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Abstract: Accurate urban land cover information is crucial for effective urban planning and man-
agement. While convolutional neural networks (CNNs) demonstrate superior feature learning and
prediction capabilities using image-level annotations, the inherent mixed-category nature of input
image patches leads to classification errors along object boundaries. Fully convolutional neural net-
works (FCNs) excel at pixel-wise fine segmentation, making them less susceptible to heterogeneous
content, but they require fully annotated dense image patches, which may not be readily available in
real-world scenarios. This paper proposes an object-based semi-supervised spatial attention residual
UNet (OS-ARU) model. First, multiscale segmentation is performed to obtain segments from a
remote sensing image, and segments containing sample points are assigned the categories of the
corresponding points, which are used to train the model. Then, the trained model predicts class
probabilities for all segments. Each unlabeled segment’s probability distribution is compared against
those of labeled segments for similarity matching under a threshold constraint. Through label propa-
gation, pseudo-labels are assigned to unlabeled segments exhibiting high similarity to labeled ones.
Finally, the model is retrained using the augmented training set incorporating the pseudo-labeled
segments. Comprehensive experiments on aerial image benchmarks for Vaihingen and Potsdam
demonstrate that the proposed OS-ARU achieves higher classification accuracy than state-of-the-art
models, including OCNN, 2OCNN, and standard OS-U, reaching an overall accuracy (OA) of 87.83%
and 86.71%, respectively. The performance improvements over the baseline methods are statistically
significant according to the Wilcoxon Signed-Rank Test. Despite using significantly fewer sparse
annotations, this semi-supervised approach still achieves comparable accuracy to the same model
under full supervision. The proposed method thus makes a step forward in substantially alleviating
the heavy sampling burden of FCNs (densely sampled deep learning models) to effectively handle
the complex issue of land cover information identification and classification.

Keywords: CNN; OBIA; UNet; semi-supervised; semantic segmentation; classification

1. Introduction

As the rapid expansion of urban areas continues worldwide, timely and accurate
mapping of land cover dynamics provides vital information for sustainable development
and management [1–3]. Compared to traditional ground-based surveys, remote sensing
enables efficient large-area coverage at flexible repeated intervals [4]. In recent years, the
number of remote sensing satellites has surged dramatically, providing massive geographic
imagery for almost every corner of the Earth’s surface [5,6]. In extracting urban land cover
information from remote sensing data, researchers often consider spatial resolution more
important than spectral resolution [7,8]. This is because spatial resolution can reflect the
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shape and texture features of objects, for example, roads and buildings have similar spectral
features but different shape and texture features [9–11], which can be used to distinguish
these two types of objects. However, compared to the mixed effects of medium-low spatial
resolution sensors, the increased within-scene spectral variability of high spatial resolution
sensors may reduce the pixel-based classification accuracy of conventional approaches [12].

To address this challenge, object-based image analysis (OBIA) techniques emerged
as a promising alternative in a timely manner [13]. OBIA first utilizes the multiscale
characteristics of different geo-objects in high-resolution imagery to segment an image into
a series of adjacent homogeneous regions (i.e., segments) of pixel sets, then fully exploits
spectral, textural, shape, semantic, and other features, mining the spatial dimensions
(distance, pattern, neighborhood, and topology) of segments to further aggregate them into
objects to ensure classification accuracy [14]. In this process, the most basic processing unit
is the segment rather than the pixel, thus avoiding the “salt-and-pepper” phenomenon
of pixel-based methods. OBIA has gained rapid recognition in the remote sensing field,
marked by a focus on object semantics explored through fixed or emerging ontologies, as
well as the need for interoperability between OBIA approaches and geographic information
systems (GIS) along with spatial modeling frameworks [15–17]. The above advantages have
made the OBIA method gradually evolve into a new paradigm for high-resolution remote
sensing and spatial analysis [13]. Traditional machine learning classification models based
on object-based methods usually take the statistical summary of all pixels in a segment as
input. However, with the increase in image resolution, the spectral heterogeneity within
objects and the homogeneity between objects are both increasing, which makes such
summarization inevitably carry noise, thus eventually leading to misclassification [18,19].
To overcome this problem, it is necessary to introduce additional morphological and textural
information of segments into the classification process [20,21]. However, these feature
engineering methods typically rely on prior human knowledge, which often introduces
subjectivity into the process [22].

In recent years, deep learning technology has made breakthrough progress in the
field of computer vision [23]. In particular, convolutional neural networks (CNNs) can
automatically extract high-level features from image patches through a series of convolu-
tional and pooling layers and have demonstrated excellent representation and classification
capabilities for object shape, texture, and context information [24,25]. These methods
thus avoid the tedious and time-consuming hand-crafted feature engineering required
in traditional remote sensing image analysis methods [26]. Therefore, it is necessary to
combine object-based image analysis with deep learning methods to take advantage of
each. Initially, CNNs were applied to remote sensing image scene classification, where
rectangular patches cropped from images were fed into the CNNs, which then output an
image-level label [27–29]. In full-resolution remote sensing mapping, however, densely
overlapping patches are used pixel by pixel, which inevitably leads to extremely redundant
computation [30]. To address this issue, CNNs with objects as the basic processing units can
better preserve the boundaries of geographical entities, reduce computational cost, and im-
prove processing efficiency [30]. However, in remote sensing images, the distribution range
of the central target area to be classified may be relatively small while background informa-
tion occupies larger areas. Therefore, classification is inevitably affected by heterogeneous
content, which leads to the wrong classification of regions of interest into background
categories [28]. Currently, the common strategy is to use an ensemble of models with differ-
ent input scales to suppress heterogeneity and enhance feature representation capability
for the central region. However, these methods require comprehensive consideration of
inter-model scale combinations, parameter relations, and sample distributions [31–34], and
it is thus relatively complex to apply them in practice.

Fully convolutional networks (FCNs) can achieve dense pixel-level prediction and
are not affected by the content heterogeneity of image patches [35]. Therefore, FCNs and
their extensions have been gradually introduced into remote sensing semantic segmenta-
tion [30,34]. The main difference between CNNs and fully convolutional networks (FCNs)
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is that FCNs replace the fully connected layers in CNNs with convolutional layers [35]. This
enables FCNs to take images of arbitrary sizes as input and generate correspondingly sized
output segmentation maps, thereby achieving dense pixel-level prediction. Representative
FCN models include SegNet [36], U-Net [37], Deeplab series [38–40], PSPNet [41], DenseA-
SPP [42], DANet [43], OCNet [44], and, more recently, UNet++ [45] and Auto-DeepLab [46].
These FCNs are commonly pre-trained on large-scale natural image datasets like ImageNet,
then finetuned on remote sensing images to mitigate overfitting caused by limited labeled
training samples [47,48]. Multiscale feature integration through pyramid pooling mod-
ules [41] or encoder–decoder structures [37] helps FCNs capture both local details and
global context. Conditional random fields (CRFs) can further refine object boundaries as
a post-processing step [39]. Atrous/dilated convolutions maintain large receptive fields
without losing resolution [38]. Attention mechanisms focus models on informative regions
and reduce confusion due to irrelevant features [49]. However, several issues remain to be
addressed for remote sensing FCN segmentation, such as large intra-class variance, small
inter-class differences, and the lack of sufficient annotated samples.

FCNs can achieve high classification accuracy owing to abundant labeled samples and
powerful computational capabilities. However, in some practical applications, it is difficult
to obtain large amounts of labeled data samples. To address this issue, transfer learning
provides an effective solution. The idea of transfer learning is to use publicly available
pre-trained neural networks containing massive generic data as a basis, then fine-tune
them on a small amount of data samples from a specific domain to alleviate overfitting
caused by limited labeled training samples, thereby obtaining a well-performing neural
network model [50,51]. However, most of the above methods were tested on RGB public
datasets [50,51]. There are fewer specific applications on multispectral remote sensing
images, which differ from natural images in terms of indistinct target boundaries, large
variances in similar target sizes, small inter-class differences, large intra-class differences,
and distribution differences between source domain datasets and target domain datasets.
These differences make it difficult to directly transfer models pre-trained on natural im-
ages to remote sensing image segmentation tasks [52]. In addition, when there are more
categories in the test dataset to be segmented than in the training dataset, transfer learning
methods cannot achieve good segmentation accuracy [53].

Compared to relying on pre-trained models, models trained from scratch can better
adapt to multiband target datasets. Semi-supervised learning, by reducing annotation costs,
has become an effective implementation of this training paradigm. It complements a small
labeled dataset with a large number of unlabeled images to improve model generaliza-
tion. The main categories of semi-supervised learning include self-training, consistency
regularization, generative models, graph-based methods, and, more recently, adversarial
training [54–57]. Self-training is one of the earliest and most widely used semi-supervised
learning strategies due to its simplicity [58]. It first trains a model on limited labeled data,
then uses the model to generate pseudo-labels for unlabeled images. The unlabeled images
with pseudo-labels are combined with the labeled set to retrain the model. Increasing
the amount of data can prevent overfitting caused by limited data samples. Consistency
regularization enforces consistent model predictions when unlabeled data are perturbed
through noise injection, image flipping, cropping, etc. [59].

These semi-supervised techniques have been integrated with deep convolutional
neural networks and applied to remote sensing image segmentation tasks. For example,
Staeger et al. proposed a self-training method by predicting pseudo-labels from an FCN
ensemble [60]. French et al. applied strong data augmentation as consistency regularization
for iterative self-training [59]. Souly et al. used GANs to generate additional labeled
data from unlabeled images [57]. Recent works have incorporated spatial–contextual
information in graph structures as well [61,62]. More recent semi-supervised segmentation
methods also include co-training, where two models provide complementary supervision
for each other [63]. Curriculum learning gradually incorporates unlabeled data from
easy to hard based on prediction confidence [64]. Hybrid methods combine self-training,
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consistency regularization, and adversarial training for improved performance [65]. Despite
promising results on benchmarks like ISPRS Potsdam and Vaihingen, several issues remain
to be addressed [66]. Some methods have attempted semantic segmentation of remote
sensing images, but most are based on binary semantic segmentation with few categories
and large inter-class differences [26]. Meanwhile, they experience problems of complex
training, large computational demands, and high memory usage, and false pseudo-labeling
can easily mislead self-training. Despite its potential, limited research has been done on
few-shot semi-supervised learning, which remains an active area of research for reducing
annotation efforts in remote sensing image segmentation.

To provide a single-model approach that can work with limited samples, this paper
proposes a from-scratch-trained, object-based, semi-supervised spatial attention residual
UNet (OS-ARU) for urban land cover classification of multiband high-resolution remote
sensing imagery. First, segments obtained via multiscale segmentation serve as a bridge to
assign known sample point categories to the segments they fall in to train the model. Then,
the similarity between segments of known and unknown categories is compared based
on the mean probability distribution over classes from model predictions, and unknown
segments obtain pseudo-labels via label propagation. Finally, the model is retrained on
the original sample set augmented with pseudo-annotation information. With such an
algorithm, OS-ARU can be trained using sample sets based on sparse pixels. Therefore, it is
not adversely affected by image content heterogeneity, thus simplifying its implementation
and usage as a single model. Ablation experiments further demonstrate that the spatial
attention and residual components bring complementary gains individually, with only
slight performance drops when removed separately. Experimental results show that OS-
ARU achieves the highest overall classification metrics compared to other benchmark
methods and is not very sensitive to input scales. In summary, the contributions of our
work are as follows:

(1) A selective categorical focal loss function with label smoothing adapted for FCNs
trained on incompletely annotated sample sets.

(2) Object-based classification executed with a single FCN model, OS-ARU, without
relying on other models to suppress heterogeneity.

(3) A procedure of training FCNs using sparse pixel sample points and generating pseudo-
labels, then retraining the model on the sample set augmented with pseudo-category
information.

2. Methodology
2.1. The Overall Process of the Proposed Semi-Supervised Method

The FCN model requires the structure of sample data consisting of input image
patches and corresponding complete dense annotated ground truth patches for training
and validation. However, remote sensing images usually contain more object categories
compared to natural images, which makes their annotation more time-consuming and
labor-intensive. That is, it is extremely difficult to obtain sufficient densely annotated image
patches to meet practical task requirements. In contrast to the difficulty of obtaining such
annotated image patches, sparse point samples are relatively accessible and feasible for
image classification. However, there exist difficulties and challenges in transforming pixel
samples into the annotated image patch samples required by FCN models. To handle this
issue, Pan et al. [28] proposed a method to assign the category of a sample point to the
segment obtained by geographical object-based segmentation containing the sample point
to obtain sparsely labeled image patches. However, their method is only applicable to
pre-trained models, which are generally trained on three-band natural images. This paper
further improves this method to make it widely suitable for multiband remote sensing data.
In particular, we propose a selective categorical focal loss function with label smoothing
(SCFL) suitable for semi-supervised classification with incompletely labeled training sets.

Since the majority of regions in image patches remain unlabeled based on sparse
pixel samples, the issue of how to feed and train models from scratch with incompletely
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annotated image patches needs to be addressed. Thus, a smaller number of annotated
pixels of the image patches participating in model training may fail to provide the complete
distribution of categories and spatial features for model learning. In order to obtain category
information for more pixels, we effectively measure the similarity between segments
containing sample pixels and segments without sample pixels and generate pseudo-labels
for the segments that meet the threshold through label propagation. It is worth noting
that the model does not need to make a correct inference for each pixel, as long as the
proportion of pixels in a segment whose categories are predicted correctly is greater than
that of those whose categories are predicted incorrectly, then it is enough to obtain the
correct category label for the segment. That is, the dominant labels of the pixels within a
segment decide the category label of the segment, which makes it possible to train an object-
based FCN model using pixel samples. In order to make full use of limited training data
with incomplete annotations, this paper proposes an object-based semi-supervised spatial
attention residual UNet model (OS-ARU) which combines the UNet model with residual
modules and attention modules to effectively capture both local and global contextual
information and focus more on the most informative parts of input images. The overall
process of the method is shown in Figure 1, in which three major steps are included:

(1) Construction of a patch-based sample set with sparse pixel samples (CPSSP): Suppose
that a densely labeled sample set of a ground truth image is not available. A high-
resolution remote sensing image, Irs, and a sparse pixel-based training sample set,
Tpixel, serve as the input of this algorithm. First, image Irs is segmented into homoge-
neous regions to generate the segmentation result, Iseg. Due to the fact that different
objects may exhibit different spatial scales, multiscale segmentation is adopted as an
object-based segmentation algorithm to generate meaningful objects with geometric
information [67,68]. Theoretically, each segment should explicitly belong to a single
object, and the inclusion of different objects in the same segment should be avoided.
The image should therefore be over-segmented. Subsequently, according to the coor-
dinates of the samples in Tpixel, Irs is sliced into image patches to construct the initial
patch-based sample set, T1

patch.
(2) Pseudo-label sample generation and retraining of the model: First, T1

patch is fed into
the created model to be trained. The pixel category information contained in the patch-
based sample set is enhanced by the trained model, M, through a label propagation
algorithm named “construction of a patch-based sample set with pseudo-annotation”
(CPSPA, shown in Figure 1). Then, in turn, M is further trained with the enhanced
sample set with pseudo-label information added. This semi-supervised method
improves the capacity of the model, M, to classify objects into the corresponding
categories.

(3) Segment classification (SC): First, the remote sensing image Irs is cropped into a series
of image patches corresponding to each segment from Iseg. Then, the model, M, is used
to classify each image patch obtained above. Finally, according to the most frequent
category label of the pixels in each segment, the category label for the segment is
decided and recorded in the classification result image, Iresult.
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and SC represent segments of unknown categories; Irs represents the remote sensing image; Iseg

represents the segments obtained after segmenting Irs; Tpixel represents the initial sample points;
Model-1 and Model-2 represent the models participating in the first training and the second training
in the iterative process, respectively; and T1

patch and T2
patch represent the inputs of Model-1 and

Model-2, respectively.)

2.2. Detailed Implementation Process of the OS-ARU Method
2.2.1. Initial Patch-Based Sample Set Construction

The meaning of each parameter and variable in Algorithm 1 CPSSP is explained below.
Irs represents the preprocessed multiband remote sensing images. The training set, Tpixel.
consists of Np sparse sample point pixels, represented by {t1, t2, . . ., tNp}. Each vector
sample, ti, is determined by three elements, namely, a coordinatei, a valuei, and a labeli,
denoting the coordinate of the sample within Irs, the multiband values of pixels, and the
category, ranging from 1 to Nc (the number of categories), respectively.

Following Pan et al. [28], three steps are implemented to generate the initial patch
sample set using sparse pixel samples. First, an object-based multiscale segmentation is
performed on Irs to obtain a segmentation image, Iseg. Then, the segment that each pixel in
image Irs belongs to is determined according to the segment ID value of the pixel at the
corresponding position in image Iseg. Finally, a vector representing the category d = {d1, d2,
. . ., dNc} is introduced to characterize the category information of each segment derived
from Iseg. The vector d may occur in either of two scenarios:

(1) The category label is known: When a segment S contains at least one training pixel
sample, ti, it is theoretically feasible to use the label of a sample pixel to measure
how segment S is represented. The di under this condition can be expressed as in the
following Formula (1):

di =

{
0, labelt ̸= i
1, labelt = i

(1)

The value of di in the above formula (1) is 0 or 1: when the pixel sample label belongs
to the corresponding category, the value of di is 1; otherwise, the value of di is 0.

(2) The category label is unknown: When a segment, S, contains no training samples, it
is unknown what type of label each pixel in S has. The di in the circumstance can be
written as in the following Formula (2):
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di = 0 (2)

According to the above two formulas, an initial patch-based sample set with incom-
plete annotation is created on the basis that the category label of each segment can be
represented.

An initial patch-based sample set, T1
patch, is constructed by the CPSSP algorithm

using each sparse pixel sample in Tpixel. Each sample in T1
patch is composed of SubIx and

SubIy, where SubIx is a remote sensing image patch of size W ×W and SubIy is the label
of the patch corresponding to SubIx. Since only a small fraction of the segments in Iseg
have category information, SubIy possesses limited category labels which are not densely
and completely annotated. Algorithm 1 CPSSP, below, describes the process in detail [28].

Algorithm 1: Construction of a patch-based sample set with sparse pixel samples (CPSSP).

Input: Irs, Iseg, Tpixel, W
Output: T1

patch

Begin
T1

patch = Ø
Ilabel = create an empty image with the same length and width as Irs and a depth equal to Nc.
For each segment, S, in Iseg:

cs = the coordinates of the pixels in S
If S contains at least one sample, ti:

d = category represented as shown in Formula (1)
Else:

d = category represented as shown in Formula (2)
Ilabel[cs] = d

For each sample, ti, in Tpixel:
cp = the center point of the segment, S, that contains ti
SubIx = cut a W ×W image patch from Irs with cp as center
SubIy = cut a W ×W image patch from Ilabel with cp as center

T1
patch ← [SubIx, SubIy]

Return T1
patch

End

2.2.2. Pseudo-Label Generation and Model Retraining

This section mainly consists of three parts. First, the OS-ARU model structure incor-
porating residual modules and a spatial attention module adopted in this study, which is
intended to capture discriminative features from limited annotated pixels, is described in
detail; second, the CPSPA algorithm for generating pseudo-label sample patches based
on sparsely annotated samples through label propagation, which aims to obtain maximal
label information from incompletely annotated training data, is introduced. Finally, the
patch-based sample set with added pseudo-labels is used to retrain the model.

(1) Structure of the attention residual UNet (ARU) model
In this study, we employ a 9-level attention residual UNet (ARU) architecture for land

cover classification (Figure 2), a novel, fully convolutional neural network which builds
upon the UNet architecture [37] to synergistically leverage the strengths of residual units
and spatial attention. This integration provides three main benefits: (1) residual units
facilitate network training by mitigating the vanishing gradient problem [69,70]; (2) skip
connections within both residual units and across encoder–decoder levels enable efficient
information propagation, alleviating signal degradation [37,69,70]; (3) spatial attention
focuses the model on informative areas by learning location-specific relevance, boosting
performance in localized perception tasks [71].
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(i) Residual Units
Sufficient network depth plays a key role in the success of deep learning models in

various tasks [69]. Theoretically, to a certain extent, the deeper the network, the better the
model performance. However, such deep networks could hinder the training process and
potentially lead to performance degradation that is not caused by overfitting [69]. He et al.
designed residual neural networks with ease of training to tackle these issues. Figure 3
shows the obvious difference between plain and residual units [70]. Residual units can be
implemented in various ways, including different combinations of convolutional layers,
batch normalization (BN), and rectified linear unit (ReLU) activation. He et al. investigated
the effects of different combinations on classification error, especially pre-activation and
post-activation caused by the position of the activation function relative to the element-
wise addition [70]. The full pre-activation, where BN and ReLU are located before the
convolutional layers, only has an impact on the residual path in an asymmetric form
and performs best [69,70]. Typically, the full pre-activation residual unit is employed to
construct a residual UNet. A residual neural network comprises multiple full pre-activation
residual units stacked in sequence, with each taking the following general form [70]:

xl+1= h(xl)+F
(

f̂ (xl),Wl

)
(3)

where xl and xl+1 are the input and output features of the l-th residual unit, Wl ={
Wl,k|1≤k≤K

}
refers to the collection of weights (and biases) associated with the l-th residual

unit, K stands for the number of layers contained within each residual unit (in this article,
K = 2), h(xl) is a shortcut of a 1 × 1 convolution layer and a BN layer for increasing the
dimension of xl , f̂ (xl) refers to the ReLU activation function applied after the BN layer on
xl , and F () denotes the residual function.
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(ii) Spatial Attention Module
Attention mechanisms not only guide focus towards informative regions but also

enhance the representation of features of interest [71]. The following module aims to
leverage this mechanism to improve feature representation by focusing on relevant features
while suppressing irrelevant ones. A spatial attention map is generated to focus on “where”
the informative regions are within a feature map by exploiting the inter-spatial relationships
between features [72]. Taking an intermediate feature map, F ∈ RC×H×W , as input, first,
max-pooling operations are applied along the channel axis to aggregate channel information
and generate a compact feature descriptor, Fs

max ∈ R1×H×W . This approach has been shown
to effectively highlight informative regions [73]. Subsequently, a 1 × 1 convolution layer
is applied to the feature descriptor to produce the spatial attention map, Ms(F) ∈ RH×W ,
encoding the areas where emphasis or suppression is required. Finally, spatial attention
maps are typically multiplied by the corresponding locations in the input feature maps
to weight the features in specific regions in the neural network, thereby enhancing the
network’s sensitivity to spatial locations. The calculation process described above is as
follows [71]:

Ms(F) = σ
(

f 7×7(MaxPool(F))
)
= σ

(
f 7×7 · Fs

max

)
(4)

F′ = Ms(F)
⊗

F (5)

where σ and f 7×7 represent the sigmoid function and a convolution operation with a
filter size of 7 × 7, respectively, and

⊗
denotes element-wise multiplication. It is worth

mentioning that the module is designed to be lightweight, minimizing the associated
parameter and computational overhead, making it readily applicable in most scenarios.

(iii) Attention Residual UNet (ARU)
ARU contains three modules similar to the U-Net architecture [37]: an encoder, a

bridge, and a decoder. Unlike U-Net, which uses two sequential 3 × 3 convolutions, with
each followed by a BN layer and a ReLU activation function layer, the proposed model
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replaces these layers in all three modules with pre-activated residual units comprising two
convolutional blocks and a skip connection. Each convolutional block contains a BN layer,
a ReLU activation function layer, and a 3 × 3 convolution layer. The skip connection has a
1 × 1 convolution layer and a BN layer. The encoder employs four residual units. After each
residual unit, there is a max pooling layer operation with a stride of 2 that downsamples
the feature map size by half. In addition, the number of feature map channels is doubled
compared to the previous unit. Similarly, the bridge only includes one residual unit, then a
spatial attention module with only a max pooling operation is inserted between the bridge
and the first upsampling layer in the decoding path. Correspondingly, the decoder uses four
residual units. Before each residual unit, feature maps from lower levels are upsampled
and concatenated with feature maps from the encoder part whose spatial sizes match each
other. Subsequently, the concatenated feature maps are passed into a pre-activated residual
block. After each decoder unit, the spatial dimensions are doubled while the number of
channels is reduced. The output of the final decoder passes through a 1 × 1 convolution
layer with softmax activation to generate the segmentation mask representing pixel-wise
classification. The numbers of convolution kernels in the 9 residual units of ARU are set to
16, 32, 64, 128, 256, 128, 64, 32, and 16, in that order, to improve computational efficiency
and meet hardware configuration requirements. Given that ARU has 4 max pooling layers
for downsampling, the input patch size (IPS) must be an integer multiple of 16 (24 = 16). If
IPS is less than 48, the model does not include a spatial attention module. In the spatial
attention module, the kernel size depends on IPS. If 48 ≤ IPS < 80, the kernel size is 3; if
80 ≤ IPS < 112, the kernel size is 5; if IPS ≥ 112, the kernel size is 7.

(2) Construction of patch-based sample set with added pseudo-labels
In the initial phase of the proposed model training, there is T1

patch created by the
CPSSP algorithm as training input data. However, the segments in SubIy may have either
known or unknown categories for their labels, depending on whether they contain pixel-
based samples. Although Model M, trained solely on T1

patch, does not perform as well as
when trained on densely complete labeled ground truths, it can still be utilized to represent
the categorical property of each segment. In this algorithm, first, the output of the softmax
layer of M for all pixels in S is introduced as softmax(M(S)) [28]. Then, the mean of the
output model, softmax(M(S)), can be used to reflect the mean probability distribution of all
pixel categories in a segment, S, as follows:

mpd(S) = mean(so f tmax(M(S))) (6)

Simultaneously, the following formula demonstrates the separation (sep) between
category membership representations mpd1 and mpd2 corresponding to two segments:

sep(mpd1, mpd2)= Ed(mpd1, mpd2 ) (7)

where Ed represents the Euclidean distance. If the sep between mpd1 and mpd2 is large,
this implies that there is a high likelihood of belonging to different categories for the corre-
sponding two segments. On the contrary, if the sep is small, then they have a high likelihood
of belonging to the same category. A category threshold, td, which is determined through
multiple trials, is introduced to determine if the magnitude of separation is sufficiently
large or small and accordingly judge whether to perform label propagation to generate
pseudo-labels for SubIy. The detailed implementation process is as follows:

For each SubIy, we first calculate the separations between each unknown category
segment and the segments containing sample pixels. Then, the minimum value of separa-
tion (min_sep) between an unknown category segment and those known category segments
is compared to the threshold value, td. If the min_sep is less than td, the category label
of the segment corresponding to the min_sep is assigned to the segment of the unknown
category, or else, according to Equation (2), a vector value with all zeros is assigned to
the corresponding segment. Finally, the updated SubIy with pseudo-labels through label
propagation is used to retrain the model, M, resulting in a better M with improved decision-
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making ability. Algorithm 2 CPSPA, below, gives a description of the process in detail.

Algorithm 2: Construction of patch-based sample set with pseudo-annotation (CPSPA).

Input: SubIx, SubIy, Iseg, M, td
Output: T2

patch with pseudo-labels added (updated SubIy)

Begin
V1_list = an empty list consisting of mpd;
V2_list = an empty list consisting of mpd
sep_list = an empty list consisting of separation between two segments
SubIpredict = softmax layer output of M for all pixels in SubIx
SubIseg = SubIx’s corresponding image patch from Iseg
For each segment, S, in SubIseg:

Spredict = the segment in SubIpredict
vpredict = mpd (Spredict)
If a pixel-based sample of Tpixel contained in S:

V1_list.append(vpredict)
Else:

V2_list.append(vpredict)
For each segment v2 in V2_list:

For each v1 in V1_list:
separation = dis(v1, v2);
sep_list.append(separation)

min_sep = minimum (sep_list)
Smin_sep = the segment from V1_list with the minimum separation to v2
d1 = category of Smin_sep represented as shown in Formula (1)
d2 = category represented as shown in Formula (2) (all zeros)
If min_sep < td:

SubIy[locations of the pixels in S] = d1
Else:

SubIy[locations of the pixels in S] = d2
End

2.2.3. Object-Based Classification

As stated above, based on the location of each pixel in a segment, S, corresponding to
an object contained in Iseg, a mask patch, Pmask, the same size as SubIseg is created and then
a segment classification algorithm (SCA) [28] is used to predict the entire remote sensing
image. The SCA is briefly described as follows:

First, for each segment, S, in Iseg, a corresponding patch, Pseg, with a length and width
of size W is cropped from the image, Iseg, according to the position of the center of S. In the
same way, a patch, Prs, corresponding to Pseg is cropped from the image, Irs. Then, each
patch, Prs, is predicted by the retrained model obtained in the above subsection to obtain
the result, Ppred. Finally, the category label of the segment located in the center of Ppred is
determined by the dominant label of the pixels it contains, and the label is recorded in Ipred.

Unlike an ideal model that correctly classifies every pixel in an image, the model M
with SCA needs to correctly classify most of the pixels in the image corresponding to a
certain segment in Iseg and assign a label to those pixels, which is a relatively easy goal to
achieve in comparison.

2.3. Loss Function

We first introduce the two most common loss functions currently being used in
computer vision classification tasks, from cross entropy loss to focal loss. Then, a selective
categorical focal loss function with label smoothing (SCFL) suitable for semi-supervised
classification with incompletely labeled training sets is proposed.

The loss function, which has a direct effect on the convergence of the model throughout
the training process, describes the optimization issue of how the model performs given the
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current set of parameters (weights and biases) [74]. In the first training, pixel-based training
samples are generated by segments containing pixel samples from Tpixel based on the CPSSP
algorithm. In the subsequent iterative training process, based on the CPSPA algorithm,
some unknown pixel categories are assigned to categories, and the training samples are
gradually updated. It is obvious that in this iterative process, the category distribution of
pixel-based training samples is unbalanced, so a focal loss with label smoothing is adopted
as the loss function of the model.

Currently, cross entropy loss originating from information theory is one of the most
widely used loss functions for models in image semantic segmentation. For a given
random variable or series of events, cross entropy evaluates the difference between the true
probability distribution and the predicted probability distribution in terms of categories,
and the categorical cross entropy loss (CCEL) is defined as follows [74,75]:

CCEL(li,c, pi,c) = −
1
N ∑N

i=1 ∑C
c=1 li,c · log(pi,c) (8)

where N is the number of samples in a mini-batch, C is the set of all categories, li,c represents
the one-hot encoding of the ground truth labels of the pixels, and pi,c is the predicted
probability of the softmax of the corresponding pixels, where i and c loop over each pixel
and each class, respectively. Normally, the class distribution is unbalanced; thus, cross
entropy can cause the output of the model to tend to over-represent objects belonging
to classes with more objects and under-represent objects belonging to classes with fewer
objects [74]. Although the introduction of a weight factor balances the importance of
samples of different categories, it still does not solve the imbalance problem of hard
examples and easy examples [75].

Focal loss (FL) solves the above difficulties to a certain extent by reducing the weight
of easy samples and focusing more on hard samples [75]. On the basis of the standard
cross entropy loss, FL introduces a modulating factor, (1− pi,c)

γ, with a tunable focusing
parameter, γ, and a weighting factor, α, set by an inverse class frequency, which is expressed
as follows [74,75]:

FL(li,c, pi,c) = α(1− pi,c)
γ · CCEL(li,c, pi,c) (9)

The focusing parameter smoothly adjusts the rate of weight decline of simple examples,
thereby focusing training on hard negative examples, and the weighting factor balances
the contributions of examples from different categories [75].

Insufficient pixel-based training samples often lead to overfitting and a poor general-
ization ability in neural network models [76]. In addition, the one-hot encoding method
makes the model overconfident with respect to prediction results [77,78]. To tackle these
problems, a label smoothing mechanism is adopted to suppress overfitting of a model by
softening the ground truth labels in the training data in an effort to penalize overconfident
outputs and consequently improves the robustness and performance of the model. The ex-
pression for label smoothing with a form of output distribution regularization is presented
as follows [77,78]:

l′i,c = (1− ϵ) · li,c +
ϵ

K
(10)

where l′i,c constitutes the modified ground truth label generated by taking advantage of a
uniform distribution independent of the samples to smooth the distribution of the original
ground truth labels composed of li,c and ϵ and K refer to a smoothing parameter and the
number of classes, respectively.

Since unlabeled samples exist in the training set, in order to prevent them from
contributing to the calculation of the difference between the outputs of the algorithm and
the ground truth labels during model training, a selective factor, mi,c, is introduced into the
focal loss function.

mi,c =

{
0, li,c = None
1, li,c ̸= None

(11)
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On the basis of the above methods, a selective categorical focal loss function with label
smoothing (SCFL) suitable for semi-supervised classification with incompletely labeled
training sets is proposed, in which a selective factor, mi,c, and a label smoothing mechanism
are incorporated into focal loss:

SCFL
(
mi,c, l′i,c, pi,c

)
= mi,c · α(1− pi,c)

γ · CCEL
(
l′i,c, pi,c

)
(12)

2.4. Comparative Methods Introduction

Seven different typical models are compared in this study:
(1). Object-based CNN (OCNN): A CNN is a deep learning model that takes a patch as

input and outputs its label, which has the disadvantage of being computationally inefficient
and producing salt-and-pepper effects in classification maps. To deal with the above
problems, an object-based CNN (OCNN) combining the advantage of high boundary
adherence of segments with the capabilities of the CNN classifier is proposed [79,80].
The training process of OCNN is the same as that of standard CNN models, with the
difference that in the inference phase, the trained model is used to predict the category of
each segment derived from image segmentation [30]. The standard CNN consists of four
modules: a convolution module, a pooling module, a flatten layer, and a fully connected
layer. In this research, the CNN model has four groups of convolution modules and four
max pooling layers, similar to the encoder part of the UNet model, which undergoes
four downsamplings. Each convolution module includes two convolution layers with
a kernel size of 3 × 3, each followed by a batch normalization layer and a non-linear
activation function ReLU. The number of convolution kernels in each convolution module
is doubled compared to the encoder part of the UNet model. To prevent overfitting and
improve the generalization ability of the model to unseen data, dropout, which is used as a
regularization technique for randomly dropping out nodes [81,82], is applied in the fully
connected layer, and the dropout rate is set to 0.5 after multiple cross-validation.

(2). Integration of two OCNNs with different input sizes (2OCNN) [30]: The 2OCNN
model adopts a region-based majority voting and integrates two CNNs with different
input sizes, a large-input-window CNN (LIW-CNN) and a small-input-window CNN
(SIW-CNN), to improve the classification accuracy of some objects with certain specific
shapes [30]. Small input windows are adept at capturing small-scale object features,
whereas large input windows are more capable of extracting large-scale object features.
The final result predicted by the 2OCNN model for a segment is determined by the predic-
tions of a LIW-CNN and the predictions of multiple SIW-CNNs at multiple convolutional
positions. For the detailed configuration of the model, refer to the description in [30].

(3). Object-based semi-supervised UNet (OS-U): The UNet model adopts the standard
structure described in [37]. The convolution configuration and number of layers in the
model structure are the same as those used in the OS-ARU in this paper. The iterative
training method and the training set are also the same as those used in the model proposed
in this paper.

(4). Object-based semi-supervised attention UNet (OS-AU): OS-AU has the same
configuration as the OS-ARU, except the residual modules have been removed.

(5). Object-based semi-supervised residual UNet (OS-RU): OS-RU has the same
configuration as the OS-ARU, except the spatial attention modules have been removed.

(6). Supervised ARU with fully densely labeled samples (FD-ARU): FD-ARU has a
model configuration identical to that of the model proposed in this paper. The difference is
that the training set for FD-ARU consists of fully annotated patches clearly with a far larger
number of annotated pixels compared to the partially annotated samples used in OS-ARU.

(7). Object-based supervised ARU with sparse samples (OS-ARU1): OS-ARU1 and
OS-ARU have exactly the same structure. The difference is that they use different sample
sets. OS-ARU1 is the model trained in the first iteration of training using sparsely labeled
samples, while OS-ARU is the model trained in the second iteration of training using
samples with added pseudo-labels.
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2.5. Model Performance Evaluation

Model performance evaluation is one of the essential steps of machine learning in clas-
sification and regression for remote sensing research [83], which quantitatively measures
how well a trained model performs on specific model evaluation metrics during model
development and testing.

A confusion matrix is a contingency table with two dimensions consisting of an “Ac-
tual Class” and a “Predicted Class” used to evaluate the performance of the predictions of
a classifier, and almost all of the performance metrics are derived from it [83]. However, in
multiclass classification, there are no positive or negative classes; therefore, TP (true posi-
tive), TN (true negative), FP (false positive), and FN (false negative) values are not obtained
directly, as in binary classification. For evaluation, the values need to be calculated for each
individual class. The diagonal elements display the number of pixels corresponding to
each class for which the predicted label matches the true label; these are also considered as
TP, and FP is the sum of the values of the corresponding column excluding TP. Likewise,
FN equals the sum of values of corresponding rows except for TP, and TN represents the
sum of the values of all the columns and rows, excluding those belonging to the rows and
columns of that class.

The performance of the classifier is a key factor affecting its classification and gen-
eralization ability. It is often beneficial to consider multiple metrics to gain a more com-
prehensive and accurate understanding of the strengths and weaknesses of a model. To
quantify the classification performance of the model in the test set data, the research adopts
recall (R), precision (P), and F1 score (F1) for each individual class and the global metrics of
overall accuracy (OA), Kappa coefficient (Kappa), macro-averaged F1 score (MF1), and the
Matthews correlation coefficient (MCC) to evaluate the test results. For each class, a single
metric, F1, is the harmonic mean comprising precision (P) and recall (R). While widely used,
F1 score and accuracy can lead to overly optimistic performance estimates, particularly in
datasets with a positive class imbalance [84]. Previous research has demonstrated that MCC
offers a more informative and reliable evaluation compared to OA [85], F1 score [85], and
Cohen’s kappa [86], especially when dealing with challenging imbalanced classification
tasks. This is because MCC provides a more balanced assessment of classifiers, no matter
which class is positive [84]. The metrics used in the study that allow model evaluation for
multiple land cover categories are calculated as follows [83,87,88]:

Rc =
TPc

TPc + FNc
(13)

Pc =
TPc

TPc + FPc
(14)

F1c =
2× Pc × Rc

Pc + Rc
(15)

MF1 =
∑C

c F1c
C

(16)

where c represents a single class and C represents the set of c, that is, the number of classes.

pij = (
nij

∑C
i=1 nij

)(
Nj

∑C
j=1 Nj

) (17)

OA =
∑C

i=1 nii

∑C
i=1 ∑C

j=1 nij
(18)
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In the above formulas, nij is the element in row i and column j of the confusion matrix
and Nj refers to the sum of the number of elements of the jth class (jth column) in the
confusion matrix.

Kappa =
po − pe

1− pe
(19)

pe = ∑C
c=1

[(
∑C

i=1 pci

)(
∑C

j=1 pjc

)]
(20)

where po is the relative observed agreement among raters (actual agreement)—in other
terms, it equals OA—and pe is the hypothetical probability of chance agreement (expected
agreement).

MCC =
d× s−∑C

c=1 (pr c × trc)√
[s 2 −∑C

c=1 (pr c)
2][s 2 −∑C

c=1 (tr c)
2
] (21)

d = ∑C
c=1 ncc (22)

s = ∑C
i=1 ∑C

j=1 nij (23)

prc = ∑C
i=1 nic (24)

trc = ∑C
j=1 ncj (25)

In the above multiclass MCC formula, the intermediate variable d expresses the
cumulative total for samples correctly predicted from all C classes (i.e., the sum of diagonal
elements in the confusion matrix), s expresses the cumulative total for samples from all
C classes (i.e., the sum of elements in the confusion matrix), prc denotes the number of
samples predicted to be correct for each class c, and trc denotes the number of samples
truly predicted for each class c.

To evaluate the statistical significance of the proposed classification method’s per-
formance improvement over the baseline methods, we first verified the model perfor-
mance and then performed a Wilcoxon Signed-Rank Test with 95% confidence [89,90]. The
Wilcoxon Signed-Rank Test is a non-parametric statistical test suitable for analyzing paired
samples when the normal distribution of differences cannot be assumed [91]. The choice
of the Wilcoxon Signed-Rank Test is predicated upon its widespread acceptance in the
literature for handling non-normally distributed data and its less restrictive assumptions
compared to its parametric counterparts such that it provides a more accurate reflection of
statistical significance under non-normal conditions [89–91]. The Wilcoxon Signed-Rank
Test computes p-values and z-scores to conduct a pairwise comparison of models. If the
p-value < 0.05 and the |z-score| > 1.96, this indicates a statistically significant difference in
the classification accuracy between the two models under evaluation [89–91]. By applying
the Wilcoxon Signed-Rank Test, we can assess whether the observed difference in classi-
fication accuracy between the proposed method and the baseline methods on the same
test set is statistically significant or merely due to random variations. This test provides a
robust and reliable way to validate the superiority of the proposed method over existing
approaches, ensuring that the observed improvements are not merely coincidental.

3. Experiments and Results Analysis
3.1. Experimental Dataset Description

The ISPRS 2D semantic segmentation contest datasets provide two aerial image
datasets distributed in different places comprising ultra-high-resolution true orthophotos
(TOPs) and associated digital surface models (DSMs) [92]. The regions corresponding to
both datasets cover urban scenes. Whereas Vaihingen is a fairly small township with nu-
merous stand-alone structures and small multilevel buildings, Potsdam is a quintessential
historic city with immense building blocks, narrow streets, and concentrated inhabitation
patterns [92]. Each dataset has been categorized manually into the six most common land
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cover classes, and ground truths corresponding to different classes have been defined as
impervious surfaces (abbreviated as IS, white, RGB: 255, 255, 255), buildings (abbreviated
as B, blue, RGB: 0, 0, 255), low vegetation (abbreviated as LV, cyan, RGB: 0, 255, 255), trees
(abbreviated as T, green, RGB: 0, 255, 0), cars (abbreviated as C, yellow, RGB: 255, 255,
0), and clutter/background (abbreviated as CB, red, RGB: 255, 0, 0). The details for each
dataset are as follows.

Vaihingen dataset: The dataset contains 33 tiles of different sizes, including 16 with
corresponding ground truths and 17 without. The image tiles have sizes ranging from
2336 × 1281 to 3816 × 2550 and the same spatial resolution of 0.09 m. Each image tile
includes three band composition forms (IRRG) and a corresponding digital surface model
(DSM).

Potsdam dataset: The dataset consists of 38 ultra-high-resolution orthophoto blocks of
the same size, specifically, 24 manually labeled image tiles and 14 unlabeled image tiles.
The sizes of the image tiles are all 6000 × 6000, with a spatial resolution of 0.05 m. Each
image tile includes three different band composition forms (IRRG, RGB, and RGBIR) and a
corresponding digital surface model (DSM).

Both of the datasets are distinct from each other in terms of land cover characteristics
and are constantly utilized as common benchmark datasets for testing the generalization
capability of proposed land cover classification and segmentation algorithms in the remote
sensing field [92]. In this research, two experimental images were selected, taking into
account the balance of each category as much as possible, from each of the TOPs of the two
aforementioned datasets. An image (abbreviated as V1) with three bands (IRRG) selected
from the Vaihingen dataset contains five classes in the absence of the clutter/background
class, with spatial extents of 1934 × 2563 pixels. Another image (abbreviated as P2) with
four bands (RGBIR) selected from the Potsdam dataset of size 6000 × 6000 contains six
classes. Figures 6 and 7 show the images and corresponding ground truths, respectively.

In the experiment, multiscale segmentation was first performed with eCognition 9.0
software for both study images in a unified manner. Segmentation parameters mainly
include scale, color/shape ratio, and smoothness/compactness ratio. The segmentation
scale parameter (SSP) is mainly used to determine the average size and number of segments
generated from remote sensing images [93]. The color/shape ratio specifies the weight
of the homogeneity of the spectral values proportional to the homogeneity of the shape.
The smoothness/compactness ratio is used to measure each object’s degree of smoothness
or compactness. In order to make the image slightly over-segmented, cross-validation
with a little bit of trial and error was used to obtain a roughly accurate and appropriate
segmentation parameter. After obtaining the segmented objects, we evaluated the accuracy
of the multiscale segmentation. Taking into account the number of subsequent calculations,
the parameter settings and segmentation results were as shown in Table 1, below.

Table 1. Image segmentation parameters and segmentation results.

Image Scale Color/Shape Smoothness/Compactness No. of Objects Segmentation Accuracy

V1 30 0.8/0.2 0.2/0.8 11,046 93.95%
P2 50 0.8/0.2 0.2/0.8 23,219 93.40%

Taking into account the complexity and proportion of various types of land objects
and trying to balance the categories of each type as much as possible, we manually selected
approximately 100 pixels and 200 pixels from each category for Vaihingen (V1) and Potsdam
(P2) images, respectively; however, due to the small number of cars and the concentrated
distribution of clutter categories, there were relatively few sample points for these two
categories. According to the stratified random division method, the sample points were
divided into training sets and validation sets in a ratio of 9:1. The training sets were used
to train the model, and the validation sets were used to adjust the hyperparameters of the
model. It is worth noting that, in order to keep the training and validation sets relatively
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independent, training pixels and validation pixels cannot belong to the same segment.
Furthermore, to comprehensively and strictly evaluate the performance of pixel-level
classification and segmentation algorithms, avoiding overfitting to local regions, a test set
consists of the whole remote sensing image excluding the training set. The details of the
numbers of sparse sample points for each category in the two images are listed in Table 2,
below.

Table 2. The number of sample points of each type in the two images.

Image Split IS B LV T C CB Total

V1
Train 106 106 109 109 80 - 510
Test 1,414,711 1,314,977 1,014,404 1,129,816 82,424 4,956,332

P2
Train 205 205 205 205 102 168 1090
Test 9,798,155 9,560,273 7,476,295 6,359,631 694,709 2,109,847 35,998,910

Note: “-” indicates that the category CB does not exist.

3.2. Results and Analysis

We used the TensorFlow framework for the implementation of deep learning algo-
rithms and open modules for image preprocessing. To accelerate the calculations, the
computer was equipped with an NVIDIA GeForce RTX 2080 graphics card (NVIDIA, Santa
Clara, CA, USA). All the models were trained for 200 epochs.

The classification ability of the proposed model using the aforementioned parameters
was tested on both Vaihingen (V1) and Potsdam (P2). The proposed approach was eval-
uated against the classic U-Net architecture and the benchmark methods of OCNN and
2OCNN. Furthermore, to evaluate the importance of model components and the impact
of the annotation density on the model, we conducted ablation experiments on the model
architecture and the dataset. In terms of model architecture, we experimented with spatial
attention UNet and residual UNet based on semi-supervised object-based methods as
comparison methods (OS-AU and OS-RU). In terms of the dataset, we trained attention
residual UNet with fully densely labeled samples (FD-ARU). Both visual examination and
quantitative accuracy metrics were utilized for performance assessment, which included
pixel-level OA, MF1, kappa score (κ), and per-class mapping accuracy, as well as MCC.

3.2.1. Classification Results and Analysis of the Proposed Method

(1) Sample generation results in each iteration of training
The overall process of the method adopted in this paper is two iterations of sample

set generation and model training. In the first iteration, the CPSSP algorithm is used to
construct a sparse pixel sample set, which is then used to train a model. In the second
iteration, the CPSPA algorithm is used to construct a weak label sample set consisting
of partial true labels and partial pseudo-labels based on the above trained model. The
category threshold value, td, for the CPSPA algorithm is set to 0.5. Subsequently, the model
is retrained using this augmented weak label sample set, leveraging both the true labels and
the generated pseudo-labels. Examples of the sample set generated from the two images
used for training the model are shown in Figures 4 and 5, below.

In summary, the patch-based sample sets constructed by the CPSSP algorithm and the
CPSPA algorithm contain two different types of content, as shown in the Figures 4 and 5:
(1) segments with labeled categories, displayed in six different colors; and (2) segments
with unlabeled categories, displayed in gray to distinguish them from the labeled segments.
Specifically, some segments have true category labels, and the others are unlabeled in the
sample set, T1

patch. On the basis of T1
patch, the image patch consists of some segments

with true category labels, some segments with pseudo-labels, and the remaining segments
without labels.
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Over the two iterations of training, a progressive refinement of the category informa-
tion within the generated patches was observed. In the initial iteration, category labels were
solely derived from the input sparse pixel-based samples. This resulted in only the seg-
ments which contained pixel samples being labeled, while categories of the other segments
were unknown. During the second iteration, first, the dissimilarity of the mean probability
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distribution was calculated between the content of a segment with an unknown category
and that of each segment with known categories. Then, the category of the segment corre-
sponding to the minimum dissimilarity was assigned to the segment with the unknown
category. Finally, a marked expansion occurred in areas labeled with known categories,
and the pseudo-labels of these segments were close to the real labels, as illustrated in
Figures 4 and 5.

(2) Classification results of two iterations of training
In the first iteration, we trained the model on an incomplete and sparse initial dataset

and classified the remote sensing images. Based on this, we generated a sparse dataset with
pseudo-labels for the initial sample set according to the CPSPA algorithm. In the second
iteration, we trained the model again and classified the remote sensing images using the
SC algorithm. The classification maps of OS-ARU1 and OS-ARU in Figures 6 and 7 shows
the classification results of the two iterations.

The results of both iterations for both images show that the classification performance
improved significantly from the first to the second iteration. Although the first iteration
displayed acceptable object classification, conspicuous errors at object boundaries revealed
inadequate discrimination capabilities of the DSSNN model at this stage. Subsequent
refinement in the second iteration dramatically improved results, particularly in delineating
object contours and detecting smaller entities, ultimately achieving better classification
performance.
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As shown in Tables 3 and 4, after two iterations of training, the classification metrics
used to measure the predictive ability of the model for different categories of samples
were significantly improved. For image V1, the overall accuracy of the model reached
85.69% and 87.83% in the first and second iterations, respectively, with MF1 values of
81.67% and 84.63%, kappa values of 0.8106 and 0.8388, and MCC values of 0.8108 and
0.8389, respectively. After iterations, the mapping accuracy for all categories in image V1
was improved, with class IS (impervious surface) achieving the highest increase of 3.13% in
terms of mapping accuracy, while class T (trees) had the smallest increase of 0.79%. For
image P2, the overall accuracy of the model reached 83.68% and 86.71% in the first and
second iterations, respectively, with MF1 values of 79.59% and 0.8390, kappa values of
0.7905 and 0.8292, and MCC values of 0.7913 and 0.8296, respectively. After iterations, the
mapping accuracy of all categories in image P2 was also improved, with T achieving the
highest increase of 6.04% in terms of mapping accuracy, while IS had the smallest increase
of 0.79%.

Table 3. Classification accuracy comparison of the five methods for image V1.

Model Best
Scale OA (%) MF1 (%) Kappa MCC IS (%) B (%) LV (%) T (%) C (%)

OCNN 64 78.33 71.09 0.7148 0.7153 78.47 84.30 65.54 83.15 71.90
2OCNN 32/112 80.29 73.86 0.7403 0.7416 78.55 89.71 62.43 87.57 80.05
OS-UNet 112 85.97 81.42 0.8143 0.8147 86.92 95.10 73.77 85.48 80.95
OS-ARU1 112 85.69 81.67 0.8106 0.8108 87.17 94.76 74.45 83.61 82.76
OS-ARU 112 87.83 84.63 0.8388 0.8389 90.30 96.32 77.52 84.40 84.06

Table 4. Classification accuracy comparison of the five methods for image P2.

Model Best Scale OA (%) MF1 (%) Kappa MCC IS (%) B (%) LV (%) T (%) C (%) CB (%)

OCNN 112 78.05 72.91 0.7198 0.7211 78.71 90.35 78.28 60.70 79.12 70.46
2OCNN 64/160 79.76 75.03 0.7412 0.7419 80.50 92.67 76.78 64.97 85.64 71.11
OS-UNet 160 85.11 82.25 0.8088 0.8091 84.13 96.52 83.55 73.84 88.36 76.33
OS-ARU1 160 83.68 79.59 0.7905 0.7913 85.01 94.54 84.43 67.95 82.51 73.42
OS-ARU 160 86.71 83.90 0.8292 0.8296 86.10 97.14 87.11 73.99 86.61 79.23

(3) Analysis of the two-iteration process
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Samples with sparse pixel labels contain far less category information than ground-
truth images. Training a model with such weak labels often leads to unsatisfactory classifi-
cation results.

As shown in Figures 6 and 7, the first-trained model performs slightly poorly in cor-
rectly identifying some image segments and boundaries. However, it does have certain
representation capabilities. According to the CPSPA algorithm, known image segment
categories could be propagated to unknown image segments with similar feature distri-
butions to generate pseudo-labels. Admittedly, most of these pseudo-labels are correct,
but a small portion of them are incorrect. Nevertheless, these samples with increased
category information are closer to ground-truth samples. Then, we use these samples
with pseudo-labels to retrain the model, which further improves the classification ability
of the model. Consequently, the object boundaries are significantly improved, and the
classification results are relatively ideal. This suggests that deep learning models are tol-
erant to a certain degree of incorrect labels, and pseudo-labels with a small proportion of
errors essentially increase the amount of training data, thereby improving the classification
performance of the model.

(4) The impact of different input scales on classification accuracy
In the spatial attention module, the kernel size depends on the input patch size (IPS):

if 80 ≤ IPS < 112, the kernel size is 5; if IPS ≥ 112, the kernel size is 7.
Table 5 lists the classification accuracy of the proposed method for the two images at

eight different input scales with an interval size of 16, from 80 to 192. One can see from
the table that, unlike CNN methods that require separate models for handling hetero-
geneity, OS-ARU leverages the U-Net semantic segmentation architecture for pixel-level
categorization without other models to handle heterogeneity, streamlining the training and
classification process. The model reaches a peak accuracy of 87.83% at an input scale of
112 × 112 for Vaihingen and a peak accuracy of 86.71% at an input scale of 160 × 160 for
image P2. Moreover, the model exhibits stable performance at scales near both sides of the
optimal scale, suggesting their advantage for large-scale inputs. Notably, OS-ARU main-
tains high accuracy even with limited sparse labeled sample information in training data,
supporting the feasibility of object-based classification using the semi-supervised method.
Furthermore, OS-ARU incorporates the CPSPA algorithm to refine the segmentation in-
formation of training data, resulting in an even higher and more consistent classification
accuracy.

Table 5. The impact of different input scales on the accuracy of OS-ARU.

Image 80 96 112 128 144 160 176 192

V1 (100%) 85.81 86.62 87.83 87.44 87.36 87.11 87.20 87.02
P2 (100%) 83.15 84.19 85.32 85.59 86.27 86.71 86.33 86.21

3.2.2. Comparison of Different Methods

The basic processing units of object-based image analysis are image segments, which
avoids the salt-and-pepper effect of pixel-based methods and has become a new paradigm
for classification using high-resolution remote sensing [13]. In addition, the process of
generating pseudo-labels in this paper requires comparing the similarities between different
segments obtained by multiscale segmentation. Therefore, all methods in this section are
based on object-based image analysis.

(1) Comparison of classification results
For all the deep learning benchmark methods employed in this paper, we tested

input scales from 16 to 192 with an interval size of 16 and chose the result with the
highest classification accuracy as the final result. Through multiple tests, the scales selected
for different methods for image V1 listed in Table 3 are as follows: OCNN—64 × 64,
2OCNN—32 × 32 and 112 × 112, OS-UNet (OS-U)—112 × 112, OS-ARU—112 × 112;
the scales selected for different methods for image P2 listed in Table 4 are as follows:
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OCNN—112 × 112, 2OCNN—64 × 64 and 160 × 160, OS-UNet (OS-U)—160 × 160, OS-
ARU—160 × 160.

From the classification result maps in Figures 6 and 7, it can be seen that the results
of OCNN appear fragmented. For image V1, LV and T are easily confused, and IS and C
are easily confused. Similarly, for image P2, LV and tree are easily confused, while IS and
CN are easily confused. Although 2OCNN improves upon OCNN, it still has deficiencies
in handling heterogeneity, with the aforementioned confusions remaining quite severe.
In the OS-U classification results, the fragmentation is alleviated to some extent, and the
aforementioned confusions are relieved to a certain degree. In the OS-ARU classification
results, the fragmentation is greatly improved, more closely resembling the ground truth.
Although the aforementioned confusions still exist, there are significant improvements
compared to OCNN. Specifically, for the mapping accuracy of each class in image V1,
compared to OCNN, the classification results of 2OCNN have significantly improved
accuracy for classes B, T, and C, while the accuracy for LV class has decreased. Compared
to 2OCNN, OS-U has significantly improved accuracy for classes IS, B, and LV, while the
accuracy for T has decreased. Compared to OS-U, OS-ARU has increased accuracy for all
classes, except for a decrease in T accuracy. For image P2, compared to OCNN, 2OCNN has
significantly improved accuracy for classes IS (impervious surface), B (buildings), T (trees),
and C (cars), while the accuracy for class LV (low vegetation) has decreased. Compared
to 2OCNN, OS-U has significantly improved accuracy for all classes. Compared to OS-U,
OS-ARU has increased accuracy for all classes, except for a decrease in C accuracy. The
above results allow us to draw the conclusion that OS-ARU outperforms the other methods
in terms of stability and accuracy.

The Wilcoxon test was used to assess pairwise differences among the models. For
V1, there were statistical differences between OS-ARU and the other three models, with a
p-value < 0.001 and a z-value of 10.115 when compared to OCNN, a p-value < 0.001 and a
z-value of 7.997 when compared to 2OCNN, and a p-value < 0.001 and a z-value of 4.735
when compared to OS-U. For P2, there were also statistical differences between OS-ARU
and the other three models, with a p-value < 0.001 and a z-value of 23.678 when compared
to OCNN, a p-value < 0.001 and a z-value of 20.334 when compared to 2OCNN, and a
p-value < 0.001 and a z-value of 12.175 when compared to OS-U.

(2) Analysis of classification results
Object-based image analysis (OBIA) is a method of image analysis that treats image

objects as the basic processing units. This approach avoids the salt-and-pepper effect of
pixel-based methods and has become a popular approach for classification using high-
resolution remote sensing data.

When using traditional CNN models for image patch classification, the input scale size
often greatly impacts the results. There are two contradictory considerations regarding scale
selection: on the one hand, a larger input scale is needed to obtain the global information of
ground objects; on the other hand, a larger scale increases the probability of heterogeneity
within the image patch, which is detrimental to CNN model training and prediction. Since
the single model OCNN lacks a mechanism for handling heterogeneity, the classification
results are poor. To deal with heterogeneity, 2OCNN ensembles two CNNs of different
scales and votes on predictions to achieve complementary advantages, thus outperforming
OCNN. However, it still performs poorly in some areas. The results show that its ability
to handle heterogeneity does not meet the practical needs. Moreover, 2OCNN requires
multiple tests of combinations of two different scales, often leading to a cumbersome scale
selection process.

The object-based semi-supervised U-Net model introduced in this paper can achieve
pixel-level category mapping for each pixel in the input image patch, and this full convolu-
tion network model itself has the capability of handling heterogeneous content. Therefore,
the fully convolutional neural network U-Net does not need to use small-scale models to
process heterogeneity in the image patch and ensemble prediction results from two differ-
ent scales. However, this model still suffers from vanishing gradients and lacks attention
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to key areas. Furthermore, the residual connections can alleviate the vanishing gradient
problem, making the network easier to train. The spatial attention mechanism can help the
network focus on important regions in the images. Therefore, by progressively refining the
information contained in the training samples, the segmentation accuracy of the OS-ARU
model is progressively improved. Additionally, it can be observed that the optimal scale
for U-Net-based fully convolutional neural network models tends to be larger than that for
OCNN models with fully connected networks. OS-ARU achieves a better balance between
capturing large-scale information and handling heterogeneity, and thus obtains the best
results among these methods.

(3) Model complexity comparison
From Table 6, we can observe that the OS-ARU method has a comparable parameter

size to the OCNN and OS-U models and one significantly smaller than 2OCNN, indicating
that OS-ARU is relatively memory-efficient. However, OS-ARU exhibits significantly longer
training time, prediction time, and total runtime compared to the other three methods,
especially when contrasted with OCNN. The training time of OS-ARU is several times
longer than that of OCNN; the prediction time is also several times longer, and the total
runtime is multiples longer. Although the OS-ARU method is relatively efficient in terms
of parameter size, its training and prediction processes require a longer computation time.
However, we should not overemphasize this point, as an increase in time complexity often
translates to more precise modeling and more accurate prediction results. As long as the
OS-ARU method can deliver sufficiently high performance within an acceptable time frame,
the longer computation process is justified. Therefore, the OS-ARU method still holds
practical value, especially in domains where precision and reliability are paramount.

Table 6. Model complexity comparison.

Model OCNN 2OCNN OS-U OS-ARU

Image V1 P2 V1 P2 V1 P2 V1 P2

Parameters (MB) 7 11 16 24 8 8 8 8
Training time (s) 56 193 145 428 386 1208 505 1577

Prediction time (s) 68 156 269 582 300 640 400 856
Total runtime (s) 124 349 414 1010 686 1848 905 2433

3.2.3. Ablation Studies

To investigate the contributions of the residual module and the spatial attention
module to OS-ARU, as well as the impact of the pixel label density and completeness in
the training set patches on the model (i.e., fully supervised experiments with fully labeled
samples), ablation experiments were conducted.

(1) The OS-ARU’s module ablation experiments
In the module ablation experiments on OS-ARU, the residual module and the spa-

tial attention module were removed selectively to obtain the semi-supervised attention
UNet (OS-AU) and residual UNet (OS-RU) based on the object-based method. The other
configurations of the model, as well as the training and test sets, remained unchanged
to explore their contributions to the overall classification model. We compared the per-
formance of OS-RU and OS-AU with the OS-ARU method on two images at the optimal
scales of 112 × 112 (Vaihingen) and 160 × 160 (Potsdam) after two iterations of training.
As presented in Table 7, compared with OS-ARU on Vaihingen (OA: 87.83%, MF1: 84.63%,
kappa: 0.8388, MCC: 0.8389) and Potsdam (OA: 86.71%, MF1: 83.90%, kappa: 0.8292, MCC:
0.8296), the values of the overall evaluation metrics of the OS-AU decreased by 1.16% (OA),
2.2% (MF1), 0.0152 (Kappa), and 0.0151 (MCC) on Vaihingen and by 1.32% (OA), 1.43%
(MF1), 0.0168 (Kappa), and 0.0168 (MCC) on Potsdam. Meanwhile, the metric values of
the OS-RU decreased by 0.92% (OA), 1.99% (MF1), 0.0123 (Kappa), and 0.0121 (MCC) on
Vaihingen and by 0.25% (OA), 0.54% (MF1), 0.0032 (Kappa), and 0.0033 (MCC) on Potsdam.
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These results demonstrate that the contribution of the residual module to the OS-ARU is
larger than that of the spatial attention module.

Table 7. Module ablation experiments on OS-ARU for two images.

Model Image OA (%) MF1 (%) Kappa MCC IS (%) B (%) LV (%) T (%) C (%) CB (%)

OS-AU V1 86.67 82.43 0.8236 0.8238 87.74 96.40 74.95 84.83 82.77 -
OS-RU V1 86.91 82.64 0.8265 0.8268 88.93 96.86 74.70 84.30 79.54 -

OS-ARU V1 87.83 84.63 0.8388 0.8389 90.30 96.32 77.52 84.40 84.06 -

OS-AU P2 85.39 82.47 0.8124 0.8128 85.29 96.05 84.88 72.74 87.03 77.02
OS-RU P2 86.46 83.36 0.8260 0.8263 85.63 96.78 86.35 75.14 86.22 78.11

OS-ARU P2 86.71 83.90 0.8292 0.8296 86.10 97.14 87.11 73.99 86.61 79.23

Note: “-” indicates that the category CB does not exist.

In terms of the mapping accuracy of each category, as listed in Table 7, for the majority
of the categories, the classification accuracies of the OS-AU and OS-RU models decreased
in comparison with OS-ARU. Specifically, for image V1, accuracy decreases for the OS-AU
model include three classes (IS, LV, and C), and those for the OS-RU model include four
classes (IS, LV, T, and C). As for image P2, accuracy declines for OS-AU appear in five
categories (IS, B, LV, T, and CB), and those for OS-RU also appear in five categories (IS, B,
LV, C, and CB).

(2) Ablation Experiments on Dense and Sparse Labeling (DSL)
To compare the influence of DSL in the training set on model classification results,

supervised ARU with fully densely labeled pixels (FD-ARU) was tested on the two images.
Notably, the number of labeled pixels in this fully supervised training set far exceeded that
for the semi-supervised method adopted in the paper, yet the number of test samples was
smaller than for the semi-supervised method. For a fair comparison, the same test set for
the supervised method was used for the proposed semi-supervised method (OS-ARU).

As shown in Table 8, the overall evaluation metrics for the four sets of classifications
results for the two methods for the two images are basically within 2%. For image V1,
compared with the fully supervised ARU, the semi-supervised OS-ARU exhibits sligh
decreases in OA, Kappa, and MCC values, while MF1 increases. However, an analysis
of per-class mapping accuracy reveals that accuracies of LV and T decrease, while IS,
B, and C increase. As for image P2, the semi-supervised OS-ARU shows declines (to a
limited degree) across all four overall metrics relative to the fully supervised approach.
Nonetheless, per-class mapping accuracy indicates decreases for IS, T, and C, but increases
for B, LV, and CB. This contradictory trend for overall accuracy and per-class performance
is mainly attributed to sample imbalances.

Table 8. Comparison of the impact of DSL on model performance.

Model Image OA (%) MF1 (%) Kappa MCC IS (%) B (%) LV (%) T (%) C (%) CB (%)

FD-ARU V1 88.63 76.62 0.8460 0.8461 92.87 96.97 73.22 85.09 32.47 -
OS-ARU V1 87.45 78.01 0.8297 0.8302 94.45 97.64 67.83 80.73 47.85 -

FD-ARU P2 88.21 80.45 0.8416 0.8417 89.35 97.31 86.16 74.35 82.46 51.25
OS-ARU P2 86.74 78.29 0.8220 0.8224 86.30 97.77 86.75 66.82 82.40 55.61

Note: “-” indicates that the category CB does not exist.

In comparison with semi-supervised OS-ARU, although FD-ARU adopts dense train-
ing samples, it still demonstrates obvious classification confusions between the IS and
C classes in image V1, and between IS and CB in image P2. In particular, the mapping
accuracy of class C in image V1 and CB in image P2 counterintuitively declined markedly.
This is primarily attributable to the sparse distribution of classes C and CB composed
of multiple categories. Moreover, the semi-supervised OS-ARU could implicitly exploit
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geometric shape boundaries from the segmentation during training, which facilitated object
recognition to some degree for these two challenging classes. Therefore, with substantially
fewer labeled samples, the proposed OS-ARU still achieved generally comparable results
relative to its fully supervised counterpart.

4. Discussion

In land cover classification of high-resolution remote sensing imagery in urban ar-
eas, several key challenges exist. Firstly, high intra-class heterogeneity and inter-class
homogeneity are present due to the high resolution [94]. Secondly, highly imbalanced
distributions of classes can bias classifiers towards majority categories [95]. Thirdly, pixel-
based spectrum classification often results in salt-and-pepper noise. Lastly, high-quality
manual annotation samples are relatively scarce, with the annotation process being time-
consuming and expensive [96]. The combined effects of these issues have made semantic
segmentation of high-resolution remote sensing imagery an active research focus and
persistent challenge. Therefore, a two-iteration OS-ARU method is proposed for urban land
cover classification using high-resolution remote sensing images. It optimizes the model
training process of forward and backward propagation by utilizing the selective categorical
focal loss function with label smoothing. Selective parameters are introduced to handle
labeled and unlabeled data, while the label-smoothed focal loss function can effectively
reduce the weights of easy samples and increase the model’s attention to hard samples.

The OS-ARU method has the following four differences from previous research
works [28,30]: (1) on the basis of the UNet framework, residual modules and spatial
attention modules are incorporated to more comprehensively and sufficiently extract fea-
tures from a sparse training sample set through two iterations of training; (2) it trains the
semi-supervised model from scratch instead of fine-tuning a pre-trained model, thus avoid-
ing transfer issues caused by domain differences in pre-trained models, and is not limited
by the input bands of pre-trained models, which facilitates further analysis, diagnosis,
and improvement of the model; (3) a selective categorical focal loss function with label
smoothing can improve model classification accuracy for imbalanced datasets compared
to the cross entropy loss function; (4) it calculates the similarity of an unknown category
segment to segments of known categories, rather than just the central segment of a known
category in the patch, to generate pseudo-labels through label propagation.

The proposed OS-ARU overcomes the common challenge of inconsistency between
the regular patch inputs of CNNs and the irregular shapes of object segments obtained
by segmentation methods. Traditional CNN approaches employ additional models to
mitigate the negative effects of this heterogeneity, resulting in increased complexity and
potential instability. Our proposed OS-ARU generates per-pixel class labels, obviating
the need for explicit heterogeneity suppression and effectively isolating different content
types. Through the pseudo-label propagation algorithm, the category information of the
training samples is augmented, and the accuracy of the model trained with both true and
pseudo-labels greatly improves during the second iteration of training. This highlights
the efficacy of making reasonable assumptions about unlabeled segments to regularize the
learning process. The residual connections alleviate gradient vanishing issues, facilitating
convergence of deep neural networks to mine representative features [69,70]. Meanwhile,
the spatial attention mechanism further strengthens classification capability by guiding
the network to focus on discriminative object regions. This prevents distraction due
to irrelevant background information. Moreover, one important thing that should be
discussed is why the residual module plays a more significant role than the spatial attention
module in enhancing the OS-ARU’s performance. This can be attributed to the potential
noise introduced by the pseudo-labeled samples, which may have different impacts on the
attention module and the residual module. Since the training set includes both true and
pseudo-labeled samples, focusing attention on certain areas may inadvertently amplify
incorrect category information from the pseudo-labels, leading the model to learn noisy
representations. In contrast, the residual module aids in propagating and preserving



Remote Sens. 2024, 16, 1444 26 of 31

information across layers, mitigating the impact of noisy pseudo-labels on the learned
features. Additionally, the optimal scale of the OS-ARU method is larger than that of CNNs,
and the model performance is insensitive to scale variations near the optimum. Although
operating on local patches, the large receptive field provided by the deep network layers
can sufficiently capture global object structure. By extracting features encompassing entire
segments, the OS-ARU can make accurate predictions even for fragmented inputs.

The semi-supervised classification results are within 2% difference from those of the
fully supervised approach, despite utilizing only a fraction of labeled samples. In scenarios
where annotation is difficult to obtain or limited labeled data are available, semi-supervised
methods present a viable alternative to supervised learning. While supervised classification
generally produces better outcomes with abundant training data, the comparable semi-
supervised performance of the proposed method with scarce labels highlights its potential.
By leveraging unlabeled data through reasonable assumptions, semi-supervised learning
strikes a balance between labeling effort and model accuracy. Deep learning exhibits a
certain degree of fault tolerance when trained with pseudo-labels containing errors in semi-
supervised learning. This is attributable to several aspects. Firstly, deep learning models
have sufficient model capacity to absorb a moderate amount of label noise. Secondly, by
learning feature representations from a large number of parameters, deep learning models
can offset the adverse effects of erroneous labels by capturing valid features from correct
labels. Finally, a small proportion of incorrect labels can act as a means of regularization to
prevent overfitting, thereby improving generalization to unseen data. While inadequate
label errors do not completely invalidate deep learning models, this demonstrates their
tolerance for imperfectly accurate or ambiguous sample labels, enabling applications with
such characteristics. Nevertheless, the ratio of label errors must be controlled, as excessive
errors can disrupt model training.

While the proposed OS-ARU achieves promising performance for remote sensing
image classification with sparse labeling, it still exhibits confusion, to a certain degree,
between classes with high internal variability, such as trees and cars. Some limitations
exist. The reliance on multiscale segmentation can propagate errors to pseudo-labels if
the segmentation quality is low for certain complex classes. The simple feature similarity
heuristic for pseudo-label generation could also be enhanced. In addition, tuning clas-
sification thresholding requires more robust validation. To address these issues, future
work may explore incorporating more advanced segmentation techniques, optimizing
pseudo-label generation with consistency regularization, and adopting adaptive threshold-
ing approaches. There is also room to enhance the computational efficiency and reduce
the training time. Overall, by improving segmentation, pseudo-labeling, and thresholding
components, the framework can further boost classification accuracy and robustness.

5. Conclusions

Urban land cover classification from remote sensing imagery is an important means
of obtaining urban land cover information, which is significant for urban planning, land
management, environmental protection, and so on. In the field of remote sensing image
classification, it is relatively easy to obtain sparsely labeled pixel samples, and CNNs
and their variants have been widely used for classification using image-level labels gen-
erated from such point samples. However, due to problems of input scale and content
heterogeneity, object boundaries in CNN classification results often exhibit fragmentation.
Although ensembling multiscale CNN models can suppress heterogeneity, it also increases
model complexity. While fully convolutional neural networks can perform pixel-level
segmentation, avoiding interference from content heterogeneity, their inputs are usually
fully densely labeled patches, which severely limits their real applicability.

To address these issues, this paper proposes a novel object-based semi-supervised
framework using spatial attention residual UNet (OS-ARU) for high-spatial-resolution
remote sensing urban land cover classification with only sparsely labeled data. Through
careful benchmark comparison and method tuning, this method significantly outperforms
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other baseline models, and it strikes a balance between labeling effort and model accuracy.
For remote sensing image classification tasks with limited labeled samples, semi-supervised
classification can replace fully supervised classification without substantial performance
drops. Additionally, ablation experiments validate the efficacy of each component in the
proposed model, demonstrating the importance of custom design for remote sensing tasks.
In summary, the proposed OS-ARU provides an efficient and feasible solution for utilizing
high-resolution remote sensing imagery for urban land cover classification, and its single
model design and sparse pixel-based training requirements further enhance the utility and
generalizability of this model.
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