scale reso-
lution and produces precise and immediate information on crop conditions. Singh et al. 
[20] summarized the use of these images in precision agriculture. Many studies combine 
the contributions of several sensors (RGB, MS, thermal) for different types of monitoring, 
such as vine monitoring, water deficit, or plant phenotyping. Matese et al. [21] described 
implementing a UAV system equipped simultaneously with three sensors in order to per-
form various monitoring operations on vines. Intra-vineyard variability was assessed by 
a multispectral (MS) sensor, leaf temperature by a thermal sensor, and the analysis of 
missing plants by an RGB sensor. The decametric resolution of the UAV sensor allows for 
the temperature of pure pixels in the canopy to be measured. In addition, the water status 
of other crops can be assessed using a thermal deficit indicator [22–26]. Feng et al. [27] 
presented a synthetic review of recent applications of UAV remote sensing equipped with 
various sensors dedicated to plant phenotyping. Furthermore, the correlation between 
temperature and phenotyping was investigated by Sagan et al. in 2019 [28] when temper-
atures provided by ICI and FLIR thermal cameras were compared. Maimaitijiang et al. 
[29] also combined UAV, RGB, multispectral, and thermal data to predict plant pheno-
types using neural networks (extreme machine learning (ELM)). 

Extensive research has been carried out on the accurate classification of crops from 
UAV remote sensing images using various machine learning and deep learning algo-
rithms [30,31], with or without employing vegetation indices. Recently, Wang et al. [30] 
compared several supervised and unsupervised machine learning algorithms (support 
vector machine (SVM), maximum likelihood classification (MLC), minimum distance clas-
sification (MDC), k-means, and ISODATA classification) to detect the percentage of vege-
tation cover during urban turf development. Their study focused on the use of multi-spec-
tral data and UAV-acquired RGB data. Avola et al. [31] demonstrated the effectiveness of 
spectral indices in the recognition of olive tree grafts when compared to univariate 
(ANOVA) and multivariate (principal component analysis—PCA, and linear discriminant 
analysis—LDA) statistical approaches. 

The combined multi-sensor approach embedded in UAVs using high-resolution im-
agery to monitor agricultural cover has therefore grown over recent years in response to 
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a range of issues. This also benefits from the potential of machine learning applied at dec-
ametric-scale resolution [19]. An application for monitoring the behavior of plant canopies 
raises a challenge in the context of climate change, which is impacting the microclimatic 
conditions of agricultural canopies particularly. Indeed, the decametric-scale spatial reso-
lution provided by UAV-based remote sensing offers the potential to identify and separate 
very fine landscape features. This, therefore, represents a significant challenge for fine-
tuning the evaluation of the response of canopies to hazards. 

Furthermore, the effects of global change lead to reduced soil moisture, thus an in-
creasing frequency of severe and extreme droughts [32] and, consequently, a deterioration 
in ecosystem services. An adaptation of the agricultural model is thus crucial for the sus-
tainability of a productive agri-food sector (IPCC, [33,34]). This necessity to manage nat-
ural resources led Altieri [35] to publish a book called “The Scientific Basis of Alternative 
Agriculture”, where the foundations of conservation agriculture were established as an 
alternative to conventional farming. Unlike conventional agriculture, conservation agri-
culture proposes to develop a range of conservation practices enabling ecological im-
provements to be implemented in farming systems. The final objective would be to en-
hance microclimatic management in terms of solar energy efficiency, water use, and air 
circulation by improving soil conservation. 

Numerous studies are currently being carried out on the measurement of the impact 
of each procedure associated with these two models. The Bag’Ages project (“Bassin Adour-
Garonne: quelles performances des pratiques agroécologiques?”—“Adour-Garonne basin: what are 
the performances of agro-ecological practices?”), 2017–2021, funded by Agence de l’Eau 
Adour-Garonne (Adour Garonne Water Agency, France) has compared the impacts of 
these two types of farming models in south-western France. It focuses particularly on 
quantitative and qualitative water management, using in situ and remote sensing studies. 
Two contiguous plots of maize were compared. They are located at the Estampes experi-
mental site, which is part of the CESBIO Regional Spatial Observatory “https://osr.ces-
bio.cnrs.fr/ (accessed on 30 march 2024)”. Results highlight, for example, differences in 
temperature and air humidity of the order of 2K and 10%, respectively, between both sites. 
The present objective aims at separating the soil cover and light conditions (vegeta-
tion/non-vegetation, shade/sun) on these two contiguous plots where different agronomic 
practices have been implemented: i.e., conventional agriculture (CONV) vs. conservation 
agriculture (AGRO). The discretization of the land cover classes allows us to assess the 
differences in temperature and associated vegetation indices by discussing the separabil-
ity of the method used. The effect of agricultural practices on the distribution of these 
variables will therefore be described. This very high-resolution diagnosis is essential for 
performing spatial analyses on the canopy’s behavior, particularly in terms of stress, phe-
nology, and radiation balance. 

The aim of this study was to assess the impact of solar irradiation on four types of 
soil cover, as a function of agricultural practices, and to compare the dynamics of NDVI 
and MTVI 2 at decametric resolution. 

2. Materials 
2.1. Study Site 

The study site is located in France, in the Occitanie region, more precisely in the Gers 
department at Estampes (Lambert-93: 480,072.12 m/6,260,508.54 m). This site is one of 17 
experimental sites studied in the frame of the Bag’Ages project. It is part of CESBIO Re-
gional Spatial Observatory for long-term in situ monitoring, which began in 2017. This 
experimental site consists of two contiguous agricultural plots located on clay-limestone 
slopes identified as Luvisol redoxisol by the French Soil Classification (AFES [36]), and 
locally called “Boulbènes”. During the year 2019, the twin plots were cultivated with 
maize. The northern plot (AGRO) (Figure 1) has been cultivated under conservation agri-
cultural methods for the past twenty years. Practices include no-till, cover cropping, and 
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the use of crop residues on the soil surface in between two main crops. The southern plot 
(CONV) was farmed according to conventional agriculture, with deep ploughing and bare 
soil during the intercropping periods. 

 
Figure 1. The study site, represented with a Lambert-93 projection, with altitudes (m) on a Google 
satellite image. 

Thanks to this difference in cultivation methods, it is possible to assess the impact of 
practices on the biophysical functioning of cultivated areas. Both plots, which are subject 
to identical climatic conditions, differ in terms of soil properties (organic matter content, 
soil density, soil hydrodynamic properties, and moisture dynamics [37]). They also differ 
in terms of the optical properties of the soil, soil cover, spatial arrangement, canopy de-
velopment, and carbon fluxes and stocks [38]. Current investigations [39] highlight, in 
particular, that these differences in practices impact the distribution of photosynthetically 
active radiation (PAR). 

2.2. Agricultural Management 
The total surface area of the monitored agricultural land covering the Estampes plots 

is 20 ha: 10.4 ha for the AGRO plot and 9.3 ha for the CONV plot. The area selected on 
each plot is 8.4 ha. The altitude of these two neighbouring agricultural plots ranges be-
tween 214 m to 229 m. The average altitude measured by UAV imagery, at 3 cm resolution, 
using an elevation model during time of uncovered ground, is 220.2 m for the AGRO plot 
and 222.1 m for the CONV plot. The slope can reach 50.7° on the CONV plot, whereas it 
does not exceed 33.4° on the AGRO plot (Figure 1). 

During the 2019 growing season, the AGRO plot was used for silage maize and the 
CONV plot for grain maize. The CONV plot was sown earlier (21 March 2019), implying 
that the crop grew slightly in advance until the month of July. The AGRO crop was sown 
on the 30 April 2019. 

Both plots were irrigated by sprinklers. Despite a similar sowing density, the spacing 
between rows was greater in the CONV plot than in the AGRO plot (0.8 m vs. 0.4 m). In 
addition, the distance between plants was lower for the CONV plot (0.12 m vs. 0.25 m) 
(Table 1). Also, for the same number of irrigations (4 turns), the supply was lower for 
AGRO with 105 mm versus 120mm for CONV. Both plots were harvested simultaneously 
(between the 19 and 21 July). 
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Table 1. Technical itinerary and phenological benchmarks for both AGRO and CONV plots. 

 Conservation Practice: AGRO Plot Conventional Practice: CONV Plot 

18 June 2019 

Crop residues (n − 1, weeds) & Corn emergence (4–5 
leaf stage) 

Inter-rows: 0.4 m/inter-feet: 0.25 m 
Sprinkler irrigation: 105 mm 

Corn (8–9 leaf stage) 
Inter-rows: 0.8 m/inter-feet: 0.125 m  

Sprinkler irrigation: 120 mm 

11 July 2019 Corn (8–9 leaf stage) Corn flowering 

15 September 2020 Two vegetation stages: North Corn senescence, South 
Late Flowering corn. Soybean senescence 

During the 2020 cropping season, the types of crops were different between both 
plots: maize was cultivated on the AGRO plot while soya was cultivated on the CONV 
plot. This difference is useful for testing the genericity of the method. 

Independent of the type of crop, the seed rows on both plots had an east–west orien-
tation, which thus constrained the movement of shadow zones during the day. 

2.3. Data Used in the Study 
2.3.1. UAV Data 

The UAV images were collected under clear sky conditions using a Sensefly eBee 
Classic rear-propeller UAV equipped with a 20 million pixels natural colour (RGB) 
S.O.D.A. camera (SenseFly, Cheseaux-sur-Lausanne, Switzerland), a MultiSPEC 4C mul-
tispectral sensor (Airinov, Paris, France), and a Thermomap thermal sensor (SenseFly, 
Cheseaux-sur-Lausanne, Switzerland). The aircraft was guided by a flight plan and flew 
at an altitude of 120 m. It was stabilized by an inertial central unit and could obtain images 
with a spatial resolution of about 3 cm for the RGB images, about 13 cm for the MS images 
and 20 cm for the thermal images (Table 2). Since a flight lasted about 30 min, about 2 h 
elapsed between the RGB and thermal sensor flight. Images were acquired throughout the 
2019 growing season, with the first acquisition in March 2018 and the last in September 
2020. An ortho-rectified mosaic, with differential GPS centimeter calibration, was pro-
duced using Pix4D (Pix4D S.A., Prilly, Switzerland) from more than 300 shots, each meas-
uring 6000 × 4000 pixels (65% linear and 70% lateral coverage). It covered a surface of 
about 60 ha located in the center of the concerned area and involved approximately 29,600 
× 337,600 pixels. The images are precisely recalibrated by incorporating Ground Control 
Points, targets placed on the ground whose coordinates are measured using a differential 
GPS. The coordinates of these targets are recalculated in post-processing to improve their 
accuracy (GPS Pathfinder Office software 5.60). Moreover, for the multispec4C, before 
each flight, an automatic radiometric calibration is carried for each sensor. 

Deployment of the present methodology was based on RGB imagery, which is sup-
plied in digital counts. The other images were used for validation purposes. In the present 
work, RGB imagery has been chosen for its resolution. The 11th of July 2019 was chosen 
as a reference date for the study, as the ground cover includes crop residues, bare soil, and 
vegetation at various stages of development (Table 1). 

Table 2. Technical characteristics and acquisition periods of the UAV imagery. 

 Flight Date Start Flight Hour Flight Altitude [m] Resolution [m] 
Multi Spectral 2019-06-18 12:57 PM 134 0.14 

(multiSPEC4C sensor) G 550 nm - 2019-07-11 11:49 AM 115 0.12 
R 660 nm—RE 735 nm—NIR 790 nm 2020-09-15 11:11 AM 134 0.14 

Thermal (Thermomap sensor) T°1—2019-07-11 12:49 PM 85 0.16 
7.2 & 13.5 nm T°2—2019-07-11 03:10 PM 85 0.16 

RGB 2019-06-18 12:12 PM 123 0.03 
(SODA senso) 2019-07-11 10:28 AM 115 0.03 
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R 450 nm—G 520 nm—B 660 nm 2020-09-15 10:35 AM 123 0.03 

The thermal images, in brightness temperature, contributed to the assessment of the 
impact of sunshine on the soil and vegetation. The reflectance MS images were used to 
calculate the NDVI and MTVI2 indices (Table 2). 

2.3.2. Sample Data 
Samples useful for detection were separated according to (i) their exposition to direct 

or indirect sunlight (sun and shade) and (ii) the type of ground cover. The samples were 
collected from the RGB image using photo interpretation. Given the accuracy of RGB im-
ages, the accuracy of DGPS (Differential Global Positioning System), the errors related to 
the orthorectification of UAV images, and the reality observed in the field or by the sensor, 
the collection of GPS points in situ was considered unfeasible [40]. The photo-interpreted 
data was used for identifying four classes: vegetation in the sun (VS), vegetation in the 
shade (VSH), no vegetation in the sun (NVS), and no vegetation in the shade (NVSH) 
(Figure 2). Indeed, the two types of ground cover present need to be discriminated in or-
der to distinguish the areas that are in the sun and in the shade at nadir observation during 
the time of the RGB flight (Table 2). 

In order to minimize any operator bias during photo interpretation, the data was col-
lected by two separate operators. These data were distributed over the plot and included 
an unequal number of points since they depend on the class and the operator (Figure 2). 
During July, given the stage of vegetation development and the time of the flight (solar 
noon) (Table 1), the observation acquired by a remote sensing sensor at the nadir associ-
ated to shade was less present and in lower quantities. 

 
Figure 2. (a) Positioning of sample class types by operators (A or B) on the UAV image of the 11 July 
2019. (b) Frequency of sampling points according to land use type and operator (11 July 2019). 

The non-vegetated class is associated with bare soil on the CONV plot or to soil cov-
ered with crop residues on the AGRO plot. The shaded non-vegetated class (NVSH) rep-
resents soil/residue areas shaded by the ground (due to its irregularities) or by spontane-
ous vegetation. The vegetation class corresponds to maize crops but also to areas occupied 
by weeds. In both classes, the term “sun” represents areas that visually benefit from direct 
sunlight in each RGB image. In contrast, the word “shade” in the RGB images indicates 
the visual impact of indirect solar radiation. Shaded vegetation is a more complicated class 
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to identify, especially when the canopy’s development stage only consists of a few leaves 
and when the leaves are only a few centimeters wide (Table 1). 

3. Method for Automatic Detection of Shaded and Sunlit Surfaces 
The process used to analyse the impact of solar irradiation on temperature and veg-

etation indices for pixels with and without vegetation is illustrated in the synoptic dia-
gram in Figure 3. 

 
Figure 3. Synoptic diagram. 

3.1. Vegetation Indices (VI) 
In order to improve the detection of sunshine according to the type of land cover, 

several of the most commonly used vegetation indices were derived from the original 
spectral bands (R, G, B) (Table 3). The colour index for vegetation (CIVE), the vegetation 
difference in the visible band index (VDVI), the excess green indices (ExG and ExGR) and 
the combined indices (COM [8,41]) are all designed to identify and extract the presence of 
green vegetation. The modified green-red vegetation index (MGRVI) and the red-green-
blue index (RGBVI) are considered as phenology indicators and can contribute to biomass 
estimation. The Red-Green Ratio Index (RGRI) is designed to estimate the chlorophyll 
content. For soil, Escadafal et al. [3] demonstrated how soils can be characterised by indi-
ces relating to the brightness of colour: these include colour saturation (SI), intensity (SCI, 
HUE) or brightness (BI). The Vegetation Colour Index reveals the difference between red 
and green and is used for separating the two types of cover (presence and absence of veg-
etation). 

Table 3. Vegetation Indices (VI) used in the study (16 vegetation indices from R, G and B bands and 
2 Vegetation Indices from multispectral data). 

VI Description Equation Reference 
BI Brightness Index sqrt ((R^ + G2 + B2)/3) Richardson & Wiegand [42] 

SCI Soil Colour Index (R − G)/(R + G) Mathieu et al. [43] 
GLI Green Leaf Index (2 × G − R − B)/(2 × G + R + B) Louhaichi et al. [44] 
HI Hue index (2 × R − G − B)/(G − B) Escadafal [3] 
Si Spectral Slope Saturation Index (R − B)/(R + B) Escadafal [3] 

VARI 
Visible Atmospherically Resistant In-

dex (G − R)/(G + R − B) Gitelson et al. [45] 
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HUE Overall Hue Index arctan(2 × (B − G − R)/30.5(G − R)) Escadafal [3] 
BGI Blue green pigment index B/G Zarco-Tejada et al. [46] 

CIVE Colour Index of Vegetation Extrac-
tion 

(0.441 × R) − (0.881 × G) + (0.385 × B)+ 
18.78745 

Kataoka et al. [47] 

COM2 Combined Indices (COM2) (0.36 × E × G) + (0.47 × CIVE) + (0.17 × 
(G/(R0.667 × B0.333))) 

Guerrero et al. [42] 

RGRI  R/G Gamon and Surfus [48] 

MGRVI Modified Green Red Vegetation In-
dex 

(G2 − R2)/(G2 + R2) Bendig et al. [49] 

RGBVI Red Green Blue Vegetation Index (G2 − R × B)/(G2 + R*B) Bendig et al. [49] 
EXG Excess Green Index 2 × G − R − B Woebbecke et al. [50] 

EXGR Excess Green minus Red Index ExG − (1.4 × R − G) Meyer and Neto [51] 
Colour In-

dex Colour Index R − G “Non-normalised index, no 
specific reference” 

NDVI Normalized Difference Vegetation In-
dex 

NIR − R/NIR + R Tucker et al. [12] 

MTVI2 
Modified Triangular Vegetation In-

dex 

(1.5 × (1.2 × (NIR − R) −2.5 × (G − 
R)))/sqrt((2 × NIR +1)2 − (6 × NIR − 5 × 

sqrt(G)) − 0.5) 
Eitel et al. [52] 

In addition, the four monitored land cover types were distinguished by testing the 
three R-G-B spectral bands as well as sixteen VIs (Table 3), i.e., in total nineteen variables. 

Vegetation indices were calculated from multispectral images, the normalised differ-
ence vegetation index (NDVI) and the modified triangular vegetation index (MTVI2). 
These allow for photosynthetic activity to be assessed. The MTVI2 is used to compensate 
for the saturation of the NDVI [53]. These two indices were used for characterising each 
land cover class’s spatial dynamics and separability. 

3.2. Choice of Predictor Variables and Detection of the Four Land Cover Classes 
The nineteen predictor variables (known as primitives) were not all used for detect-

ing land cover classes, so the most discriminating ones were selected according to a cor-
rectness rate (CR) (Equation (5)). The chosen method was based on a multivariate ap-
proach and used linear predictive discriminant analysis (LDA). This is one of the oldest 
discrimination techniques and was proposed by Fischer in 1936 [54]. Its main principle is 
to optimise separability between classes in order to identify them in the best possible way. 
The contribution of each primitive was determined according to its contribution to the 
separation of the four classes. The selection of the most relevant primitives took into ac-
count all the samples produced by the two operators (Figure 2). In this manner, each sam-
pled pixel was associated to nineteen values corresponding to its spectral response in the 
R, G and B bands and to the 16 VIs. The most relevant primitives for obtaining the optimal 
separability of the selected classes were retained. The prediction was top-down, incorpo-
rating all the primitives that were successively removed. Significance was calculated by 
cross-validation on ten tests, by randomly splitting the samples. When the maximum 
value of the chosen criterion was less than the defined “improvement”, the corresponding 
variable was excluded from the classification. 

This classification was carried out by calculating a model based on the samples. It 
consists of an estimation of the statistical characteristics in the LDA equation and is based 
on data from a single operator. Therefore, for each type of land cover of a sample, the 
model identified the position of the point representing the barycentre of each class in the 
multivariate space of primitives. The resulting factor axes, linear discriminants (LD), were 
straight lines along which the points were projected. 
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The prediction model was then applied in order to generate the final classification 
image so that each pixel in the final image would be assigned to one of the four groups. 
For each pixel, the classification used the minimum distance to the barycentre of each 
class. In this manner, each pixel was assigned to the group with the closest barycentre. 
Data from the second operator served to validate the classification image using Overall 
Accuracy (OA) (Equation (1)), Kappa [55] and F-measure (Equation (4)). The robustness 
of the proposed methodology for the separation of sun shade from canopy was assessed 
by generating a model for the 3 study dates (Table 2). The issue of the genericity of a single 
model that would be applicable to other dates in the development stage and also to an-
other crop was also addressed based on the model created for a single date (Section 5). 

For the classification images, the samples separated into two sets by operators A and 
B (Figure 2) were never mixed. Operator bias was ruled out by testing them in turn for 
model training or for validation of the classification image. A change in operator led to 
variations in Overall Accuracy (OA) performance by (+/−0.005). All samples from both op-
erators were stored (Figure 2). The data from operator A was used to create the model, 
while the data from operator B was used for validation purposes, and represented the 
reference class. As the proportions of each class were not identical for each operator, a 
random draw of 200 points per class was tested for the creation of the model on 11 July 
2019 and repeated 10 times. This threshold of 200 represents the minimum quantity of 
samples collected by operator A for the VSH class (Figure 2). Variations in OA were neg-
ligible (−0.01), suggesting that the results were not sample-dependent, and all samples 
were used. 

The classification was validated based on the number of pixels in the reference class 
using a confusion matrix [56]. The performance indices used for overall relevance were 
evaluated according to the rates of True Positives (Tp), True Negatives (Tn), False Posi-
tives (Fp) and False Negatives (Fn). The false positive rate quantifies pixels from the ref-
erence class that were wrongly positioned in other classes. The false negative rate quanti-
fies pixels which were placed in a given class but should belong to another. The kappa 
determines the relative difference between the observed and random proportions of 
agreement [55]. 

The Overall Accuracy (OA) provides the ratio between the correctly sorted elements 
and the total number of examined elements. (Equation (1)). The kappa coefficient is not 
an index of precision, since it does not measure overall agreement, but agreement beyond 
chance [57]. Nevertheless, it is combined here with the OA to assess the overall perfor-
mance of the classification. 

OA =
Tp + Tn

(Tp + Tn + Fp + Fn)
 (1) 

Precision (P) and Recall (R) (Equations (2) and (3)) correspond, respectively, to the 
percentage of pixels from the reference class that were assigned to the correct group, and 
the percentage of correctly assigned pixels relative to the total number of pixels in the 
class. 

P = Tp
Tp+Fn

  (2) 

R = Tp
Tp+Fp

  (3) 

These parameters contribute to infer the F-measure (FM) used in this study (Equation 
(4)), which corresponds to the harmonic mean of precision and recall [58]: 

F − Measure =
2 × P × R

P + R
 (4) 

This score has the advantage of falling sharply when one of the parameters (P or R) 
is low and of rising when both are similar and high. 
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The Correctness Rate (CR) is reported as a percentage. It refers to the probability of 
achieving a correct detection and is calculated by subtracting the false positive (Fp) and 
false negative (Fn) rates from 1 (Equation (5)). 

CR =  (1 −  Fp −  Fn)  ×  100%  (5) 

This rate can be used for measuring the relative importance of the different primitives 
when creating the classification model. 

3.3. Re-Sampling of Classification Images 
The classification image, generated from RGB image data at 3 cm spatial resolution, 

was re-sampled at a 16 cm resolution (cubic interpolation) so it could be used with tem-
perature images (16 cm) and NDVI and MTVI2 indices (12 cm) (Table 3). For the brightness 
temperature and NDVI and MTVI2 images, 75% pure pixels were retained (Figure 4a) for 
the study. Indeed, a pixel purity threshold of less than 100% had to be set in order to retain 
the four land cover classes. Shade classes that had a limited number of contiguous pixels 
were affected. Figure 4b. illustrates the loss of information associated with the change in 
resolution. 

The loss of 8.7 ha on the 20 ha plot (i.e., 43.7%) mainly affected shaded areas where 
contiguous pixels at 3 cm were scarce. For example, the shaded vegetation class, which 
represented 10% (1.65 ha) of the area of the plot at 3 cm resolution, was reduced to 0.4% 
(0.07 ha) after re-sampling at 16 cm resolution, while the shaded bare ground lost around 
12% of its area (Figure 4b). For the 16 cm pixels that did not meet the fixed criteria, the 
proportions of the four classes at 3 cm pixels lay significantly below 75% (median VSH = 
11%, median NVSH = 21%, VS = 45%, NVS = 13%). Since 43.7% of the ground was made 
up of pure patches that measured less than 16 cm on each side, the estimation of temper-
ature was hardly relevant for 3 cm sized pixels that were mostly isolated. 

 

Figure 4. From left to right: (a) RGB image of the 11 July 2019; Original classification at 3 cm resolu-
tion and Proportion [%] of the different classes of land cover before re-sampling. (b) Classification 
after re-sampling at 16 cm, Proportion [%] of the different classes of land cover that did not meet the 
75% purity criterion, Proportion [%] of the different land cover classes of 75% purity and above. 
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The MS images, after re-sampling with a cubic interpolation method, could visually 
be perfectly superimposed on the RGB images and the classification. To reduce the effects 
of geometric distortion with thermal image, due to a different flight configuration, the 
later was cut into thumbnails according to a 100 × 100 m grid, and each thumbnail was 
georeferenced to the RGB image (Figure 5) using cubic interpolation and a polynomial 
transformation of degree three. For each thumbnail, a total of about 10 points were used 
to reset the image, thus allowing the classification to be used on thermal images. 

 
Figure 5. Map of the re-sampling of the 11 July 2019 thermal image. 

The NDVI and MTVI2 indices were calculated on the re-sampled image. 

4. Results and Analysis 
The performance of the classification model was first presented at the native resolu-

tion of the RGB images (3 cm) for application to both CONV and AGRO plots and then by 
evaluating the model for each plot. The second part of the results involves the application 
of the classification to images that were re-sampled to 16 cm for brightness temperature 
and NDVI and MTVI2 indices. The separability of the four classes was analysed according 
to the objects’ responses to sun and shade. The differences in systemic functioning be-
tween the CONV and AGRO plots and the effects of exposure to sun or shade were con-
sequently highlighted. 

4.1. Evaluation of the Classification Model Performed on the RGB Image at 3 cm Resolution 
4.1.1. Application to the Entire Site during the Vegetation Season (11 July 2019) 

The CR accuracy rate, estimated during the classification prediction step, was 0.978 
with the nineteen primitives. With the COM2 index alone, this rate reaches 0.90 and then 
increased as the other primitives were progressively added. With twelve primitives, the 
CR reached 0.982, then stabilized or even lightly decreased when the remaining seven 
primitives were progressively added. Guerrero et al. 2012 [41] simultaneously selected 
greenness indices (Table 3) in order to improve the distinction between irrigated maize 
and weeds during segmentation. They highlighted the benefit of this combination, which 
reduced the mixing rate between vegetation surfaces and soils even subsequent to water 
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input. The use of COM2 as the most discriminating primitive was therefore found to be in 
line with this reasoning. 

The classification image produced from a model based on nineteen primitives gives 
an AO of 0.95 and a Kappa of 0.91. When the twelve most discriminating variables were 
used for creating the final classification, the OA increased by 0.004 (Figure 6) and the 
Kappa by 0.01, reaching 0.92. To select the primitives, ten random draws were made in 
order to avoid a potential sample effect. The twelve most frequent VIs and spectral bands 
were retained. These twelve primitives were the 3 RGB bands and the 9 VIs: Red, Green, 
Blue, SCI, GLI, SI, CIVE, COM2, MGRVI, EXGr, ExG, Color Index are defined in Table 3. 

 
Figure 6. Classification performance measurements using the twelve primitives selected for the 11 
July 2019 image and positioning of the samples on the first two linear discriminants (LD1 and LD2). 

Figure 6 illustrates how each class of land cover could be distinguished by its own 
reflectance behavior, although some overlap occurred, particularly between VS and VSH 
on the first two linear discriminants. Furthermore, a hundred and twenty one VSH pixels 
of VSH were classified as VS (p = 0.89, F-measure = 0.57). This was related to the creation 
itself of the samples used and to the difficulty in visual detection of the shadows of the 
leaves, especially when the latter were about 3 cm wide. Vegetation observed in the shade 
at the nadir only represented 10% of the total surface area, in comparison with 61% of 
sunlit vegetation (Figure 4). The vegetation (V) and non-vegetation (NV) classes remained 
very distinct, with only eleven VSH pixels that were incorrectly classified as NVSH. The 
non-vegetated surface, whether in the sun or shade, was very well detected, with F-
measures of 0.99 and 0.97 for NVS and NVSH, respectively. 

4.1.2. Separation of Results by Crop Type: AGRO/CONV (for the 11 July 2019) 
The separate classification validation for each plot produced a Kappa of 0.86 and 0.98 

and an OA of 0.90 and. 0.99 for the AGRO and CONV plots, respectively. The lower values 
observed for the AGRO plot could be due to a more important mixing of elements (V and 
NV) in the shade and sun. The overall distribution of the four types of land cover on both 
plots (Figure 7) suggested that, under similar observation conditions, the differences in 
the proportions of NV and V remained minor. Indeed, the overall area associated to veg-
etation (V) or soil (NV) varied by +/−1% (VAGRO = 70%, VCONV = 69%, NVAGRO = 30%, NVCONV 
= 31%). 
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(a) AGRO (b) CONV 

Figure 7. Percentage distribution in 4 classes for each plot: NV, NVSH, VS, VSH, (a) AGRO plot, (b) 
CONV plot. 

Nevertheless, the proportion of the VS area for AGRO was 4% higher than that of the 
VS for CONV. Moreover, the shade/sun distribution illustrates that, overall, the shaded 
area detected by the RGB sensor at the nadir for AGRO was smaller (−3%). This is due to 
a narrower inter-row spacing, i.e., 0.40 m for AGRO compared with 0.80 m for CONV 
(Table 1). However, even though there may have been confusion in the classification, these 
were probably related, on the one hand, to the presence of low height vegetation (re-
growth) within the residues of the AGRO plot and, on the other hand, to the structure of 
the canopy based on its layout (inter-row distance, inter-plant distance) and its geometry 
(nine leaves vs. flowering) which was different in this plot. 

4.2. Application of Classification to Temperature and Vegetation Index Images  
at 16 cm Resolution 

In order to assess the relevance of the mask produced during the classification of the 
July image, this mask was applied, after re-sampling at 16 cm spatial resolution, to the 
temperature images collected at 12:49 pm and to the two vegetation indices, NDVI and 
MTVI2. Indeed, the thermal behavior of the study area exhibited inter- and intra-plot var-
iability, which would be worth analysing by class according to the effects of sunlight. 

4.2.1. Overall Results for the Entire Study Site 
For the whole study area, the comparison of temperature values at 12:49 pm and of 

the various indices for each land-use class (vertical line = mean) pointed out that the tem-
perature of the NV class was generally higher than that of the V class (mean + ~3°). In 
addition, sunlit areas (whether NV or V) were warmer than the respective (NV or V) 
shaded areas for the median of the distribution (mean + ~1°). 

For the V classes, according to the sunlight, the global difference in temperature was 
negligible (~0.4 °C) and virtually non-existent for the NDVI and MTVI2 vegetation indices 
(~0.04). However, the differences were significant for the NV classes (Figure 8). Non-veg-
etated areas (Figure 8) represented the less representative classes, with only 14.8% (2.45 
ha) for NVS and 14.5% (2.40 ha) for NVSH. The mask separated these two latter classes 
according to both the temperature and vegetation index distributions. The median soil 
temperature in the sun (NVS) was 2.4 °C higher than in the shade (NVSH). The two veg-
etation indices differed by 26.6% (in relative percentage) for NDVI (median) and by 12.2% 
for MTVI2 (Figure 8) between NVS and NVSH. This result is discussed in further detail 
below. Concerning the vegetation, differences were negligible (<1%) independently of the 
vegetation index, as was expected. 
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Figure 8. Comparison of temperature values at 12:49 pm and various indices for each land-use class 
(NVS light brown, NVSH dark brown, VS light green, VSH dark green). 

4.2.2. Separation of Temperature Results for AGRO and CONV 
In order to refine the analysis, results were provided for each CONV and AGRO plot 

(Figure 9). In general, 72.5% of the data from the AGRO plot could not be used, compared 
with 71.3% for the CONV plot. Indeed, this arises because the number of classification 
patches (land use unit of a single class), when all classes are considered, is higher for the 
AGRO plot (nAGRO = 1,971,682) than for the CONV plot (nCONV = 1,752,135). Therefore, 
it was more strongly affected by the re-sampling at 16 cm due to the fewer amount of pure 
pixels. 

In terms of temperature, the AGRO plot was warmer than the CONV plot, +2 °C for 
the vegetation and +2.9 °C for the NV surfaces (Figures 9 and 10). The higher soil temper-
ature on AGRO was related to the presence of crop residues. These results are corrobo-
rated by measurements of air temperature in the canopy, using temperature micro-sen-
sors (Thermohygro iButtons, Analog Devices, Wilmington, MA, USA). The average tem-
perature difference around solar noon between the 15 June 2019 and the 30 September 
2019 was 2.5 °C (with an R2 = 0.88). The causes of these differences have not been detailed 
here, since they have been observed elsewhere and are the subject of other studies 
(BAG’AGES project) studies. These observations highlight the different thermo-hydric be-
havior patterns between both plots. 

Concerning the shaded vegetation (VSH) at the CONV plot, there is a significant pixel 
density on the right hand side of the temperature distribution (Figure 10). This indicates 
the presence of zones called heat islands where temperatures are higher than the rest. 
Figure 10 illustrates this particular feature for areas where the cover is less dense. The 
increase in density of points relates to small areas of vegetation situated inside larger areas 
of bare ground (Figure 9). These heat islands may also derive from a VSH detection issue 
in these specific locations. However, visually, according to their location, these low den-
sity vegetation areas are more likely to cause locally higher temperatures through radia-
tive effects (higher ground reflection and less shading under a scarcer canopy). 



Remote Sens. 2024, 16, 1436 15 of 23 
 

 

 

Figure 9. (a) Part of UAV- RGB image from the 11 July 2019 (CONV plot), (b) Thermal UAV image 
of brightness temperature (CONV plot). 

 
Figure 10. Comparison of the temperature values at 12:49 pm, of the indices and of the land use 
class (NVS light brown, NVSH dark brown, VS light green, VSH dark green) between both plots. 

In order to assess the relevance of the mask produced, focus was put on the results 
obtained for non-vegetated areas with shading effects (NVS and NVSH). These areas are 
indeed minority classes where the total percentage represented 30% and only 8.5%, re-
spectively, before and after re-sampling (Figure 4). 

For the NV areas, the differences in temperature between shade and sun were 2.5 °C 
at the AGRO plot and 2.2 °C at the CONV plot. The spatial variability of the temperature 
(distributions ranged between the 1st and 9th decile) was nevertheless significantly differ-
ent between both plots. Ranges were 33.5 < T°NVSH < 39.2 for the AGRO plot and 30.8 < 
T°NVSH < 34.1 for the CONV plot. The diversity of the surface soil of the AGRO plot was 
made up of a mixture of residues, non-residues, dry soil, damp soil and herbaceous plants, 
which, depending on their proportions, contribute to this temperature range at decametric 
resolution (Figure10). Moreover, a difference between the more marked NVS and NVSH 
at the CONV plot could be observed on the NDVI. This will be discussed in Section 4.2.3. 

(b) 
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Regardless of crop management, vegetated areas with similar crop densities and de-
velopment presented very slight temperature differences between sunlit vegetation in the 
sun and shaded vegetation. 

Similar tests were performed using the 3:10 pm temperature image. Considering the 
time elapsed between the acquisition of the RGB image and the second thermal flight (~5 
h) as well as the displacement of shadows, the classes were assembled independently of 
their solar irradiance at 10:28 am (NVS and NVSH, and VS and VSH) so as to finally obtain 
only 2 classes: NV and V. The temperature difference between CONV and AGRO plots 
measured at 12:49 pm was observed again at 3:10 pm for both the NV and V classes. 

4.2.3. Separation of AGRO and CONV Results for Vegetation Indices 
For Vegetation Indices, the differences between NVS and NVSH were more pro-

nounced for NDVI and the CONV plot. Apart from confirming the separability of the clas-
ses using the obtained classification, this result raises the question of the origin and impact 
of this difference. Figure 11 compares fifty non-contiguous points (twenty-five points on 
the AGRO plot followed by twenty-five points on the CONV plot) of NDVI and MTVI2 
for the four land cover classes. 

Figure 11. Values of the NDVI (dotted line) and MTVI2 (solid line) indices for NVS, NVSH, VS, VSH 
classes—25 AGRO points followed by 25 CONV points. 

The effect of shading by vegetation on the ground affected vegetation indices to a 
significant extent for NDVI and to a lesser extent for MTVI2 at the CONV plot. Indeed, 
the NDVI of NVS on the CONV plot varied between 0.23 and 0.65 (range of distributions 
between the 1st and last decile) with an average of 0.43 compared to 0.70 at the AGRO 
plot. This could be explained by higher spectral values in the red on the bare ground than 
on the residue-covered ground, resulting in a higher NDVI at the AGRO plot than at the 
CONV plot. Considering the NVSH, the NDVI of both plots were close, with an average 
NDVI of 0.75 for the AGRO plot and 0.72 for the CONV plot. Non-vegetated areas in the 
shade (bare ground and residues) presented an NDVI comparable to that of a grassy area 
or even a crop. This could be explained by the fact that the shadow on non-vegetated 



Remote Sens. 2024, 16, 1436 17 of 23 
 

 

surfaces was actually the shadow of the vegetation, which itself absorbs most of the red 
radiation. This was clearly demonstrated with these decametric resolution data, but raised 
the issue of soil detection for shaded areas at decametric resolution. 

The MTVI2 amplitude was less significant for the NVS class (0.24 < MTVI2 < 0.45); 
the average MTVI2 at the CONV plot was 0.31 and 0.36 at the AGRO plot, and the differ-
ences between shade and sun were minor. 

The effects of shading on the vegetation cover were slight, with similar variations of 
MTVI2 and NDVI on VS and VSH respectively, and on both plots. These result from red 
radiation being rather absorbed by the vegetation than by the soil (Figure 11B,C). 

Regarding the impact of shade on NDVI, the use of MTVI2 relative to the NDVI 
should therefore be preferred when calculating a stress indicator (TVDI type, [59]) com-
bining surface temperature and NDVI vegetation index with very high-resolution UAV 
data or on areas with shaded ground. 

5. Summary and Discussion 
Two cropping systems were monitored: the first under conventional agriculture 

(CONV) and the second under conservation agriculture (AGRO). Both plots grew maize 
in 2019. 16 vegetation indices from R, G and B bands and 2 Vegetation Indices from mul-
tispectral data at centimetric resolution (UAV images) were evaluated as primitive for sep-
arating four classes: vegetation in the shade (VSH), vegetation in the sun (VS), non-vege-
tation in the shade (NVSH), non-vegetation in the sun (NVS). 

A classification model was developed for three specific dates (11 July 2019, 18 June 
2019 and 15 September 2020) associated with different stages of crop development. The 
twelve most discriminating primitives were retained for the final classification. 

The classification was aggregated at 16 cm so it could be applied to images of bright-
ness temperature and vegetation indices with lower resolution. The time difference be-
tween the acquisition of RGB and thermal images had a limited effect on the shading zones 
due to the east-west orientation of the rows in the monitored plots and to the solar angle 
of the study site. Class separability was then verified for temperature, NDVI and MTVI2. 
According to the results, when an entire plot was considered, vegetated areas were less 
affected by shading than non-vegetated areas: i.e., sunlit elements showed +3 °C for soil 
and +1 °C for vegetation. 

The classification was applied separately to CONV and AGRO, resulting in an OA of 
0.99 and 0.90, respectively, and a kappa of 0.98 and 0.86, respectively, for the 11 July 2019, 
even though the percentage distribution of the four classes was virtually equivalent. The 
weaker separation performance of all four classes on the AGRO plot could be explained 
by higher mixing rates, which may be due, in particular, to crop residues lying on the 
ground. 

In addition, AGRO vegetation was 2 °C warmer than CONV vegetation, while no-
vegetation was 2.9 °C warmer, that were corroborated by microclimatic monitoring meas-
urements. At the CONV plot, certain areas had a poor growth rate, and the vegetation in 
the shade (VHS) therefore presented heat islands with temperatures about 2 °C higher. 

Spatial temperature variability was higher for AGRO: (33.5 < T°NVSH AGRO < 39.2 and 
30.8 < T°NVSH CONV < 34.1). This difference is related to the diversity of the AGRO plot 
surface soil and to the mulch effect of crop residues that limit surface soil evaporation. 

The NDVI increased, on one hand, due to the shade of the vegetation and on the other 
hand due to the presence of soil residues (on the AGRO plot). Each of these two factors 
can reduce red reflectance and thus increase the NDVI: mean NDVINVS CONV = 0.36, 
NDVINVS AGRO = 0.70 and mean NDVINVSH > 0.70. 

A first point of discussion concerns the robustness and genericity of the methodology 
which were assessed for the three dates. A summary table of the performances is pre-
sented in Table 4. For each date, the twelve major primitives were calculated and samples 
were generated using the same methods as for July 2019. The samples were also separated 
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in the same way. To create the model for the 18 June 2019, 200 sample points were gener-
ated for shadows in non-vegetated areas and 250 points for shadows in vegetated areas. 
During classification, the reflectance of the classes, whether vegetated or not, overlapped 
with their shadows in the first two linear discriminants. If the OA was 0.96 (Kappa = 0.93), 
the confusion matrix highlighted confusion at the level of shaded areas without vegetation 
and sunlit vegetation (PNVSH = 0.59, FM NVSH = 0.80). The detection of shade at this stage in 
the development of the canopy, or the creation of samples and the classification process, 
implies there is a limitation. This was not apparent in the results, but only in visualizing 
the classified image. For the AGRO plot, the leaves were at a leaf development stage of 4 
out of 5, with a height of about 30 cm (Table 1). The vegetation was hardly visible on the 
RGB image at 3 cm spatial resolution. The plot was covered with residues and there was 
virtually no shade. For the CONV plot, the maize had an average of 8 leaves out of 9 and 
reached about 60 cm high. The shadow of the leaves on the ground was visible, but given 
the geometry and spacing of the plants, there was virtually no shadow on the vegetation. 

Table 4. Robustness and genericity of the classification models. 

Model 
Date 

11 July 2019 Model 18 June 2019 Model 15 September 2020 Model 
OA Kappa OA Kappa OA Kappa 

11 July 2019 0.95 0.92 x x x x 
18 June 2019 0.87 0.75 0.96 0.93 x x 

15 September 2020 0.68 0.55 x x 0.96 0.94 

Considering the image of 15 September 2020, there were two stages of vegetation on 
the AGRO plot: the southern part was covered with maize in an early senescent stage 
while the northern part was covered with maize residues (Table 1). On the CONV plot, 
soya plants were at a senescent phase. The vegetation class on either CONV or AGRO, 
independent of the crop type (maize or soya) or stage, was assimilated to the correspond-
ing VS/VSH class (according to its illumination) without taking senescence into account. 

The September model was generated with 550 points of senescent vegetation in sun-
light and 740 points of full vegetation in sunlight. The reflectance of the VS samples dif-
fered from the other classes irrespective of the stage or crop. This was illustrated in the 
confusion matrix, with an F-measure of 0.99 for VS and 0.89 for VSH and very little con-
fusion. The NV classes were subject to more mixing between classes however, without 
reaching the level of confusion observed at the other dates. 

In order to test the genericity of the classification model for the July, when maize was 
in full development, the model was evaluated on the other available image dates (Table 
4). In this way, other phenological stages and stand densities could be covered, with dif-
ferences in plant architecture. Moreover, tests could be performed on other types of crops, 
i.e., in the present case soya crops (Table 1). 

For the June 2019 image, acquired at the onset of the maize growing season, the 11 
July 2019 model proposed a kappa of 0.75 (OA = 0.87), with results revealing mixtures 
between vegetation and shaded ground. As for the 15 September 2020 image acquired at 
the end of the season in the following year, when soybeans were grown on the CONV 
plot, this model predicted a large amount of mixing between vegetation in the senescent 
phase and green vegetation, with a kappa of 0.55 (OA = 0.68). This mixing could be easily 
explained by the spectral similarity between the residual and vegetation pixels. With only 
four types of land cover classes (VS, VSH, NVS and NVSH) and no specific adaptations, 
such as considering the spectral values of different crop types during the growing season 
when building the model, it would be difficult to use a single model, particularly at the 
end of the growing season. In such cases, the authors recommend the number of classes 
should be increased (e.g., the distinction between senescent and non-senescent vegetation) 
by adapting it to the general context and by re-generating a new classification model. In 
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the case a single model is used, the definition of the classes would have to take into ac-
count all the phenological stages. 

Another point of discussion concerns the way in which shadows are considered 
when using UAV images in actual studies. They are, for example, sampled to monitor 
water stress or the health of nectarine and peach orchards [60]. Recent articles, on the con-
trary, have used classification methods to eliminate them in the context of monitoring abi-
otic stress (frost) [19], water stress [61] or water monitoring to control yield and wine qual-
ity [62]. These current methods consist of detecting shadows and filtering them by thresh-
olding or modelling [60]. The shadow class has not been studied as such because of its 
more or less rapid temporal evolution depending on the architecture of the canopy and 
the orientation of the rows. To our knowledge, this is an original feature of this study 
which contributes in particular to a better description of canopy temperature distributions 
over the different classes with decametric resolutions. This is of interest for 3D modelling 
of DART radiative transfer [39,63] for fine-resolution simulation of brightness tempera-
ture. A better description of sub-pixel temperature is currently a challenge for the 
TRISHNA space mission [64] which aims at the fine monitoring of microclimatic variabil-
ity within ecosystems. 

Moreover, the effect of vegetation shading also affects NDVI, which increases. These 
values could then be compared with NDVI values calculated for grassy areas at a resolu-
tion of 10m resolution. The MTVI2 was not significantly impacted by these factors, thus it 
would play a better role than NDVI as a VI to be employed in drought indicators such as 
TVDI-type drought indicators at these decametric scale resolutions. The use and limita-
tions of NDVI, including its increase due to shading effects, should therefore be consid-
ered, at lower resolutions, particularly for detection in orchards and vineyards, which in-
volve inter-row grass cover. 

6. Conclusions 
With the aim to investigate the details of the behavior of agricultural canopies, four 

land cover classes were separated: vegetation in the shade (VSH), vegetation in the sun 
(VS), non-vegetation in the shade (NVSH), non-vegetation in the sun (NVS). 

The methodology is based on vegetation indices (VI) from multispectral UAV images 
at decametric resolution and R, G, B bands with UAV images at 3 cm resolution combined 
in order to conduct a linear discriminant analysis (LDA). The separability of the four clas-
ses was validated with good accuracy. 

This study contributes to the evaluation of agricultural practices such as agroecology 
and their microclimatic effects within vegetation cover. 

Differences in vegetation and non-vegetation temperature distributions between two 
contiguous maize plots in conventional agriculture (CONV) vs. conservation agriculture 
(AGRO) have then been highlighted associated to different thermo-hydric functioning. 

The study is a prerequisite for better informing and constraining physical modelling 
at the soil-plant-atmosphere interface as well as the rate of land cover. 

It also provides insights into the estimation and use of nadir shadow proportions in 
aggregated pixels (from 3 cm towards lower resolution) for photosynthesis modeling, by 
considering the proportion of sunlit and shaded areas [65]. 

Vegetation shading effects on NDVI also suggests discussing its choice for calculating 
stress indicators or for use in modeling. 

Regarding the re-sampling methodology for classification, the authors next propose 
to retain the proportions of each mixing pole (VS, NVS, VSH, NVSH) within each aggre-
gated pixel in order to spatially invert their characteristics (temperature maps of each pole, 
NDVI and/or MTVI2 maps of each pole, etc.). The method would then be applied to dec-
ametric remote sensing images (i.e., Sentinel 2) in order to feed modelling approaches that 
distinguish the functioning of vegetation growth in the shade and the sun. 
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