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Abstract: The surface water area (SWA) and terrestrial water storage (TWS) are both essential metrics
for assessing regional water resources. However, the combined effects of climate change and human
activities on the dynamics of the SWA and TWS have not been extensively researched within the
context of the CPEC. To fill this gap, we first analyzed the annual changes in the SWA and TWS in the
China–Pakistan Economic Corridor (CPEC) region in recent decades using the methods of correlation
analysis and Geodetector. Our findings indicate that Sindh exhibited the highest increase in the SWA
at 8.68 ha/km2, whereas FATA showed the least increase at 0.2 ha/km2 from 2002 to 2018. Punjab
exhibited a significant decrease in TWS, with a slope of −0.48 cm/year. Azad Kashmir followed
with a decrease in TWS at a rate of −0.36 cm/year. Khyber Pakhtunkhwa and FATA exhibited an
insignificant increase in TWS, with values of 0.02 cm/year and 0.11 cm/year, respectively. TWS was
significantly positively correlated with the SWA in Balochistan and Khyber Pakhtunkhwa. However,
other regions showed inconsistent changes; in particular, a decline was observed in Gilgit–Baltistan.
The changes in TWS in Balochistan were primarily influenced by the SWA and climate change, while
TWS changes in FATA were mainly affected by climate change. In addition, human activities had a
primary impact on the TWS changes in Azad Kashmir, Punjab, and Sindh. The influencing factors of
TWS changes in different regions of the CPEC mainly involved a dual-factor enhancement and the
nonlinear weakening of single factors. These results highlight that under the effect of climate change
and human activities, TWS may not increase as surface water area increases. This study contributes
to a better understanding of water resource dynamics and can aid in the development of strategies
for the efficient and sustainable use of water resources in the CPEC.

Keywords: terrestrial water storage dynamics; surface water area dynamics; Geodetector; China–
Pakistan Economic Corridor

1. Introduction

Water resources are essential for human survival and development [1–3]. Water
scarcity can worsen due to the unequal distribution of water resources over time and
space [4–6]. This issue is especially pronounced in dry and semi-arid regions characterized

Remote Sens. 2024, 16, 1437. https://doi.org/10.3390/rs16081437 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16081437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9441-8499
https://orcid.org/0000-0002-4998-2418
https://orcid.org/0000-0002-6139-2074
https://orcid.org/0000-0002-1591-1574
https://orcid.org/0009-0004-7505-473X
https://doi.org/10.3390/rs16081437
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16081437?type=check_update&version=2


Remote Sens. 2024, 16, 1437 2 of 17

by lower precipitation levels and higher evaporation rates [7,8]. Climate change exacerbates
the problem, impacting the patterns of precipitation and increasing the frequency and
severity of both droughts and floods [9–11]. In addition, human actions, such as population
expansion, socioeconomic progress, and the building of dams and reservoirs, have a
notable influence on the allocation of water resources [12–14]. As a result, water availability
becomes even more unstable and problematic [8]. Thus, the spatial–temporal dynamics
of water are important for the management and sustainable utilization of water resources,
especially in arid and semi-arid regions [15–17].

The surface water area (SWA) and terrestrial water storage (TWS) are vital indicators of
the current state of regional water resources [2]. TWS comprises groundwater, soil moisture,
surface waters, snow, ice, and water within biomass [18,19]. Surface water accounts for
36.8 ± 9.89%, groundwater accounts for 37.56 ± 16.57%, and soil water constitutes 26.36 ±
7.46% of water reserves [20]. Changes in TWS represent changes in available freshwater
resources [21,22]. Surface water is the primary water resource utilized for both production
and livelihood [23–25]. Previous studies have revealed that changes in surface water
and terrestrial water storage lack consistency, indicating significant spatial and temporal
heterogeneity. Several recent studies [25,26] have proved that the world’s surface water
area has increased. TWS losses have become more noticeable on global and regional
scales, notably in vulnerable arid regions [17]. However, there is still a limited amount of
thorough research on changes related to water resources, including the investigation of
surface water features and overall water storage. This scarcity of investigations impedes
our comprehension of the fluctuating water resources.

The China–Pakistan Economic Corridor (CPEC), which incorporates the historical
Silk Road, significantly influences regional economic development and security. The rapid
population growth and economic development of Pakistan have made the supply and
demand of water resources in the CPEC contradictory [27]. Surface water and groundwater
extraction techniques are important water resource utilization methods in the CPEC. The
conflict between the supply and demand of water resources in the CPEC has been exacer-
bated by climate change and irrational exploitation by human beings [28]. How climate
and human activities affect the changes in surface water and terrestrial water storage in
the CPEC is not only related to the water security of the CPEC but also has a profound
impact on the construction of the Silk Road. Up to this point, there have been limited
regional-scale investigations conducted on the CPEC, with the spatial–temporal correlation
between TWS and the SWA remaining unquantified. Additionally, there is inadequate
quantification of comprehensive data concerning the impacts of climate change and human
activities on the spatial–temporal fluctuations of the SWA. Addressing the research gap in
the spatial–temporal dynamics of water resources within the context of the CPEC is essen-
tial for advancing knowledge in the field of hydrology, promoting sustainable development,
and ensuring the resilience of critical economic corridors to future challenges.

To address this gap, we utilized correlation analysis and a geographical detector based
on surface water, TWS product, and other variables to (1) study the spatial–temporal
dynamics of TWS and the SWA in the CPEC at administrative scales and measure the
correlation between them, and (2) comprehensively evaluate the influence of the SWA,
climate change (such as total annual precipitation, annual average temperature, and total
annual potential evapotranspiration), and human activities (including population, dam
construction, and cropland) on TWS in the CPEC.

2. Materials and Methods
2.1. Study Area

The CPEC spans nine regions, with eight of them situated in Pakistan. Kashi is located
in China, ranging from 39.8◦N to 45.4◦N and 123.5◦E to 131.3◦E (Figure 1). Pakistan
boasts a diverse and intricate topography, extending from the renowned Himalayas and
Karakoram mountains in the north and northwest to the flat agricultural plains of the
Indus River Basin in the center, and further to the coastal areas along the Arabian Sea in
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the south [29]. Located in the moist region are Pakistan’s waterways, such as the Indus
River and its affluents, which include Kabul, Hunza, Panjkora, Gilgit, Chitral, Jhelum, and
Kurram. Many significant dams, including the largest ones such as Tarbela and Mangla, are
located in these humid regions. The arid region, primarily located in the Punjab province,
serves as the agricultural hub of Pakistan. In the hyper-arid region, Sindh and portions of
Balochistan are included, characterized by deserts, plateaus, barren lands, arid mountains,
and coastal areas along the Arabian Sea. In Sindh, agriculture is concentrated along the
Indus River. Precipitation and temperature exhibit notable spatial variations, aligning with
the diverse climate. During the monsoon season, precipitation is concentrated, with the
northern region experiencing an annual average temperature below 0 ◦C, while the central
and southern parts of the country see temperatures exceeding 35 ◦C [30].
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Figure 1. Geographical location of the China–Pakistan Economic Corridor as well as the spatial
distribution of the elevation, river network, and dams within the study area.

2.2. Data Sources
2.2.1. TWS Data and SWA

The TWS data we used from 2002 to 2018 were downloaded from the Gravity Recovery
and Climate Experiment (CSR: http://www2.csr.utexas.edu/grace/asdp.html accessed
on 5 April 2021 and JPL: https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_
MASCON_CRI_GRID_RL06_V2.Gldas accessed on 5 April 2021) [31]. However, there
are 38 months within this time frame that have missing data (Table 1). For continuous
monitoring, we employed interpolation to substitute any missing data with nearby monthly
averages [5]. This dataset has been extensively utilized in research on changes in water
resources [1,5,6,32,33]. The SWA data from 2002 to 2018 were sourced from the website
https://global-surface-water.appspot.com accessed on 10 April 2021, which is currently
widely employed in various studies [26,32,34,35], and its spatial resolution was 30 m. We

http://www2.csr.utexas.edu/grace/asdp.html
https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06_V2.Gldas
https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06_V2.Gldas
https://global-surface-water.appspot.com
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chose the permanent surface water area and seasonal surface water area as SWAs. The
permanent surface water area (PSWA) is the area of a water surface that is underwater
throughout the year, while the seasonal surface water area (SSWA) is the area of a water
surface that is underwater for less than 12 months of the year.

Table 1. The missing data of GRACE from 2002 to 2018.

Year Month

2002 1 2 3 6 7
2003 6
2011 1 6 12
2012 5 10
2013 3 8 9
2014 2 7 12
2015 5 6 10 11
2016 4 9 10
2017 2 7 8 9 10 11 12
2018 1 2 3 4 5 8 9

2.2.2. Climate Data

MOD16A2, an 8-day composite evapotranspiration product generated at a 500 m
pixel resolution (version 6, https://lpdaacsvc.cr.usgs.gov/appeears/task/area, accessed
on 19 July 2021), was employed for calculations. ERA5 is the most recent iteration of
the global reanalysis dataset created by the European Centre for Medium-Range Weather
Forecasts, available for download at https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land-monthly means?tab = form accessed on 10 Octorber 2022, It boasts a
spatial resolution of 0.1◦ × 0.1◦ and operates on a monthly temporal scale. Temperature
and precipitation from 2002 to 2018 were specifically selected for analysis.

The Standardized Precipitation–Evapotranspiration Index (SPEI) was calculated using
the CRU TS 4.03 dataset [36]. It has a spatial resolution of 0.5◦ × 0.5◦ and covers the period
1901–2018; it was downloaded from http://sac.csic.es/spei/, accessed on 10 January 2022.
In this study, the SPEI from 2002 to 2018 was used to analyze the effect of climate change
on SWA and TWS in the CPEC.

2.2.3. Socioeconomic Data

The Global Reservoir and Dam (GRanD) database v1.360 was downloaded from its
website (https://www.globaldamwatch.org/grand/, accessed on 16 May2021). The CPEC
contains 28 dams, with the majority situated in the downstream region (Figure 1). The
dams were mapped using shapefile format, and we utilized ArcGIS 10.6 to segregate them
by region. Further, we applied Pearson’s correlation analysis to analyze the relationship
between dams and TWS.

Population and agriculture constitute the main contributors to water pressure within
the CPEC. To investigate the correlation between human activities and the fluctuations in
TWS, the Gridded Population of the World (GPW) dataset from the Population Division
of the Department of Economic and Social Affairs of the United Nations Secretariat was
employed (https://www.worldpop.org/geodata/listing?id=77, accessed on 11 June 2021),
with a spatial resolution of 1 km.

As agriculture was a crucial economic activity in the CPEC, we examined the correla-
tion between changes in TWS and the cropland area. We calculated the cropland area using
the CCI Land Cover data (https://2018mexicolandcover10m.esa.int/download, accessed
on 17 June 2021), with a spatial resolution of 300 m. We classified 20, 30, and 40 as cropland
according to the established land classification criteria.

Our research focused on a regional level, and we analyzed the mean values of evap-
oration, temperature, population, and grace, as well as the total values of precipitation,
area of dams, cropland, and SWA for each region within the CPEC. We utilized a 0.5◦ ×

https://lpdaacsvc.cr.usgs.gov/appeears/task/area
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly
http://sac.csic.es/spei/
https://www.globaldamwatch.org/grand/
https://www.worldpop.org/geodata/listing?id=77
https://2018mexicolandcover10m.esa.int/download
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0.5◦ fishnet to examine the spatial distribution of TWS, SSWA, PSWA, cropland area, and
population density in the CPEC.

2.3. Statistical Analysis

The correlativity between driving factors and TWS was analyzed using Pearson’s cor-
relation coefficient, with the value calculated using the SPSS software 22. The geographical
detector model, a statistical method, was utilized to assess spatially stratified heterogeneity
and determine the primary driving factors of variables [37]. This study used the R package
“GD” to identify the elements that cause changes in TWS. The GD package can automati-
cally identify the optimal discretization technique and quantity for every variable. For the
discretization method of all factors in this article, the most influential one among the equal
interval method, the natural break point method, and the quartile method was chosen.
The discretization method was used to select 3 to 8 discretization divisions that have the
greatest influence [38]. Geodetector includes four aspects of detection as follows [37]:

(1) Factor detector: A factor detector was utilized to detect the variables that influence
the outcome of interest. Each factor’s impact is quantified using the q value.

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 = 1 − SSW

SST
(1)

SSW =
L

∑
h=1

Nhσ2
h , SST = Nσ2 (2)

The explanatory power of a factor on a dependent variable is represented by the q
value, which ranges from 0 to 1. A higher q value signifies a greater spatial heterogeneity
of the dependent variable Y. The number of classifications or partitions of Y or factor X
is denoted by h, while Nh and N represent the number of units in class h and the entire
region, respectively. σ2

h and σ2 are the variances of the layer h and region-wide Y values,
respectively. SSW and SST are, respectively, the within sum of squares and the total sum of
squares. By analyzing these values, researchers can gain valuable insights into the spatial
distribution and variance of Y within the region [37,39].

(2) Risk detector: The risk detector was utilized to determine if a notable contrast exists
in the mean attribute value between two subregions, and the t-statistic was applied
for testing.

tyh=1−yh=2
=

Yh=1 − Yh=2[
Var(Yh=1)

nh=1
+

Var(Yh=2)
nh=2

] 1
2

(3)

The mean value of attributes in subregion h, represented by Y, was calculated by
taking the sum of values and dividing by the number of samples (nh). Var represents
variance. The t value was determined using Student’s t-test.

(3) Ecological detector: The ecological detector was utilized to assess the impact of two
factors X1 and X2 on the spatial distribution of attribute Y, as determined by F statistic:

F =
NX1(Nx2 − 1)SSWX1

NX2(Nx1 − 1)SSWX2

(4)

SSWX1 =
L1

∑
h=1

Nhσh, SSWX2 =
L2

∑
h=1

Nhσ2
h (5)

The sample size of two factors, X1 and X2, is denoted as NX1 and NX2, respectively.
The sum of variance within the layer formed by X1 and X2 is represented by SSWX1 and
SSWX2, respectively. L1 and L2 represent the number of variables of X1 and X2, respectively.
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(4) Interaction detector: Utilizing an interaction sensor enabled the identification of
interactions between disparate variables (e.g., X1 and X2). Specifically, it assessed
if the combined impact of X1 and X2 would enhance or diminish the predictive
capability of the attribute Y, or if the effects of these variables on Y were unrelated.
The relationship between the two factors (q(X1∩X2)) can be categorized as shown
in Figure 2.
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Figure 2. The interaction type between two independent variables. (Min(q(X1), q(X2) means to
find the minimum value between q(X1) and q(X2); Max(q(X1), q(X2)) means to find the maximum
value between q(X1) and q(X2); q(X1∩X2) means q(X1), q(X2) is interactive; q(X1) + q(X2) is used
to calculate the sum of q(X1) and q(X2)). In our study, SWA and TWS were classified as attributes,
whereas the cropland area, the surface area of the dam, annual evaporation, population density,
annual precipitation, and the annual average temperature were identified as factors.

3. Results
3.1. The Spatial Changes in the SWA and TWS

The year-long SWA in the China–Pakistan Economic Corridor (CPEC) showed an
increasing trend from 2002 to 2018. The distribution of the SWA varied across different
regions, ranging from 0.2 ha/km2 in FATA to 8.68 ha/km2 in Sindh in 2018 (Figure 3a).
Considering the five regions analyzed (Kashi, Khyber Pakhtunkhwa, Azad Kashmir, Islam-
abad capital territory, and Sindh), they all showed significantly increased trends in the SWA
from 2002 to 2018 (Figure 3b,c). With an increasing slope of 272.94 km2/year, Sindh had
the highest, followed by Punjab (82.68 km2/year) and Kashi (31.45 km2/year). Islamabad’s
capital territory had the lowest slope of 0.04 km2/year. Other regions of the research area
did not show significant upward trends.

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 3. Interannual variations and trends of annual SWA during 2002–2018 in the CPEC: (a–c) the 
SWA per unit land (km2), changes in the slope of SWA, and the significance level of the SWA change, 
respectively. 

The TWS in the different regions of Pakistan, including Kashi, Gilgit Baltistan, Azad 
Kashmir, Punjab, Sindh, and Balochistan, showed a declining trend from 2002 to 2018 
(Figure 4a,b). Among these regions, Punjab exhibited a significant decrease in TWS with 
a slope of −0.48 cm/year, indicating a higher demand for irrigation and population growth 
as the main factors contributing to this decline. Azad Kashmir followed with a decrease 
in TWS at a rate of −0.36 cm/year. Kashi also showed a decreasing trend, but the change 
was not statistically significant (Figure 4a,b). On the other hand, Khyber Pakhtunkhwa 
and FATA exhibited an insignificant increase in TWS, with values of 0.02 cm/year and 0.11 
cm/year, respectively (Figure 4a,b). 

 
Figure 4. Interannual variations and trends in terrestrial water storage from 2002 to 2018: (a) the 
slope of TWS; (b) the significance level of TWS change trend. 

3.2. The Relationship between the SWA and TWS 
From 2002 to 2018, a significant positive correlation was observed between TWS and 

the SWA in Balochistan and Khyber Pakhtunkhwa (slope > 0, p < 0.05). However, other 
regions showed inconsistent variations (Figure 5a), with Gilgit–Baltistan showing a nega-
tive slope (slope < 0, p < 0.05). The coefficients of determination for the linear regression of 
both TWS and the SWA were small (Figure 5b), indicating that other variables had a 
greater influence on the variation in TWS. In summary, although there was a rise in sur-
face water levels, it did not adequately compensate for the decrease in terrestrial water 
retention within the CPEC. 

Figure 3. Interannual variations and trends of annual SWA during 2002–2018 in the CPEC: (a–c) the
SWA per unit land (km2), changes in the slope of SWA, and the significance level of the SWA
change, respectively.



Remote Sens. 2024, 16, 1437 7 of 17

The TWS in the different regions of Pakistan, including Kashi, Gilgit Baltistan, Azad
Kashmir, Punjab, Sindh, and Balochistan, showed a declining trend from 2002 to 2018
(Figure 4a,b). Among these regions, Punjab exhibited a significant decrease in TWS with a
slope of −0.48 cm/year, indicating a higher demand for irrigation and population growth
as the main factors contributing to this decline. Azad Kashmir followed with a decrease
in TWS at a rate of −0.36 cm/year. Kashi also showed a decreasing trend, but the change
was not statistically significant (Figure 4a,b). On the other hand, Khyber Pakhtunkhwa
and FATA exhibited an insignificant increase in TWS, with values of 0.02 cm/year and
0.11 cm/year, respectively (Figure 4a,b).
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3.2. The Relationship between the SWA and TWS

From 2002 to 2018, a significant positive correlation was observed between TWS
and the SWA in Balochistan and Khyber Pakhtunkhwa (slope > 0, p < 0.05). However,
other regions showed inconsistent variations (Figure 5a), with Gilgit–Baltistan showing
a negative slope (slope < 0, p < 0.05). The coefficients of determination for the linear
regression of both TWS and the SWA were small (Figure 5b), indicating that other variables
had a greater influence on the variation in TWS. In summary, although there was a rise in
surface water levels, it did not adequately compensate for the decrease in terrestrial water
retention within the CPEC.
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3.3. Relationship between TWS and the Driving Factors in the CPEC

To examine the factors contributing to TWS, six variables (SWA, CROP, EVA, POP,
PRE, and TEM) were chosen (Figure 6). The correlation between TWS changes and POP
was statistically significant in Azad Kashmir (p < 0.01) (Figure 6), whereas in Balochistan, it
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was significantly associated with the SWA (p < 0.05), EVA (p < 0.05), and PRE (p < 0.05).
In FATA, TWS changes showed a significant correlation with PRE (p < 0.01), in Punjab
with CROP (p < 0.05) and POP (p < 0.05), and in Sindh with CROP (p < 0.01). Conversely,
the changes in TWS in Kashi and Gilgit–Baltistan showed insignificant correlations with
these factors during the period of 2002–2018. These findings suggest that the TWS changes
in Balochistan were primarily influenced by the SWA and climate change, with climate
change having the greatest impact on FATA specifically. In contrast, TWS changes in Azad
Kashmir, Punjab, and Sindh were primarily impacted by human activities.
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Figure 6. The correlation coefficient between TWS and driving factors in the CPEC: ** and * refer
to the significant level with p < 0.01 and p < 0.05, respectively. CROP refers to the area of crop-
land, DAM represents the surface area of the dam, EVA represents the annual evaporation, POP
represents population density, PRE represents annual precipitation, and TEM represents the annual
average temperature.

3.4. Contribution of Driving Factors to TWS in the CPEC

Nevertheless, the significance of the correlation could not serve as the foundation
for attributing the driving factors to TWS alterations. Using Geodetector, an examination
was carried out to evaluate the influence of the driving factors on fluctuations in TWS.
The specific contribution of each of these factors to the variations in GRACE TWS was
individually investigated within the framework of the CPEC (Figure 7). In Azad Kashmir,
the top three factors influencing TWS were POP (q = 0.61), PRE (q = 0.46), and CROP
(q = 0.38), in that order. For Balochistan, the key factors were EVA (q = 0.72), SWA (q = 0.68),
and POP (q = 0.61). In FATA, the significant factors were SWA (q = 0.61), PRE (q = 0.55),
and EVA (q = 0.55). Gilgit–Baltistan’s major factors were CROP (q = 0.57), PRE (q = 0.44),
and EVA(q = 0.27). Kashi’s influencing factors were the SWA (q = 0.46), PRE (q = 0.46),
and EVA (q = 0.40). For Sindh, the key factors were CROP (q = 0.71), POP (q = 0.54), and
TEM (q = 0.48). Khyber Pakhtunkhwa’s significant factors were the SWA (q = 0.64), PRE
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(q = 0.35), and EVA (q = 0.26). Lastly, Punjab’s main factors were CROP (q = 0.73), POP
(q = 0.64), and TEM (q = 0.49), in that order.
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annual average temperature.

As stated earlier, the correlation between changes in TWS and the influencing factors
of the CPEC was not strictly linear. Changes in TWS result from the complex interaction
of various factors. Hence, the analysis focused on examining the impact of the interplay
between the driving forces on TWS within the areas of the CPEC between the years 2012
and 2018 (Figure 8). In Azad Kashmir, the interaction was primarily characterized by a
dual-factor enhancement. The key factors contributing to changes in TWS were POP ∩ PRE,
EVA ∩ POP, and SWA ∩ PRE (q = 0.66) (Figure 8a). Similarly, in Balochistan, the interaction
was dominated by a dual-factor enhancement and nonlinear enhancement, with the most
significant contributions coming from SWA ∩ TEM, EVA ∩ POP (q = 0.86) for the dual-
factor enhancement, and PRE ∩ TEM (q = 0.90) for the nonlinear enhancement (Figure 8b).
In FATA, the interaction was characterized by a nonlinear enhancement and dual-factor
enhancement: EVA ∩ TEM and PRE ∩ TEM (q = 0.86). Nonlinear enhancement was evident
in the interaction of EVA ∩ PRE (q = 0.87) (Figure 8c). In Gilgit–Baltistan, the interaction
involved the nonlinear weakening of single factors and dual-factor enhancement. The
major contributing factors to TWS changes were CROP ∩ PRE (q = 0.74) for the nonlinear
weakening of single factors and CROP ∩ POP and CROP ∩ TEM (q = 0.52) for dual-factor
enhancement (Figure 8d). The dual-factor enhancement predominantly characterized the
interaction in Kashi, where SWA ∩ EVA, SWA ∩ POP, and EVA ∩ POP (q = 0.53) contributed
the most (Figure 8e). The dual-factor enhancement also predominated in Sindh, where
CROP ∩ PRE, SWA ∩ CROP, and CROP ∩ POP (q = 0.76) were the main contributors
to the interaction (Figure 8f). The dual-factor enhancement and nonlinear enhancement
were involved in the interaction in Khyber Pakhtunkhwa. SWA ∩ TEM and SWA ∩ POP
(q = 0.81) for the nonlinear enhancement and SWA ∩ EVA (q = 0.82) for the dual-factor
enhancement were the key contributors to TWS changes (Figure 8g). Lastly, the dual-factor
enhancement best described the interaction in Punjab, where CROP ∩ TEM, EVA ∩ TEM,
and PRE ∩ TEM had the most significant contributions (q = 0.68; Figure 8h).
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Figure 8. Contributions of driving factors interaction to TWS in the CPEC: (a) Azad Kashmir;
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jab. CROP represents the area of cropland, EVA represents the annual evaporation, POP repre-
sents population density, PRE represents annual precipitation, and TEM represents the annual
average temperature.

4. Discussion
4.1. The Impact of Dam Construction on TWS and SWA

According to the GRanD v1.3 database, between 1913 and 2013, the CPEC saw the
construction of fifty large dams to address the rise in water resource needs resulting from
population growth. Since 2002, an additional 9 large dams have been built in the CPEC
(Figures 1 and 9), with distribution in Balochistan (2), FATA (2), Khyber Pakhtunkhwa
(1), Gilgit–Baltistan (2), and Sindh (2). These large dams have had a significant impact on
the surrounding ecosystem, particularly rivers and lakes. The completion of the Mirani
dam in Balochistan in 2007 (Table 2) led to a gradual increase in the SWA (Figure 3b)
and TWS (Figure 4a), which eventually decreased due to development and utilization
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(Figure 9b). Similarly, during the construction of Gomal Zam in FATA between 2013 and
2017 (Table 2), the TWS and SWA in the basin increased (Figures 3b and 4a), but the SPEI
decreased (Figure 9c), suggesting that the increase in the SWA did not alleviate the drought
in the region (Figure 10c). In Gilgit–Baltistan, the construction of the Satpara dam in
2013 (Table 2) did not result in an increase in the SWA, but it did reduce the interannual
fluctuations (Figure 9d).

1 
 

 

Figure 9. SWA, TWS, and the Standardized Precipitation–Evapotranspiration Index: (a) Azad
Kashmir; (b) Balochistan; (c) FATA; (d) Gilgit–Baltistan; (e) Kashi; (f) Sindh; (g) Khyber Pakhtunkhwa;
(h) Punjab. The SPEI is the Standardized Precipitation–Evapotranspiration Index. The dashed lines
indicate the dam’s construction year.

Table 2. Characteristics and construction details of the dams in the CPEC.

Region Dam Name Construction Year Dam Height Area (km2)

FATA Gomal Zam 2013 133 35.97
Sindh Darawat 2013 46 8.93

Gilgit–Baltistan Satpara 2011 39 3.21
Balochistan Mirani 2007 39 62.95
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Tariq [41] and Waseem Ishaque [40]. Pakistan’s agricultural sector contributed 21% to the 
country’s economy, with an annual growth of 2.7%, surpassing industries, which indicates 
an agrarian economic stage [42]. Therefore, dynamic changes in water resources not only 
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Figure 10. Trends of population density in Central Asia at the national scale from the fourth version
of the Gridded Population of the World from 2002 to 2018: (a) the density of population; (b) the
significance level of the population density change trend; (c) spatial distribution of land cover types
in 2018: 10: cropland (rainfed), 20: cropland (irrigated or post-flooding), 30: mosaic cropland–natural
vegetation (coverage rate greater than 50% natural vegetation (tree, shrub, and herbaceous cover)
and less than 50% cropland).

4.2. Impact of Dynamics in Water Resources on Population and Social Economy

In order to identify the potential obstacles affecting the population and economic
advancement within the CPEC, we delved deeper into the changes in population distribu-
tion and cultivated land allocation over time and space in the CPEC region. According to
GPW statistics, the population of the CPEC has been steadily increasing over the past few
decades (Figure 10), leading to a higher demand for water resources [40]. We found that, in
2018, the total cropland area in the CPEC was approximately 3.02 × 105 km2 (Figure 10c),
with irrigated areas accounting for 21.05% of it. Cropland is mainly distributed in Sindh
and Punjab (Figure 10c). However, TWS in Sindh decreased at a rate of 0.12 cm/year, and
TWS in Punjab decreased at a rate of 0.48 cm/year. This indicates that the water resource
crisis in these two areas is likely to intensify, which is consistent with the findings of Aqil
Tariq [41] and Waseem Ishaque [40]. Pakistan’s agricultural sector contributed 21% to the
country’s economy, with an annual growth of 2.7%, surpassing industries, which indicates
an agrarian economic stage [42]. Therefore, dynamic changes in water resources not only
affect the population’s use of water resources but also affect agricultural development,
thereby affecting social and economic development.

In order to further analyze the impacts of water resource changes on population and
cropland, we further developed the study from three perspectives, PSWA, SSWA, and
TWS, based on the pixel scale (Figure 11). We found that regions with high cropland were
mostly situated in areas where TWS had been severely depleted (Figure 11a), and regions
with high population density were also primarily located in regions with depleted TWS
(Figure 11b). Moreover, it was observed that large areas of cropland were concentrated
in regions with only marginal increases in the PWSA (Figure 11c). Conversely, areas
with high population density were mainly found in regions with relatively small, yet
significant, increases in the PWSA (Figure 11d). Additionally, regions with substantial
cropland areas were predominantly distributed in areas with a small, yet significant,
seasonal increase in the SWA (Figure 11e). Lastly, high population density areas were found
in areas with a small, but noteworthy, increase in the SSWA (Figure 11f). In summary,
the significant decrease in TWS primarily occurred in areas of high cropland and high
population density, suggesting that water resource utilization in these areas may be under
considerable pressure. Furthermore, although the increases in the PWSA and SSWA are
small, they still have significant implications for improving the water resource conditions in
cropland and densely populated areas [43]. This indicates that even slight increases in water
resources are critical for maintaining regional water balance and supporting agricultural
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production. Therefore, this study underscores the importance of managing and protecting
water resources to ensure the sustainable development of both populations and agriculture.
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(f) SSWA trend and the population density in 2018.

Additionally, over the past few decades, research on the dynamic of water resources
in the CPEC has primarily focused on the unsustainable use and management of these
resources, as well as the impact of climate change [44–48]. These studies investigated
the impacts of these variables on bodies of water from a one-dimensional angle. In fact,
changes in water bodies are frequently instigated by the interplay of numerous factors [6,32].
However, it has not been given sufficient attention in the existing research on the CPEC. By
neglecting the interconnected nature of these factors, the understanding of the complexity
of spatial–temporal dynamics of water may be limited. In this study, we identified mainly
two types of effect, a dual-factor enhancement and the nonlinear weakening of single
factors (Figure 8). This finding reminds us that, to fully understand and predict water
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resource dynamics and their spatial–temporal complexity, the interconnectedness of these
factors must be taken into account for actual management. Therefore, we suggest that
future research should not only focus on the impact of a single factor on water bodies but
should also pay more attention to the interaction and overall impact of multiple factors.
This approach can not only help us better understand the changing dynamics of water
resources in the CPEC region but also develop more effective water resource management
and protection strategies.

4.3. Water Crisis in the CPEC

Pakistan, ranked third by the International Monetary Fund, faces severe water short-
ages. The Pakistan Council of Research in Water Resources predicts very limited access to
clean water by 2025 [49]. Although the SWA showed an increasing trend, TWS witnessed
a decreasing trend in most regions of the CPEC (Figures 3 and 4). In addition, it can be
observed that the decreasing degree of total water availability exacerbated the declining
trend of water crisis in the CPEC. Pakistan is an agricultural country, and most of the
water used for agriculture is extracted from groundwater [50]. The decline in TWS could
indicate a decrease in groundwater [51], which could impact food security and agricultural
production. Furthermore, the decline in groundwater levels could lead to the drying up
of wetlands and rivers that depend on groundwater recharge, destroying ecosystems and
affecting biodiversity. Such negative outcomes may lead to soil drying and salinization,
exacerbating land degradation and desertification problems. Furthermore, glaciers in Pak-
istan are melting at a rate quicker than any other region globally as a result of the warming
climate, leading to a situation in which, by the year 2035, there will be a complete absence
of glaciers within the country. The increasing melting of glaciers could lead to a large
SWA in a short time; however, it can result in a shortage of water resources in the CPEC
in the long run [52]. Pakistan is at risk of high concentrations of arsenic in its drinking
water [53]. This contradicts the United Nations’ 2015 statement of Sustainable Develop-
ment Goals, one of which is to ensure that all people have access to sanitary facilities and
clean, safe drinking water (Goal 6). The main reasons for the underutilization of surface
water resources in Pakistan are the uneven spatial distribution of these resources over time,
as well as issues with water resource management, aging infrastructure canals, and low
water efficiency [49,53,54].

Pakistan’s available water resources face significant pressure due to population growth,
competition for water among different sectors, climate change, and the degradation of
ecosystem services caused by inadequate planning and management [40]. This presents
a significant risk to the natural environment, economic and social advancement [55], and
public well-being [49]. In order to promote the long-term use of water supplies within the
framework of the CPEC, a variety of actions must be taken. According to our research
(Figures 6 and 7), Azad Kashmir and Punjab should focus on addressing population growth
and maximizing the utilization of precipitation. Additionally, Kashi should consider pop-
ulation growth and the expansion of cropland areas. Sindh should prioritize expanding
the area of cropland. Moreover, actions consist of the deployment of water-conserving
technologies to enhance irrigation effectiveness; the holistic consideration of SWA, ground-
water, and TWS; and fostering collaboration between nations to guarantee enduring water
consumption within the CPEC and aid in attaining Sustainable Development Goal 6. It is
also important to note that India’s plan to construct a dam on a tributary of the Indus River
within its borders has created new tensions, as it would grant India greater control over the
river’s flow.

5. Conclusions

This study identified changes in TWS and the SWA in the CPEC and explored the
relationship between TWS changes and its driving factors based on geographical detectors.
The following key findings were derived:
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(1) Over the last two decades, CPEC regions experienced divergent water body
changes: The SWA generally increased, with Sindh seeing the highest rise. Punjab’s
TWS significantly decreased by −0.48 cm/year, with similar declines in Azad Kashmir.
Despite some TWS increases in Khyber Pakhtunkhwa and FATA, these were not enough to
counteract overall TWS reductions within the CPEC.

(2) Correlation analysis revealed that the SWA and climate change were the primary
factors influencing TWS changes in Balochistan, while FATA changes were mainly influ-
enced by climate change. On the other hand, human activities had a primary impact on
TWS changes in Azad Kashmir, Punjab, and Sindh.

(3) The results of the geographical detector analysis indicated that the main interaction
factors influencing TWS changes in the CPEC were primarily a dual-factor enhancement
and the nonlinear weakening of single factors.

Our research further shows that although the water resources in the CPEC are in-
creasing, the problem of declining water reserves is serious. The current population and
cultivated land are mostly distributed in areas with severely declining TWS, especially
Sindh and Punjab. Pakistan should address the problems faced by these two provinces. If
the water crisis worsens the problem, countermeasures should be taken in advance, such
as controlling rapid population growth and appropriately reducing the area of cropland.
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