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Abstract: The complexity of terrain features poses a substantial challenge in the effective processing
and application of airborne LiDAR data, particularly in regions characterized by steep slopes and
diverse objects. In this paper, we propose a novel multiscale filtering method utilizing a modified
3D alpha shape algorithm to increase the ground point extraction accuracy in complex terrain. Our
methodology comprises three pivotal stages: preprocessing for outlier removal and potential ground
point extraction; the deployment of a modified 3D alpha shape to construct multiscale point cloud
layers; and the use of a multiscale triangulated irregular network (TIN) densification process for
precise ground point extraction. In each layer, the threshold is adaptively determined based on the
corresponding α. Points closer to the TIN surface than the threshold are identified as ground points.
The performance of the proposed method was validated using a classical benchmark dataset provided
by the ISPRS and an ultra-large-scale ground filtering dataset called OpenGF. The experimental results
demonstrate that this method is effective, with an average total error and a kappa coefficient on the
ISPRS dataset of 3.27% and 88.97%, respectively. When tested in the large scenarios of the OpenGF
dataset, the proposed method outperformed four classical filtering methods and achieved accuracy
comparable to that of the best of learning-based methods.

Keywords: ground filtering; LiDAR; 3D alpha shape; data pyramid; TIN

1. Introduction

In recent decades, airborne light detection and ranging (LiDAR) systems have been
rapidly developed. LiDAR is capable of penetrating vegetation to obtain terrain elevations
in forest areas and quickly acquire high-density and high-precision 3D spatial data [1].
These systems provide advantages compared with traditional photogrammetric meth-
ods. Thus, airborne LiDAR has been widely used in various applications, such as the
reconstruction of digital terrain models (DTMs) [2–6], forest surveying [7,8], power line
patrolling [9,10], and 3D city modeling [11,12]. The ground and nonground points in the
original LiDAR data must be separated before these applications, which is referred to as
point cloud filtering [13,14]. Owing to the complex terrain (e.g., large undulations, steep
slopes, cliffs, and sharp ridges) and the presence of various nonground objects, achieving
high accuracy point cloud filtering is a challenging task [15]. Many methods have been
proposed for filtering point clouds, which can be broadly classified into three categories:
slope-, morphology-, and surface-based methods.

Slope-based methods assume that the height difference between ground points is
gradual, whereas this difference between ground points and nonground points, such as
buildings and vegetation, is steep. Ground points can be extracted by setting a threshold to
determine slope changes. Vosselman et al. [16] first proposed a slope-based filtering method
that identifies ground points by comparing the slopes between a point and its neighbors.
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To increase the adaptability of the algorithm to complex terrain, adaptive thresholding
strategies for slope-based filtering have been proposed [3,4,17]. These methods cannot
select a reasonable threshold in complex terrain, and only slope change information is
used. Thus, filter performance may degrade for terrain with large undulations and steep
slopes [18].

Morphology-based methods are used to remove nonground objects from the original
point cloud using morphological operations such as erosion, expansion, open, and close.
The nonground objects are filtered by comparing the elevation differences between original
and morphological open surfaces. However, selecting an appropriate window size for
morphological operation is crucial [19]. A small window may not filter out large non-
ground features, such as buildings, whereas a large window may erase terrain details.
Zhang et al. [20] proposed a progressive morphological filtering (PMF) method that opti-
mizes the adaptability of the morphological method by gradually changing the window
size of the morphological operation. The elevation difference threshold is determined using
the corresponding window size and the terrain slope, which are assumed to be constant.
To widen the applicability of this method to the terrain of various slopes, Chen et al. [21]
introduced a set of tunable parameters that describe the local terrain topography. Further-
more, various techniques, such as gradient constraint [22], white top-hat transform [23],
image processing [24], and multilevel interpolation [25], have been employed to improve
filtering performance. Morphology-based filtering methods are simple and easy to imple-
ment, and they can remove small nonground objects attached to the ground. However,
terrain with a variety of nonground objects may pose a challenge for morphological filters,
because properly setting the structuring element can be difficult [26].

Surface-based methods construct a surface model that approximates the ground sur-
face and extract points close to the surface as ground points [27]. The common algorithms
used for surface construction include the triangulated irregular network (TIN) [2,28–30],
cloth simulation [31], and thin plate spline (TPS) [5,13,32]. Progressive TIN densification
filtering (PTDF) is used to extract ground points by densifying a TIN constructed from
selected seeds. This algorithm was first proposed by Axelsson et al. [2] and achieved the
best results among eight methods in an experimental comparison conducted by Sihole and
Vosselman [15]. Zhao et al. [28] improved the performance of PTDF in forested areas by
optimizing seed selection using the morphological method. Zhang et al. [30] enhanced
this algorithm by incorporating smoothness-constrained segmentation to preserve ground
measurements and reduce errors. Nie et al. [29] revised the PTDF densification process and
better preserved the ground points in steep areas and removed small objects attached to the
ground. Zhang et al. [31] proposed cloth simulation filtering (CSF), which simulates a piece
of cloth using a particle-constraint model that gradually falls to an inverted point cloud
under the effect of gravity. The final shape of the cloth is determined by the inner forces and
the interaction between the cloth and the point cloud. Under ideal circumstances, the final
cloth shape is a precise approximation of the terrain. CSF achieved satisfactory accuracy for
most terrain types, but postprocessing was necessary for steep terrain. Additionally, CSF
cannot distinguish objects that are connected to the ground (e.g., bridges). In general, these
methods are more accurate because they use more neighborhood information and perform
well for flat terrain, but the missing complex terrain details and the misclassification of
small nonground objects are issues that still need to be addressed [26].

To increase the reliability of surface-based methods for complex terrain, a multiscale
strategy was designed by eliminating large nonground features while preserving terrain
detail by fitting the surface at varying scales. Mongus et al. [5] generated surfaces using
the TPS algorithm at different scales with a bottom-up approach. Top-hat transformation
was used to enhance the discontinuities caused by surface objects. Additionally, auto-
matic thresholding based on the standard deviation was used to achieve parameter-free
ground point filtering. Chen et al. [32] employed a top-down approach with three levels
of hierarchy to filter the point cloud, selecting seeds and applying the TPS algorithm to
interpolate the surfaces in each level. The ground points were identified by evaluating
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the residuals between the points and the surface. Hu et al. [13] proposed a novel adaptive
surface filter (ASF) to process LiDAR point clouds using a progressive densification strategy,
regularization, and self-adaption. Data pyramids were constructed with a small step factor,
and regularization was used to eliminate noise during the interpolation of TPS surfaces.
An adaptive threshold determination algorithm was used that incorporates a bending
energy function to explicitly depict terrain smoothness. Mongus et al. [11] conducted
multiscale data decomposition by forming a top-hat scale space using differential morpho-
logical profiles (DMPs) on the point residuals of the approximated surface. The ground was
extracted and the buildings were detected simultaneously using the geometric attributes of
the contained features estimated from the DMPs. Overall, the introduction of the multiscale
strategy led to substantially increased accuracy in point cloud filtering, particularly in
scenarios with complex features. By gradually adjusting the scale, the nonground objects
of different sizes can be effectively filtered while retaining terrain detail. However, this
strategy may be time-consuming due to the computation required at various scales.

In recent years, several learning-based pipelines have been used to classify point
clouds into ground and nonground points. Jin et al. [33] employed a point-based fully
convolutional neural network (PFCN) to filter point clouds in forested environments.
Zhang et al. [6] utilized a graph convolution network to filter point clouds in forest areas.
Qin et al. [34] assessed the performance of four 3D deep neural networks (PointNet++ [35],
KPconv [36], RandLA-Net [37], and SCF-Net [38]) using the OpenGF dataset. The study
results showed that learning-based pipelines outperformed classical filtering methods
in most scenarios, particularly in forested environments with hybrid terrain. However,
in urban environments, the networks may struggle to recognize large objects and are less
accurate than classical methods.

To reliably filter results for complex terrain and steep areas, we developed a filter-
ing method called multiscale alpha shape filtering (MASF). MASF involves three key
approaches: in addition to the multiscale comparison strategy and TIN densification men-
tioned above, the other key approach is the 3D alpha shape algorithm. The alpha shape
is widely used to extract the boundary of an unorganized set of points in two or three
dimensions [39]. The extraction of geometric boundaries of objects or parts in a point cloud,
such as line segments [40] and contours [41], is a fundamental problem in point cloud
processing. This allows for more accurate segmentation and surface reconstruction [42].
The 3D alpha shape was first applied for point cloud filtering by Ma et al. by combining the
ball pivot algorithm (BPA) and spatial sorting [43]. The nonground points are filtered via
an improved BPA traversing all the grids. In this study, we developed a novel application
of the 3D alpha shape to filtering. The process of deriving a 3D alpha shape from the un-
derlying Delaunay triangulation is modified by adding extra constraints. A data pyramid
consisting of multiscale point layers is constructed using the proposed modified 3D alpha
algorithm, and ground points are extracted using top-down multiscale TIN densification.

Compared with existing filtering algorithms, the proposed method is innovative in the
following two aspects: (1) The data pyramid is built using a novel approach based on the
3D alpha shape. Ground undulations and nonground object points are arranged into point
cloud layers at multiple scales based on their size. Compared with using the lowest grid
points, this modified 3D alpha shape algorithm is more robust for steep slopes, including
cliffs. (2) A multiscale TIN densification approach is used to extract ground points from
the pyramid point cloud. The distance thresholds are adaptively determined at each scale,
effectively increasing the extraction accuracy in complex scenarios compared with that of
classical PTDF. The performance of MASF was quantitatively evaluated using the widely
used benchmark dataset provided by the International Society for Photogrammetry and
Remote Sensing (ISPRS) commission [15] and an ultra-large-scale ground filtering dataset
named OpenGF [44]. The results of the proposed method were compared with those of
some classical filtering methods and deep learning pipelines.

The rest of this paper is structured as follows: Section 2 provides a detailed introduc-
tion to the proposed method, including the filtering process and parameter determination.
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Section 3 presents the experimental results and their analysis. Finally, Section 4 discusses
the proposed algorithm. The conclusions are summarized in Section 5.

2. Methods

The proposed method uses a multiscale strategy to filter airborne LiDAR data. A novel
approach based on the 3D alpha shape is adopted to generate multiscale point cloud layers.
The entire workflow of the proposed method consists of three parts, as shown in Figure 1.
First, the original data are preprocessed to extract potential ground points without outliers.
Second, the data pyramid is generated using the modified 3D alpha shape algorithm with
a gradually decreasing α. Third, multiscale TIN densification is performed from the top to
the bottom layers to extract ground points. A sparse TIN representing the initial ground
surface is constructed using the points in the top layer, which solely consists of ground
points. In the following layers, the ground points are extracted by examining the point
distances from a reconstructed ground surface using an adaptively determined threshold.

Figure 1. Workflow of the proposed method for filtering airborne LiDAR data.

2.1. Data Preprocessing

The original LiDAR point cloud contains numerous points, including ground points,
nonground points (e.g., buildings, vehicles, and vegetation), and outliers caused by LiDAR
system error and multipath reflections [27]. To simplify filtering calcualtion, potential
ground points are selected from the original point cloud for further processing. However,
negative outliers at low elevations can be erroneously identified as ground points. As a
result, the ground points above the outliers are misclassified as nonground points, reducing
the filtering accuracy.

To select a set of potential ground points and simultaneously remove negative outliers,
the extended local minimum method proposed by Chen et al. [32] is adopted in this method.
The input point cloud is initially arranged into a grid G, and each grid cell contains an array
of points. For each nonempty cell G(x, y) in G, a set of low-lying points is selected and
sorted via elevation. Starting from the lowest point, if the elevation difference between two
adjacent points is smaller than a given threshold, the lower point is selected as a potential
ground point. Otherwise, the point is identified as an outlier and removed. The grid is
determined by the density of the point cloud. In most cases, a grid size of 1 m is appropriate
for the trade-off between terrain detail preservation and grid construction efficiency.

2.2. Modified 3D Alpha Shape

The alpha shape was introduced by Edelsbrunner et al. as a geometric tool to pro-
vide reasoning for the shape of an unorganized set of points in 2D, 3D, and higher
dimensions [45,46]. An alpha shape is demarcated by a frontier, which is a linear ap-
proximation of the original shape [47]. In 3D space, the alpha shape is a computational
geometry extension of the point cloud’s convex hull, and each alpha shape is a well-defined
polytope. The process of constructing 3D alpha shapes can be intuitively understood as
carving the convex hull of the original point set S with an empty ball of user-defined radius
α. The parameter α determines the desired level of detail (Figure 2). For α = ∞, the alpha
shape is identical to the convex hull of S. As α decreases, the alpha shape gradually shrinks,
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degrading to S when α = 0 [46]. The 3D alpha shape can be derived from the underlying
Delaunay triangulation, which is a unique decomposition of the convex hull of a finite
set of points S [39]. Each simplex in the triangulation is associated with an interval that
specifies the values of α for which the simplex is part of the resulting alpha shape [46].

(a) (b) (c) (d)

Figure 2. Illustration of 3D alpha shape: (a) the original point cloud of a rabbit; (b) the convex hull of
the original point cloud; (c,d) the alpha shapes of the original point cloud; the α used in (c) is 0.05 m,
and the α used in (d) is 0.01 m.

In this study, the 3D alpha shape was modified to be adaptable to extract the terrain.
In the traditional 3D alpha shape algorithm, the triangle σT of the underlying 3D Delaunay
triangulation Q3 is part of the resulting shape when the interval specifying the values for
which this triangle belongs to the alpha shape contains the user-defined α. In our modified
version, the triangle must meet two additional conditions: First, the radius of the smallest
circumcircle of σT should not be larger than α. Second, the triangle must have at least
one empty circumscribed sphere with a radius of α located below the bottom of the point
cloud. These additional conditions restrict the carving process below the bottom of the
input point cloud so that only the bottom points are involved in the calculation (Figure 3).
The procedure of the modified 3D alpha shape algorithm is presented in Algorithm 1.
The kd tree and TIN constructed with the preprocessed points are used to determine
the existence of an empty circumscribed sphere below the bottom of the point cloud.
A circumscribed sphere is considered empty if its center contains only three neighbors,
which are the vertices of the triangle, within radius α. Moreover, a sphere is considered to
be below the original point cloud if its center is located beneath the TIN representing the
bottom surface.

(a) (b) (c)

Figure 3. Comparison between 3D alpha shape and the modified 3D alpha shape: (a) the original
point cloud (red for nonground points and bule for ground points); (b) result of the 3D alpha
shape; (c) result of the modified 3D alpha shape. The green translucent surfaces in (b,c) are the
resulting shapes.

Because no other points are located below the ground, the extracted bottom frontier
of the point cloud can be regarded as the shape that intuitively describes the terrain.
The resulting shapes are formed by the triangle of three points, which prevents an empty
ball from passing through when the ball rolls under the point cloud. Using an appropriate
α, the hole of the point cloud under large nonground objects (e.g., buildings and vegetation)
prevents the empty ball from passing, and these objects are filtered (see a and c in Figure 4).
Furthermore, the points on steep slopes and cliffs can be accurately extracted during ball
rolling (see b in Figure 4).
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Figure 4. Overview of the modified 3D alpha shape algorithm.

Algorithm 1 The modified 3D alpha shape algorithm.

Require: Preproposed result points Pl .
Require: Parameter α > 0;

1: Q3 ← 3D Delaunay triangulation constructed with Pl
2: Q2 ← TIN constructed with Pl to determine ball position
3: T ← kd tree constructed with Pl for searching neighbors in a radius
4: for each triangle σT in Q3 do
5: [αmin, αmax]← the interval of σT for specifying the values of α
6: if α ∈ [αmin, αmax] then
7: Calculate the smallest circumcircle ϕT of σT , and ϱT is the radius of ϕT
8: if ϱT = α then
9: OT ← the center of ϕT

10: Query for neighbors of OT within radius α in T
11: if OT has only three neighbors then ▷ three vertices of σT
12: Label σT , and save σT to the final shape Sα

13: end if
14: else if ϱT < α then
15: B1 and B2 ← the circumscribed spheres of σT with a radius of α
16: O1 and O2 ← the centers of B1 and B2
17: Query for neighbors of O1 and O2 within radius α in T, respectively
18: if either O1 or O2 has only three neighbors and is located under Q2 then
19: Label σT , and save σT to the final shape Sα

20: end if
21: end if
22: end if
23: end for
24: return Sα

2.3. Data Pyramid Construction

The data pyramid consists of a sequence of point cloud layers that depict the orig-
inal point cloud at varying scales. Researchers previously constructed the pyramid by
selecting the lowest points of the grid cells and adjusting the scale by changing the cell
size [13,32]. However, this approach encounters difficulties in extracting evenly distributed
representative points on steep slopes and cliffs. Instead, we used the modified 3D alpha
shape algorithm to address these issues. Figure 5 illustrates the extraction of point cloud
layers using a series of gradually decreasing α values. For the top layer, a sufficiently
large parameter denoted by αmax is used to extract a shape that roughly represents the
ground surface, consisting solely of ground points. According to the prior knowledge that
the surface is continuous, the closer the two ground points, the smaller their elevation
difference. Conversely, nonground points may cause sudden a relief change across a short
horizontal distance [27]. As α decreases, the slopes are extracted from the base to the top,
whereas the buildings are extracted in the opposite direction (Figure 5). The difference
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in elevation between the adjacent layers of ground points is small, whereas that between
object points and ground points is large, allowing ground and nonground points to be
distinguished by analyzing their distance to a reconstructed ground surface.

During the construction of the data pyramid, α linearly decreases from αmax to αmin
in steps of αstep. This linearly decreasing α preserves the gradually changing topographic
features. The value of α for each layer, from top to bottom, can be calculated using the
following formula:

αk = αmax − (k− 1)× αstep (1)

where k = 1, 2, . . . , M. The value of αmax is determined from the size of the largest non-
ground object in the original point cloud. αmax should be sufficiently large to filter all
noground points in the top layer. In practice, αmax is usually set to half the size of the largest
object. However, when large-scale buildings exist, αmax should be further increased to be
larger than the largest object size due to the curvature of the empty ball. Typically, αmin
is twice the grid size used in the preprocessing, because the density of the preprocessed
point cloud is determined using the grid size. αstep determines the number of layers in the
data pyramid. A smaller αstep leads to more gradual changes between layers and helps to
preserve terrain details. However, a smaller αstep also requires more computation. A further
analysis of the setting of αstep is discussed in Section 4.2.

(a)

(b)

(c)

(d)

Figure 5. The extraction of point cloud layers. (a) the top layer extracted using a sufficiently large α

(radius of the ball); (b–d) the lower layers extracted using gradually decreasing α.

2.4. Multiscale TIN Densification Filter

The classical PTDF proposed by Axelsson et al. [2] is an iterative process. An unclas-
sified point is identified as a ground point and added to the TIN if its iterative angle and
distance from the TIN face are smaller than the corresponding user-defined thresholds [28].
In this paper, a multiscale TIN densification approach is developed to extract ground points.
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Compared with the classical PTDF, multiscale TIN densification provides three aspects
of improvements. First, the initial sparse TIN is constructed using points extracted using
the modified 3D alpha shape algorithm, which provides a larger number and a more even
distribution than using the lowest points of the grid cells in PTDF (further comparisons
are provided in Section 4.1). Second, only the distance threshold is needed to identify the
ground points, whereas two user-defined thresholds need to be examined with the classical
PTDF. Moreover, the distance threshold can be adaptively determined in each layer. Third,
multiscale TIN densification is a noniterative process, and ground points are only identified
once in each layer, considerably simplifying the computation process.

The multiscale TIN densification procedure is illustrated in Figure 6. TIN densification
is accomplished using point cloud layers in the data pyramid in a top-down approach.
The points in the top layer are used as seeds to build a sparse TIN that represents the initial
ground surface (Figure 6a). The quality of the TIN at the edge is low due to the lack of
neighboring points. The credibility of long narrow triangles and vertical triangles is low,
which may lead to the misclassification of nonground points at the edges. To solve this
problem, empty cells are added around the grid established during preprocessing to create
buffer zones that expand the data processing region. The centers of these empty cells are
then used as simulated ground points, with their elevation set to that of the nearest point
in the top layer. This technique helps with eliminating edge effects and preventing the
formation of low-credibility long and narrow triangles along the boundary [28]. In the
subsequent layers, points closer to TIN than the corresponding distance threshold (DT) are
labeled as ground points and inserted into the TIN, resulting in a further refined surface
with more terrain details. However, some ground points remain in the original point
set due to potential ground point selection in preprocessing and omissions during TIN
densification. Thus, the distances between all unlabeled points and the TIN are computed
to completely extract ground points. Those with distances less than the final threshold (FT)
are added to the final ground point set (Figure 6e).

In this approach, the determination of the DT used in each layer is crucial. The residu-
als of ground points to the TIN, which represents the ground surface, are larger than those
of nonground objects. Therefore, ground and nonground points can be differentiated using
an appropriate DT. In the starting layers, DT should be large enough to recover as much
as possible of the terrain, because the initial surface is rough. However, for subsequent
layers, DT should gradually decrease to avoid misclassifying small nonground objects
that are attached to the ground. As illustrated in Figure 7a, the distance d between the
point P and its nearest TIN facet is calculated when detecting whether P is a ground point.
Suppose that a ball exists with radius α centered on O, which is the perpendicular foot of P
to the nearest facet. θ is the relative slope that determines the value of DT. The distance
threshold denoted by DTk in the kth layer can be derived from the corresponding αk using
the following formula:

DTk = STαk + FT (2)

where k = 1, 2, . . . , M. ST refers to the slope threshold: a user-defined parameter equivalent
to tanθ. For simplification, ST is typically set to 0.01 (tan3◦) in flat areas and 0.1 (tan6◦) in
areas with relief. For steep slopes, ST can be even larger to extract points on ridges and
cliff edges. FT is mainly used to determine the threshold in the bottom layers, because the
corresponding α decreases to a small value. In practice, FT is usually set to 0.5 m to balance
the removal of nonground objects attached to the ground and the preservation of minor
terrain details.
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(a)

(b)

(c)

(d)

(e)

Figure 6. Procedure for multiscale TIN densification. (a) the top layer that provides seed points;
(b–d) extraction of ground points in the lower layers of the data pyramid; (e) extraction of final
ground points.

(a) (b)

Figure 7. Illustration of distance threshold determination. (a) d is the distance between the point P
and its nearest TIN facet; (b) DT is the distance threshold and θ is the relative slope.

3. Experiment and Results
3.1. Experimental Setup

The proposed method was implemented in C++ and compiled using Visual Studio
2017. The algorithms provided by the Computational Geometry Algorithm Library (CGAL)
were employed to construct the Delaunay triangulation and calculate the corresponding
interval for each simplex [48]. CGAL is an open-source software project that provides
access to geometric algorithms in the form of a C++ library. For point sets in two or
three dimensions, CGAL offers packages that enable the construction and manipulation of
Delaunay triangulations. Triangulations can be incrementally constructed and efficiently
modified by inserting, displacing, or removing vertices. The experiments were conducted
using a desktop computer with an Intel Core i9-9900K CPU @3.60 GHz and 32 GB RAM
(HP, Palo Alto, CA, USA).
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3.2. Accuracy Metrics

We used four accuracy metrics derived from the error matrix of the filtering results
(see Table 1) and used in prior studies to evaluate the performance of the proposed method.
The type I error (T.I), type II error (T.II), total error (T.E.), and kappa coefficient (κ) were cal-
culated and compared with those of some current top algorithms. Type I error (Equation (3))
is the percentage of ground points misclassified as nonground points, and type II error
(Equation (4)) is the proportion of nonground points classified as ground points. The total
error (Equation (5)) is the overall proportion of incorrectly classified points. The kappa
coefficient (Equation (6)) is an alternative measure of the overall classification accuracy in
which the effect of chance agreement is subtracted, and the increase in the accuracy of a
particular classification is quantified compared with that of a random classification [49].

Table 1. Error matrix of the filtering results.

Filtered

Ground Points Nonground Points

Reference Ground points a b
Nonground points c d

Type I error =
b

a + b
(3)

Type I I error =
c

c + d
(4)

Total error =
b + c

a + b + c + d
(5)

Kappa coe f f icient =
p0 − pc

1− pc
(6)

where e = a + b + c + d, p0 = (a+d)
e and pc =

(a+b)×(a+c)+(c+d)×(b+d)
e2 .

3.3. Testing Results
3.3.1. Testing with ISPRS Dataset

We employed the benchmark datasets provided by the International Society for Pho-
togrammetry and Remote Sensing (ISPRS) Working Group III/3 to test the performance of
our method in various scenarios [15]. The dataset comprises 15 samples from seven sites,
encompassing a variety of feature objects such as vegetation, buildings, roads, railroads,
rivers, bridges, power lines, and water surfaces. The samples were captured with an Optech
ALTM scanner, and the average point spacing is 1.0–1.5 m in urban areas (from samp11 to
samp42) and 2.0–3.5 m in rural areas (from samp51 to samp71). Table 2 shows the detailed
features of each sample. The reference filtering result for each sample was obtained via
semiautomatic filtering and manual editing using knowledge of the landscape [15].

Table 3 presents the parameters and results of the proposed method for 15 sample
types. For each sample, the parameters were tuned according to the features of the scene.
The three main user-defined parameters in MASF are αmax and αstep for the construction
of pyramid point clouds and ST for the determination of the distance threshold in each
iteration. αmax varies from 5 to 25 m, depending on the largest nonground object in the
sample. In particular, the αmax for smap42 was set to 20 m due to the extremely large
size of the train station building, whereas the α in the top layer was set to 90 m to avoid
unnecessary computation.
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Table 2. Features of the samples in the ISPRS dataset [15,24].

Environment Site Sample Features

Urban

1 11 Mixture of vegetation and buildings on the hillside
12 Mixed vegetation and buildings

2

21 Large buildings and bridge
22 Irregularly shaped buildings
23 Large, irregularly shaped buildings
24 Steep slopes with vegetation

3 31 Complex buildings

4 41 Data gaps, vegetation on moderate slopes
42 Railway station with trains

Rural

5

51 Gaps, vegetation on moderate slopes
52 Large buildings and bridge
53 Irregularly shaped buildings
54 Large, irregularly shaped buildings

6 61 Steep slopes and large gap

7 71 Steep slopes and bridge.

Table 3. Performance evaluations of MASF on the dataset provided by the ISPRS and the corresponding
parameters.

Sample
Parameter Result

αmax (m) αstep (m) ST T .I (%) T .I I (%) T .E. (%) kappa (%)

samp11 28 1 0.10 6.60 11.59 8.73 82.10
samp12 25 1 0.05 2.50 3.94 3.20 93.60
samp21 20 2 0.05 0.49 3.48 1.15 96.65
samp22 25 1 0.10 2.79 8.67 4.61 89.16
samp23 15 1 0.10 1.75 9.80 5.56 88.80
samp24 10 1 0.10 4.10 13.12 6.58 83.37
samp31 25 2 0.01 0.90 1.87 1.35 97.28
samp41 25 2 0.05 5.11 1.78 3.45 93.09
samp42 20 9 0.10 0.99 0.80 0.85 97.95
samp51 25 4 0.05 0.34 5.52 1.47 95.61
samp52 20 1 0.05 3.10 17.02 4.57 76.70
samp53 7 1 0.25 0.99 39.45 2.54 64.49
samp54 20 9 0.05 2.46 3.16 2.84 94.30
samp61 6 1 0.10 0.33 12.02 0.73 88.82
samp71 15 2 0.05 0.94 5.70 1.48 92.66

Avg. 2.23 9.19 3.27 88.97

Table 3 shows that the overall average total error and kappa coefficient of MASF were
3.27% and 88.97%, respectively. MASF performed relatively well for samp21, samp31,
samp42, samp51, samp53, samp54, samp61, and samp71 in terms of both total error and
kappa coefficient. These samples contain a variety of features, indicating that MASF is
highly accurate in scenarios with various objects and slopes. The total errors for samp11,
samp12, samp22, samp23, samp24, samp41, and samp52 were relatively higher than those
for the other samples, which could have been a result of terraced slopes (e.g., riverbanks,
ditches, and terraces) in these samples. Because terraced slopes are more frequent in
artificial scenarios, MASF performed better in rural areas than in urban areas, with an
average total error of 2.27% in rural areas and 3.94% in urban areas.

Regarding individual sample accuracy, the total error was highest for samp11, which
contained a complex configuration of steep slopes, buildings, and low vegetation. The type
I error of samp11 was also the highest due to the mixing of complex features. The kappa
coefficient and type II error for samp53 were the worst, which were a result of the low
number of nonground points in this sample. A small amount of low vegetation was
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misclassified, resulting in a notable rise in the kappa coefficient. An abnormally small
kappa coefficient for samp53 was also obtained with the other filtering methods. However,
MASF achieved one of the highest kappa coefficient among the considered methods.

MASF exhibited a bias toward type II errors, with a substantially larger average type
II error than type I error for most samples. The reason for this tendency may be the surface
recovery strategy employed in our method and the imbalance in the number of ground
and nonground points. Many small terrain features (e.g., protrusions and edges) were
misclassified as nonground points due to the failure to recover terrain details during the
filtering process, leading to larger type II errors. However, the bias toward type II errors
may not be a disadvantage of the proposed method, as type II errors can be more easily
handled via manual postprocessing editing than type I errors [13].

To qualitatively analyze the performance of MASF for various scenarios, we selected
one representative sample from each of the seven sites in the dataset. The results on the
four samples selected in urban areas, including samp11, samp22, samp31, and samp42,
are shown in Figures 8–11. The three samples selected from rural areas were samp53,
samp61, and samp71; their results are shown in Figures 12–14. As shown in these figures,
artificial objects, such as buildings and bridges, were effectively filtered. In terms of error
distribution, type II errors mainly arose along the edges of terraced floors, whereas type I
errors were mainly associated with low vegetation attached to the ground.

For comparison with previous filters, we selected eight methods, seven of which
were representative of those proposed in recent years, as well as Axelsson’s PTDF, which
performed the best in an experimental comparison conducted by Sihole and Vosselman
in 2004 [15]. Tables 4 and 5 summarize the total errors and kappa coefficients for these
methods and MASF. In most samples, MASF almost achieved higher accuracy and the
lowest total error for samp61. In general, our method demonstrates accuracy comparable
to that of the top filtering algorithms.

Table 4. Error comparison among algorithms for dataset provided by the ISPRS (%).

Sample Axelsson
(2000)

Mongus
(2012)

Chen
(2013)

Pingel
(2013) Hu (2014) Mongus

(2014)
Hui

(2016)
Zhang
(2016) MASF

samp11 10.76 11.01 13.01 8.28 8.31 7.50 13.34 12.01 8.73
samp12 3.25 5.17 3.38 2.92 2.58 2.55 3.50 2.97 3.20
samp21 4.25 1.98 1.34 1.10 0.95 1.23 2.21 3.42 1.15
samp22 3.63 6.56 4.67 3.35 3.23 2.83 5.41 8.94 4.61
samp23 4.00 5.83 5.24 4.61 4.42 4.34 5.11 4.79 5.56
samp24 4.42 7.98 6.29 3.52 3.80 3.58 7.47 2.87 6.58
samp31 4.78 3.34 1.11 0.91 0.90 0.97 1.33 1.61 1.35
samp41 13.91 3.71 5.58 5.91 5.91 3.18 10.60 5.14 3.45
samp42 1.62 5.72 1.72 1.48 0.73 1.35 1.92 1.58 0.85
samp51 2.72 2.59 1.64 1.43 2.04 2.73 4.88 3.08 1.47
samp52 3.07 7.11 4.18 3.82 2.52 3.11 6.56 3.93 4.57
samp53 8.91 8.52 7.29 2.43 2.74 2.19 7.47 5.20 2.54
samp54 3.23 6.73 3.09 2.27 2.35 2.16 4.16 3.18 2.84
samp61 2.08 4.85 1.81 0.86 0.84 0.96 2.33 1.49 0.73
samp71 1.63 3.14 1.33 1.65 1.50 2.49 3.73 5.71 1.48

Avg. 4.82 5.62 4.11 2.97 2.85 2.74 5.33 4.39 3.27

The bolded numbers are the lowset total error in each sample.

Table 5. Kappa coefficient comparison among algorithms for dataset provided by the ISPRS (%).

Samples Axelsson (2000) Chen (2013) Pingel (2013) Hu (2014) Hui (2016) Zhang (2016) MASF

samp11 78.48 74.12 83.12 82.97 72.92 75.17 82.10
samp12 93.51 93.23 94.15 94.83 93.00 94.04 93.60
samp21 86.34 96.10 96.77 97.23 93.35 90.47 96.65
samp22 91.33 89.03 92.21 92.04 87.58 77.72 89.16
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Table 5. Cont.

Samples Axelsson (2000) Chen (2013) Pingel (2013) Hu (2014) Hui (2016) Zhang (2016) MASF

samp23 91.97 89.49 90.73 91.14 89.74 90.38 88.80
samp24 88.50 84.53 91.13 90.39 81.93 92.68 83.37
samp31 90.43 97.76 98.17 98.19 97.33 96.75 97.28
samp41 72.21 88.83 88.18 88.18 78.78 89.73 93.09
samp42 96.15 95.81 96.48 98.25 95.38 96.18 97.95
samp51 91.68 95.17 95.76 93.90 85.06 91.13 95.61
samp52 83.63 78.91 81.04 86.24 69.51 77.05 76.70
samp53 39.13 46.69 68.12 66.43 41.84 46.86 64.49
samp54 93.52 93.90 95.44 95.28 91.63 93.61 94.30
samp61 74.52 77.36 87.22 86.76 67.82 78.10 88.82
samp71 91.44 93.19 91.81 92.59 79.86 68.03 92.66

Avg. 84.19 86.27 90.02 90.29 81.72 83.86 88.97

The bolded numbers are the highest kappa coefficient in each sample.

(a) (b) (c)

Figure 8. Filtering results for samp11: (a) the reference DTM, (b) filtered DTM, and (c) distribution of
type I and type II errors. Most of the buildings were accurately filtered, and the road on the slope
was accurately extracted (indicated with a green rectangle). The yellow rectangles indicate the areas
where the roof of terraced buildings was misclassified.

(a) (b) (c)

Figure 9. Filtering results for samp22: (a) the reference DTM, (b) filtered DTM, and (c) distribution of
errors. The buildings and bridge were accurately filtered (indicated with green rectangle). The yellow
rectangles indicate the areas where type II errors occurred due to the misclassification of some edges
of the terraced floor, resulting in the roadside edge being cut off in the DTM.
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(a) (b) (c)

Figure 10. Filtering results for samp31: (a) the reference DTM, (b) filtered DTM, and (c) distribution
of errors. The large buildings in the middle were accurately filtered. The yellow rectangles indicate
the areas where an edge of the terraced floor was misclassified, resulting in the oversmoothing of the
DTM in the corresponding part.

(a) (b) (c)

Figure 11. Filtering results for samp42: (a) the reference DTM, (b) filtered DTM, and (c) distribution
of errors. The large buildings of the railway station were well-filtered. However, several points on
the roof in the lower-left corner were misclassified due to a lack of nearby ground points.

(a) (b) (c)

Figure 12. Filtering results for samp53: (a) the reference DTM, (b) filtered DTM, and (c) distribution
of type I and type II errors. The slopes and cliffs were successfully extracted. The yellow rectangles
indicate the areas where low vegetations were misclassified, resulting in small protuberance in
the DTM.

(a) (b) (c)

Figure 13. Filtering results for samp61: (a) the reference DTM, (b) filtered DTM, and (c) distribu-
tion of type I and type II errors. The vegetation on terrain with large gaps and steep slopes was
accurately filtered.
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(a) (b) (c)

Figure 14. Filtering results for samp71: (a) the reference DTM, (b) filtered DTM, and (c) distribution
of type I and type II errors. The bridge was correctly filtered (indicated with green rectangle), whereas
some points on the roadside were misclassified due to small scale undulations (indicated with
yellow rectangles).

3.3.2. Testing with OpenGF Dataset

To evaluate the performance of MASF for large scenes, a large-scale and scene-rich
ground filtering dataset called OpenGF (https://github.com/Nathan-UW/OpenGF (ac-
cessed on 1 March 2024)) was adopted for testing [34,44]. This dataset was built upon open
airborne LiDAR data from around the world, covering over 47 km2 of 9 different typical
terrain scenes in 4 different countries. The points in this dataset have high-quality labels as
ground, nonground, and outliers. OpenGF offers a challenging test set consisting of Test I,
Test II, and Test III, covering a wide range of spatial areas and diverse terrain types. Test I
includes a mixed area with a village, small city, and mountain. Test II involves metropolitan
areas and contains various objects of different sizes, such as large and small roofs, cars,
and grass. Please note that numerous high and low outliers in Test II were removed before
testing with MASF because MASF cannot process data with normally distributed dense
outliers. Test III is characterized by extremely sparse ground points under dense vegetation
and terraced slopes with sharply changing elevations. Four classic ground filters (PTDF [2],
PMF [20], MCC [50], and CSF [20]) and four state-of-the-art 3D DNNs (PointNet++ [35],
KPconv [36], RandLA-Net [37], and SCF-Net [38]) were tested, and the results were re-
leased by Qin et al. [34]. Specifically, the intersection over the union (IoU) of each class was
computed to elevate the class-wise precision. IoU1 (Equation (7)) and IoU2 (Equation (8))
are the IoU of the ground (class 1) and nonground (class 2) points, respectively.

IoU1 =
TP

TP + FP + FN
(7)

IoU2 =
TN

TN + FN + FP
(8)

where TP, FP, TN, and FN denote the number of correctly identified ground points, the num-
ber of ground points incorrectly identified as nonground points, the number of correctly
identified nonground points, and the number of nonground points incorrectly identified as
ground points, respectively.

Table 6 presents the accuracy of the results of the proposed method with that of the
eight other methods. The accuracy of MASF was the highest on all three test samples
among the classic filter methods. Additionally, MASF outperformed most learning-based
approaches. Figure 15 provides the qualitative evaluation of the filtering results obtained
with MASF on the three samples. In Test I, MASF successfully filtered vegetation and
forests. The errors in the result were primarily caused by the omission of ground points
on the mountain ridges. MASF outperformed all learning-based pipelines on Test II due
to its ability to handle large buildings. Buildings that posed challenges for learning-based
pipelines were successfully removed with MASF. In Test III, the ground points on slopes
with sharply changing elevations were correctly extracted. The misclassified points mainly
arose in low vegetation due to the lack of ground points under dense forests. In general,
MASF robustly and stably performed in large-scale scenes with complex terrain features
and diverse objects.

https://github.com/Nathan-UW/OpenGF
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Table 6. Accuracy comparison of algorithms on OpenGF dataset (%).

Test I Test II (w/o Outliers) Test III

TE (%) IoU1 (%) IoU2 (%) T .E. (%) IoU1 (%) IoU2 (%) T .E. (%) IoU1 (%) IoU2 (%)

MASF 2.34 94.85 95.88 3.92 92.59 92.31 1.94 89.87 97.66
PTDF 5.18 89.00 91.10 6.70 87.24 87.64 2.45 87.16 97.05
PMF 8.37 79.62 85.22 13.44 73.61 78.50 5.07 73.67 94.09
MCC 3.71 91.86 93.63 15.56 70.27 75.39 3.03 84.12 96.40
CSF 6.93 85.64 88.17 10.66 80.38 81.08 4.65 78.29 94.42

PointNet++ 2.42 94.68 95.75 12.62 79.63 75.19 1.88 90.24 97.72
KPConv 2.21 95.17 96.10 8.91 84.67 82.44 1.69 91.28 97.94

RandLA-Net 3.71 91.65 93.74 5.04 90.42 90.38 2.40 87.08 97.14
SCF-Net 4.25 90.43 92.90 9.09 83.32 83.35 2.77 85.18 96.70

The bolded numbers are the highest accuracy achieved by classic and learning-based methods in each
sample, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15. Filtering results on test samples in OpenGF: (first column) Test I; (second column) Test II
(without outliers); (third column) Test III. (a–c) The DSMs of the test samples; (d–f) the DTMs
constructed with the filtering results; (g–i) distribution of type I and type II errors (red for type I
errors and blue for type II errors).
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3.4. Algorithm Efficiency Comparison

To assess the efficiency of the proposed method, we measured the computation time of
MASF and two open-source filtering methods (PMF and CSF) during testing on the ISPRS
dataset. Progressive morphological filtering (PMF) is a morphology-based method and is
available for open access in the Point Cloud Library (https://pointclouds.org/ (accessed on
1 April 2024, v1.14.0)). Cloth simulation filtering (CSF) is a surface-based filtering method
that was open-sourced by the authors, which was implemented in C++ and released on
GitHub (https://github.com/jianboqi/CSF (accessed on 1 April 2024)).

When testing on the ISPRS dataset, the cell size of the grid construction in three
filtering methods was all set to 1 m. The maximum iterations of CSF were set to 1000,
and postprocessing was enabled. Other parameters were tuned based on the sites. Figure 16
shows the calculation times of the three methods. MASF, CSF, and PMF had average
calculation times of 2.44, 3.53, and 0.59 s, respectively. When testing on the OpenGF dataset,
the approximate computation time reported by Qin et al. was used for comparisons,
because we used the same hardware [34]. The approximate calculation time of MASF and
the six selected methods are presented in Table 7. The results indicated that the efficiency
of the proposed method was acceptable when filtering relatively small data. MASF was
comparable to CSF in efficiency but was less efficient than PMF. However, MASF was
time-consuming when dealing with large-scale data. The calculation time of MASF was
heavily influenced by the number of points. As the number of points increased, the number
of triangles that needed to be evaluated in the underlying triangulation rapidly increased.
Because the judgments on each triangle are independent of each other, parallel computing
can be employed to accelerate the modified 3D alpha-shape algorithm in the future.

Figure 16. Calculation time (seconds) of MASF, CSF, and PMF.

Table 7. Approximate calculation time (minutes) of MASF and six selected methods on the
OpenGF dataset.

Test I Test II (w/o Outliers) Test III

MASF 27.1 6.3 7.08
PTD 2.8 0.2 0.8
PMF 0.7 1.5 0.4
CSF 14.6 0.7 7.8

https://pointclouds.org/
https://github.com/jianboqi/CSF
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Table 7. Cont.

Test I Test II (w/o Outliers) Test III

KPConv 2.3 0.2 1.3
RandLA-Net 1.9 0.3 1.2

SCF-Net 2.1 0.3 1.2

4. Discussion
4.1. Accuracy of Ground Seeds

In previous studies, ground seeds have usually been obtained by selecting the lowest
point within each cell of a gird [27]. To ensure that there are no non-ground points among
the seeds, the cell size (CS) must be larger than that of the largest nonground object (e.g.,
building) in the point cloud. The number of seeds is equal to the number of nonempty cells,
which is too small to approximate the terrain well.

This paper presented a novel approach for extracting ground seeds using a modified
3D alpha shape algorithm. To evaluate the effectiveness of this approach, we selected
two representative samples from the ISPRS dataset and compared the results with those
obtained using two different methods. Figure 17 shows that the ground seeds extracted
with our method can more comprehensively cover terrain features. The lowest points of
the grid cells are primarily located at the base of these slopes in areas with steep slopes,
causing the omission of points on cliffs and abrupt slopes. In contrast, our method can
extract seeds on various slopes, including those on cliffs (Figure 17e). The ground surface
constructed using these seeds relatively accurately captures the terrain details, especially
on steep slopes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. Ground seeds of representative samples (samp11 for urban areas and samp53 for rural
areas): (a,e) overlay result of reference DTM and ground seeds (the red points) extracted using cell
lowest point; (b,f) DTM generated with these seeds; (c,g) Overlay result of reference DTM and ground
seeds extracted with our method, and (d,h) DTM generated with these seeds.

To quantitatively assess the accuracy of the extracted ground seeds, we separately
applied the approach using the lowest point of the grid cells and the modified 3D alpha
shape algorithm to the 15 samples. The numbers of extracted seeds are listed in Table 8.
Additionally, the overall precision (OP) was employed to evaluate the quality of the ground
seeds obtained with this method, which is the correct classified ground seeds for all the
ground seeds extracted. Table 8 shows that our method highly accurately extracted ground
seeds, with an average overall precision of 99.36% on the 15 samples. Our method also
extracted substantially more seeds than that obtained using the lowest cell point.
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Table 8. Number and overall precision of ground seeds.

Sample
Lowest Cell Ours

CS (m) Points OP (%) αmax (m) Points OP (%)

samp11 20 112 99.11 28 4166 99.26
samp12 20 154 94.81 25 12,622 99.60
samp21 25 25 100.00 20 5420 99.83
samp22 40 25 100.00 25 9242 99.83
samp23 25 54 100.00 15 6923 98.07
samp24 15 45 100.00 10 3068 98.57
samp31 25 49 93.88 25 9147 99.63
samp41 25 35 94.29 25 2150 99.81
samp42 30 25 100.00 20 3631 99.75
samp51 20 264 98.48 25 13,043 99.42
samp52 10 1325 98.26 20 15,206 99.60
samp53 10 1937 99.79 7 31,290 99.42
samp54 15 234 99.15 20 3731 98.25
samp61 15 870 99.88 6 33,536 99.59
samp71 20 221 99.55 15 12,471 99.79

In summary, our method can extract more points and obtain a more even point
distribution than using the lowest points of the grid cells. Selecting ground seeds to
represent the ground is a strategy commonly employed in many filtering methods. High-
quality seeds have a strong positive impact on point cloud filtering. Our method offers a
new approach to extracting ground seeds and has the potential to increase the precision of
filters that need initial seeds.

4.2. Analysis of Parameter Settings

The filtering accuracy of MASF is strongly impacted by the parameter α of the modified
3D alpha shape algorithm. As such, we analyzed the selection of α in each iteration. α
determines the scale of the corresponding point layer generated with the modified 3D
alpha shape algorithm. α linearly decreases from αmax to αmin in steps of αstep. Setting αstep
properly is crucial in the proposed method because the value of αmax is determined using
the largest nonground object in the point cloud.

To quantitatively assess the influence of αstep on filtering accuracy, we tested all
15 samples from the ISPRS benchmark dataset using αstep, which ranged from 1 to 9 m
in 1 m steps. All other parameters were kept the same as those used in the experiments
described in Section 3. The total errors for each sample, which depend on αstep, are
illustrated in Figure 18. The samples were divided into urban and rural groups according to
their sites. The mean total errors for both groups and all samples were separately calculated,
with the results shown in Figure 18c. In general, the total error increased as αstep increased,
and the accuracy was highest for most samples when αstep was 1 or 2 m. Furthermore,
the standard deviations of the total errors were calculated for each sample to evaluate the
sensitivity of the total errors with respect to αstep (Figure 18d). Figure 18d indicates that
the samples with steep slopes (e.g., smap11, samp52, and samp53) and terraced floors
(e.g., samp23 and samp24) were more sensitive to the increase in αstep. When αstep is large,
the proposed method may struggle to recover terrain details due to the limited number
of iterations in complex scenarios. This could result in the loss of terrain relief and the
truncation of terraced floors, leading to larger type II and total errors.
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(a) (b)

(c) (d)

Figure 18. Analysis of sensitivities to parameter αstep: (a) total errors for samples in urban areas;
(b) total errors for samples in rural areas; (c) mean total errors of samples; (d) standard deviation of
the total error for each sample.

5. Conclusions

In this paper, a new method is presented for filtering airborne LiDAR point clouds,
called multiscale alpha shape filtering (MASF). In MASF, a multiscale strategy is used to
reconstruct the ground surface by incorporating the ground points extracted at different
scales. A novel approach based on 3D alpha shapes is used to construct a data pyramid.
The scales of the point cloud layers are adjusted by changing the parameter α. Ground
points are extracted from the data pyramid in a top-to-bottom approach using a multiscale
TIN densification method. The points in the top layer are used as ground seeds to construct
the initial TIN. An adaptively determined distance threshold is used to identify ground
points in each layer. The proposed method was tested on a benchmark dataset provided by
ISPRS and a large-scale dataset called OpenGF. The performance of the proposed MASF
algorithm showed promise compared with that of existing methods. The average total
error and the kappa coefficient on the ISPRS dataset were 3.27% and 88.97%, respectively.

However, the MASF has a limitation: for terrain with terraced slopes such as river-
banks, ditches, and terraces, extracting the edges of terraced floors can be challenging. This
can result in the omission of ground points. To increase the adaptability of MASF, segmen-
tation and classification techniques can be considered to extract complete ground points
in future studies. Terraced floor points can be preclustered into their own segments to
ensure surface completeness. Moreover, MASF can be time-consuming when dealing with
scenarios involving complex objects on slopes. To increase efficiency, parallel computing
can be applied to generate point cloud layers in the future.
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