
Citation: Ni, Z.; Chen, X.; Hou, Q.;

Zhang, J. Increasing SAR Imaging

Precision for Burden Surface Profile

Jointly Using Low-Rank and Sparsity

Priors. Remote Sens. 2024, 16, 1509.

https://doi.org/10.3390/rs16091509

Academic Editor: Lionel Bombrun

Received: 23 February 2024

Revised: 15 April 2024

Accepted: 23 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Increasing SAR Imaging Precision for Burden Surface Profile
Jointly Using Low-Rank and Sparsity Priors
Ziming Ni, Xianzhong Chen * , Qingwen Hou and Jie Zhang

School of Automation and Electrical Engineering, University of Science and Technology Beijing,
Beijing 100083, China; d202110333@xs.ustb.edu.cn (Z.N.); houqw@ustb.edu.cn (Q.H.);
zhangjie99@ustb.edu.cn (J.Z.)
* Correspondence: cxz@ustb.edu.cn; Tel.: +86-186-0048-9057

Abstract: The synthetic aperture radar (SAR) imaging technique for a frequency-modulated continu-
ous wave (FMCW) has attracted wide attention in the field of burden surface profile measurement.
However, the imaging data are virtually under-sampled due to the severely restricted scan time,
which prevents the antenna being exposed to high temperatures and heavy dust in the blast furnace
(BF) for an extended period. In traditional SAR imaging algorithm research, the insufficient accu-
mulation of scattered energy in reconstructing the burden surface profile leads to lower imaging
precision, and the harsh smelting increases the probability of distortion in shape detection. In this
study, to address these challenges, a novel rotating SAR imaging algorithm based on the constructed
mechanical swing radar system is proposed. This algorithm is inspired by the low-rank property of
the sampled signal matrix and the sparsity of burden surface profile images. First, the sparse FMCW
signal is modeled, and the position transform matrix, calculated according to the BF dimensions, is
embedded into the dictionary matrix. Then, the low-rank and sparsity priors are considered and
reformulated as split variables in order to establish a convex optimization problem. Lastly, the aug-
mented Lagrange multiplier (ALM) is employed to solve this problem under double constraints, and
the imaging results are obtained using the alternating direction method of multipliers (ADMM). The
experimental results demonstrate that, in the subsequent shape detection, the root mean square error
(RMSE) is 15.38% lower than the previous algorithm and 15.63% lower under low signal-to-noise
(SNR) conditions. In both enclosed and harsh environments, the proposed algorithm is able to achieve
higher imaging precision even under high noise. It will be further optimized for speed and reliability,
with plans to extend its application to 3D measurements in the future.

Keywords: alternate direction multiplier method; augmented Lagrange multiplier; compressive
sensing; burden surface profile imaging; low-rank property

1. Introduction

In metallurgy, the blast furnace (BF) is a crucial component of the iron-making process.
It serves as the main reactor in which raw materials, such as iron ore, coke, and limestone,
are transformed into molten iron [1]. The efficiency and effectiveness of a BF heavily rely on
various factors, one of which is the shape of the burden surface profile. This factor refers to
the distribution of materials and plays a significant role in maintaining optimal conditions
for efficient operation. A well-maintained burden surface profile ensures that there is an
even flow of gases and liquids throughout the furnace, allowing for better heat transfer
and chemical reactions, enhancing energy utilization, and decreasing emissions [2].

However, the modern BF is a large-scale “black box” piece of equipment, and con-
ventional optical gauging methods are unable to observe the true status of the enclosed
environment. High temperatures, high pressure, high dust levels, and limited space inside
the BF are the major obstacles. The synthetic aperture radar (SAR) imaging algorithm is a
well-developed technique for high-resolution image reconstruction, which can be applied
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for burden surface profile imaging. In [3], the TerraSAR-X add-on for digital elevation
measurements (TanDEM-X) and Tandem-L were designed as the ideal databases for in-
terferometric SAR techniques and applications. In [4], a new polarimetric interferometry
inverse synthetic aperture radar (Pol-InISAR) 3D imaging method was proposed. In [5], an
extended Omega-K (EOK) algorithm was proposed for high-speed–high-squint SAR with a
curved trajectory.

In this case, the frequency-modulated continuous wave (FMCW) radar-based mea-
surement system using a rotating SAR imaging mechanism was applied in this study for
acquiring an accurate burden surface profile shape. The FMCW radar system is more
suitable for the near range and limitation space, achieving higher imaging precision than
pulse radar but being more costly. Compared with the array radars [6] and MIMO antenna
radar [7] used for burden surface imaging before, the rotating SAR imaging mechanism
is currently the best choice under the BF condition, which obtains the apertures in time
series to form a virtual synthetic aperture; therefore, imaging resolution is higher than real
aperture scanning radar [8,9], and then, the image-processing-based detection algorithm is
employed to describe the true burden surface profile shape [10,11].

The material surfaces of the burden surface profile are atypically and randomly rough
and in multiple states. Processing the scattering and diffusion of FMCW signals from
these material surfaces poses a significant challenge. In [12], the Hilbert–Huang transform
was proposed for analyzing echo components aimed at decomposing background noise.
On the basis of prior information, in [13], a hybrid signal processing method, consisting
of preprocessing, denoising, spectrum refinement, and frequency band interception, was
proposed. In [14], the theory of particle matter accumulation in soil slope mechanics was
utilized to simulate the burden surface profile shape, with the purpose of calibrating the
results calculated by the signal. In these methods, only individual signals are used to
analyze the material surface characteristics, which neglected the burden surface profile’s
spatial continuity. In the mechanical swing radar system, the sampled signal from one
round of radar scanning can be expressed as a spectral matrix, which contains the frequency
information of all the sample points on the radius of the burden surface profile. Variance
extraction [15] was proposed for estimating the correlation of each sample point, and
the K-means [16] method was proposed for separating false points polluted by random
noise. The constant false alarm rate (CFAR) method has robust FMCW radar performance
potential, and in [17], a dual-focus SAR imaging (DfSAR) and fusion algorithm combined
with CFAR was proposed.

All of the above methods use denoising to reconstruct high-resolution images under
low signal-to-noise (SNR) conditions. However, they cannot consider the under-sampled
FMCW signals caused by the harsh environment inside the BF, which critically reduces
the precision of burden surface profile imaging. The sparsity of FMCW signals makes the
compressive sensing (CS)-based SAR imaging technique an alternative solution that has
been extensively applied in various domains, such as in urban areas, forests, and oceans [18].
For inverse SAR (ISAR), a high-resolution gapped stepped-frequency waveform (GSFW)
ISAR imaging framework was proposed in [19]. CS theory was applied in conjunction with
the newly devised cost function and particle swarm optimization in order to accurately
estimate the translational motion parameter. For bistatic SAR, a CS-based method was
proposed in [20], which exploits the natural sparsity in depicting the illuminated scene to
enhance the imaging quality under multi-aperture acquisition. For the ground moving-
target imaging algorithm, a novel framework was proposed in [21], whereby CS theory
was utilized to decompose the sampled polynomial basis function signal series so that the
various phase errors caused by higher-order movements can be removed. For the linear
FMCW radar system [22], a CS image reconstruction was implemented via the sub-gradient
descent algorithm with an optimal step size.

However, in burden surface profile imaging inside a BF, high noise is always un-
avoidable. The traditional CS method, which only contains sparse priors, cannot evade
high noise interference in the imaging process [23]. Inspired by the fact that the low-rank
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signal matrix obtained from the mechanical swing radar measurement system has strong
intra-correlations between its columns and rows, both the low-rank and sparsity priors
must be considered in SAR image reconstruction [24]. For example, in [25], a combination
of low-rank and CS with ISAR sparse imaging was proposed. In [26], referencing prior
knowledge, a nonlocal low-rank-based CS method was proposed for remote sense imaging.
The over-smoothness of low-rank regularization was compensated for, and better groups
were gained in a brief period. In [27], a fast algorithm set was proposed for accelerated
dynamic magnetic resonance imaging (MRI) based on traditional CS reconstruction, where
the low-rank matrix model was assumed to have a three-level hierarchy. This study uses
both the low-rank and sparsity priors to reconstruct appropriate burden surface profile
images for accurate shape detection. The main contributions of this study are as follows:

(i) The sparse FMCW signal is modeled based on the mechanical swing radar system
and the rotating SAR imaging mechanism in the BF. The position transform matrix is
embedded into the dictionary matrix for position calibration, whereby the position
transform matrix is composed of the angle and distance transform matrixes calculated
according to the BF dimensions.

(ii) The alternating direction method of multipliers (ADMM) is an efficient framework
that has successfully converged in other sparse SAR imaging problems [28–30]. The
low-rank and sparsity priors can be reformulated as split variables, and the Hessian
information of the objective function is exploited to establish the convex optimization
problem. With the help of an augmented Lagrange multiplier (ALM), the ADMM can
address the double priors’ constrained optimization problem.

(iii) Through iterative computations, the convergence output is the final imaging result.
Based on these imaging results, subsequent shape detection is performed. The imag-
ing precision is evaluated via the shape precision of the detected burden surface
profile, and the robustness of the proposed algorithm is compared against others. The
measurement data were collected from the Wuhan Iron & Steel Company in Wuhan
China No. 7 BF and the Nanjing Iron & Steel Company in Nanjing China No. 4 BF.

The remainder of this article is organized as follows. In Section 2, the constructed
mechanical swing radar system is proposed, and the SAR imaging algorithm in a BF is
described. Based on these, the reason for the under-sampled FMCW signals is explained.
In Section 3, a novel burden surface profile imaging algorithm jointly using low-rank and
sparsity priors is proposed in detail. In Section 4, the experimental results represent the
evaluation of the proposed algorithm compared to other imaging algorithms. Section 5
contains the discussion, and in Section 6, the conclusions are presented.

2. SAR Imaging for Burden Surface Profile
2.1. Mechanical Swing Radar Measurement System

The mechanical swing radar system is stably applied to the BFs of the Wuhan Iron &
Steel Company and Nanjing Iron & Steel Company, and the experimental data are provided
in this work.

A schematic diagram of the mechanical swing radar system is shown in Figure 1.
On the top of the furnace, a secure position is selected, and the radar rotation instru-
ments driven by the programmable logic controller (PLC) motor are installed symmet-
rically. The whole instrument is soldered on the install position, making translational
motion impossible.

The plug-in-type structure has a baffle that protects the core circuit elements from
the hostile internal environment. When the charging signal from the object linking and
embedding (OLE) process control server is submitted, the horn-shaped antenna begins
self-rotating with a fixed hub to gauge the entire radius of the burden surface profile. The
temperature inside the BF is about 300–800 ◦C, and the rotation time is about 25 s. In
the other time, the horn-shaped antenna is protected inside the instrument by the steel
sleeve, cooling water flows through the water inlet pipe, and the flushing nitrogen is blown
through the air tube.
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Figure 1. Schematic diagram of the mechanical swing radar.

The gas and water pipelines demand firm welding, and the whole protector occupies
a large amount of space in the BF. Therefore, an adequate swing angle is required so that
the mechanical swing radar does not collide with other instruments inside the BF, such as
the distributing chute.

2.2. Imaging Model

For SAR imaging in a BF, the main measurement target is the burden surface profile,
which is essentially an atypically, randomly rough, and multi-state material surface [31].
The propagation and scattering of signals are chaotic and superimposed on each other,
which easily causes artifacts.

To address the above problem, the burden surface profile is modeled as the distribution
function D(xa, yb) of the two-dimensional rough surface contour and texture (as shown in
Figure 2), which can be expressed as follows:

D(xa, yb) =
∑

A
2
a=− A

2 +1 ∑
B
2
b=− B

2 +1
f (la, lb)e[i(laxa+lbyb)]

LxLy
(1)

where A denotes the number of sample points in the x dimension and B denotes the
number of sample points in the y dimension. Defining ∆x and ∆y as the intervals between
adjacent sample points in the x and y dimensions, the Fourier function f (la, lb) is expressed
as follows:

f (la, lb) =

 2π
[

Ma MbR(la, lb)]
1
2

[
N(0,1)+jN(0,1)√

2

]
if a ̸= 0, A

2 and b ̸= 0, B
2

2π
[

Ma MbR(la, lb)]
1
2 N(0, 1) if a = 0, A

2 or b = 0, B
2

(2)

where Ma = (A − 1)∆x, Mb = (B − 1)∆y, and la, lb denote the discrete wavenumbers
such that la =

2πa
Ma

and lb = 2πb
Mb

. j denotes the imaginary component, and N(0, 1) denotes
the normal distribution function. The burden surface profile is assumed to be a random
material surface obeying Gaussian distribution, and the function R(la, lb) of the rough
surface density can be expressed as follows:

R(la, lb) =
δaδbdadbe−

la2da2+lb
2db

2

4

4π
(3)

where δa and da are the root mean square and distance in the x dimension, respectively,
while δb and db are the root mean square and distance in the y dimension, respectively.
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Figure 2. Burden surface profile model.

As confirmed by the experimental results of the rough surface on the cold-state burden
surface profile, the average root mean square δa or δb and the average distance da or db
conform to the preconditions of the Kirchhoff approximation, which can be employed to
approximate the scattered field on the burden surface profile as many tangent planes. Then,
the principle of the stationary phase (POSP) is implemented to simplify the calculation.

Through Kirchhoff approximation, for the sample point z with incident angle θz, the
distance d is calculated by da and db, and the root mean square δ is calculated by δa and δb.
Then, the scattering coefficient σ(z) can be expressed as follows:

σ(z) =
4mz

3e−4mz
2δ2cos2θz

cosθz
∑∞

a=1
(2mzcosθz)2(a−1)

a!
d(

π

a
)

1
2 e−

(2mzsinθz)2d2
4a (4)

where mz =
2π
λ and λ is the wavelength of FMCW.

The SAR imaging model is shown in Figure 3. The scattering point set z is arranged
along the Z-axis, and the signal response time series represents the propagation distance.
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The scattering FMCW signal Sig(n) is expressed as follows:

Sig(n)e2jnz0 =
∫

σ(z)e2jnzdz (5)

The scattering coefficient σ(z) is obtained from Equation (4). In the antenna design of
the mechanical swing radar, the radiation intensity is assumed to be concentrated between
two half-power points and uniformly distributed. Therefore, for the sample point z, the
spectral power of signal S(z) is written as follows:

S(z) =
PG2λ2σ(z)A

(4π)3d4 =
PG2λ2 Amz

3e−4mz
2δ2cos2θz

16π3d4

∞

∑
a=1

(2mzcosθz)2(a−1)

a!
d(

π

a
)

1
2 e−

(2mzsinθz)2d2
4a (6)

where P is the transmitting power, G is the antenna gain, and A is the surface area of the
sample point. The calculation results, S(z), constitute the spectral matrix for imaging in the
next subsection.
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2.3. Image Reconstruction

Several sample point sets are acquired after a single scan of the radar instrument.
These point sets consist of the signals received in the time series, which can be formulated
into a spectral matrix, S, for calculation as follows:

S = [S(Z1), S(Z2), S(Z3), . . . , S(Zn)] (7)

where S(Zn) = [S(zn1), S(zn2), S(zn3), . . . , S(znm)] is the spectral vector calculated in
Equation (6) at time n. The intensity distribution of the spectral vector series can depict the
radial shape of the burden surface profile, as shown in Figure 4.
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However, this direct imaging method cannot correctly depict the real radial distri-
bution. An interpolation algorithm considering the position transform matrix (Ta, Td)
calculated by the dimensions of the BF is implemented to calibrate the burden surface
profile shape [32]. The interpolation model is shown in Figure 5.
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The white point set is the calibrated imaging result Img, and the black point set is the
postprocessed matrix S′(x, y) considering the position expressed as follows:

S′(x, y) = (Ta, Td)
◦S (8)

where Ta is the angle transform matrix and Td is the distance transform matrix. In the
given interpolation region Ω with N elements, the entropy weight ω(x, y) is obtained
by the characteristics of matrix S, as shown in Equation (9). This is the critical index for
completing the interpolation process.

ω(x, y) = 1 + ∑Ω

S′(x,y)
∑x,y∈Ω S′(x,y) ln S′(x,y)

∑x,y∈Ω S′(x,y)

lnN
(9)
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Finally, the burden surface profile imaging matrix Img is calculated as follows:

Img(x, y) =
ω(x, y)S′(x, y)
∑x,y∈Ω S′(x, y)

(10)

This entropy weight interpolation algorithm has been employed for a while in BFs,
but it ignores the sparsity of signal.

2.4. Under-Sampled Signal

When measuring, the antenna can be directly damaged by the hostile internal envi-
ronment. To prolong the system’s lifespan, the imaging geometry of the mechanical swing
radar is shown in Figure 6. The radar scanning area is a sector that can be adjusted by the
rotation angle. During one round of scanning, electromagnetic waves are transmitted at
equal time intervals to form a moving beam that irradiates the target area. The aperture is
increased by synthetizing the overlap of multiple illumination areas, thereby improving
imaging resolution through extended equivalent apertures.
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However, it is necessary to set a long interval for antenna protection, which results in
high angle intervals and sparse angle grid points on the edge of the sector. The imaging
precision will be decreased by the insufficient accumulation of scattered energy and low
imaging resolution resulting from the long intervals, and in reality, the spectral matrix S is
sparse. A new imaging algorithm is proposed in the next section.

3. Proposed Algorithm
3.1. Sparse FMCW Signal Model

The spectral matrix S in Equation (7) is directly unified by the ordered points. In
Figure 6, the angle grid points are sparse, and the imaging data are under-sampled at long
intervals in the time series. The matrix S is sparse and needs to be calibrated with equal
distance intervals by filling zero vectors O. The number of filling zero vectors is calculated
according to the angle transform matrix Ta, and the sparse spectral matrix Sr is expressed
as follows:

Sr = [S(Z1), O, . . . , S(Z2), O, . . . S(Z3), O . . . , S(Zn)] (11)

In Equation (11), the Gaussian white noise is represented as E, and the burden surface
profile imaging matrix is Img. Assuming that there are A sample points in the x dimension
and B sample points in the y dimension, then SE

r ∈ CA×B. Therefore, the problem can be
modeled as follows:

SE
r = Sr + E = TImg + E (12)
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where Img ∈ CA×B and Sr ∈ CA×B. The dictionary matrix T ∈ CA×A combines the azimuth
dimension (z1, z2, . . . , zA) matrix with the position transform matrix mentioned in Equation
(8) for position calibration, as denoted below:

T = (Ta, Td)
−1


e−jnz1

e−jnz2

. . .
e−jnzA

 (13)

Considering only the sparse prior, the imaging matrix Img reflects the scattering
intensity of the signal in the BF. First, the optimization problem is established as follows:

min
Img

||Img||0 s.t.||SE
r − TImg||22 ≤ ε (14)

It can be observed that the l0-norm of Img is minimized by the l2-norm of the matrix
corresponding to the noise. The small constant ε is related to the noise level of the signal.
This multiple measurement vectors (MMVs) problem can be addressed using either the
Bayesian [33] or iterative reweighted methods [34].

3.2. The Low-Rank Analysis

For the low-rank analysis of Img, and according to the low-rank constraint and inequal-
ities [35], the rank of matrix Img satisfies

rank(Img) = rank(TImg) = rank(Sr) = rank(∑A
i=1 S(Zi)) (15)

where rank is the matrix rank function. In the FMCW sample, the number of sample
points is smaller than the dimensions of matrix Sr. Both the matrices Img and Sr satisfy the
low-rank property. Then, Equation (15) is reformulated as follows:

rank(∑A
i=1 S(Zi)) ≤ ∑A

i=1 rank(S(Zi)) = A (16)

The burden surface profile target constitutes only a small portion of the whole image,
and the other portions include background noise and random noise. Background noise
is generated by the BF’s internal mechanical structure, such as by the distributing chute.
These obstacles are stationary within the BF, and the background noise can be removed by
the prior information. Random noise is generated by high dust or particulate matter, which
is the primary cause of the low SNR conditions.

The larger eigenvalues of the signal matrix typically represent information on the
strong scattering center of the target. If the matrix Sr is low-rank, then the imaging matrix
Img is also low-rank. When the SNR is higher, the eigenvalues of matrix Sr decrease faster
with the spectral power. Conversely, the low-rank property of matrix Sr is destroyed by
high noise, and the eigenvalues decrease slower with the spectral power when the SNR is
lower. The traditional CS imaging method only considers the sparse prior in Equation (14),
which is limited in terms of noise suppression, and high noise will generate numerous false
burden surface profile targets, thus impairing the low-rank property of Img. Therefore, the
low-rank constraint on Img is necessary.

The optimization problem jointly using low rank and sparsity is established as follows:

min
Img ,E

rank
(
Img

)
+ γ1||Img||0 + γ2||E||22

s.t.Sr = TImg, Sr + E = SE
r

(17)
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The solution of the rank function and l0 norm is an NP-hard problem. This can be
approximated as a nuclear norm and l1 norm through convex relaxation, and Equation (17)
can be formulated as follows:

min
Img ,Sr

γ1(||Img||∗ + ||Img||1) + γ2||SE
r − Sr||22

s.t.Sr = TImg

(18)

where γ1 is the regularization parameter to balance the l0 norm and the rank of Img, and γ2
is the regularization parameter considering noise interference.

3.3. Iterative Calculation for the Optimization Problem

ALM is employed to address the optimization problem. This method considers the
constrained optimization problem as follows:

min
w

E(w)

s.t.Gw − b = 0
(19)

The Lagrange function L(w, λ, µ) is constructed as follows:

L(w, λ, µ) = E(w) + λT(b − Gw) +
µ

2
||Gw − b||22 (20)

where λ is the Lagrange multiplier and the nonnegative µ is the penalty parameter. The
iteration processing steps are shown in Algorithm 1.

Algorithm 1 Algorithm ALM

Input: µ > 0, and λ0, set k = 0.
Repeat:

(1) w(k+1) ∈ argminω L(w, λ(k), µ)

(2) λ(k+1) = λ(k) + µ(Gw(k+1) − b)
(3) k = k + 1

Until stopping criterion is satisfied.

Taking µ to infinity is not necessary in ensuring that ALM converges to the solution of
the constrained problem (19), and the terms added to E(w) in L(w, λ, µ) can be rewritten
as a single quadratic term [36]. The iteration processing steps are reformulated, as shown
in Algorithm 2.

Algorithm 2 Algorithm ALM (reformulated)

Input: µ > 0, and λ0, set k = 0.
Repeat:

(1) w(k+1) ∈ argminω E(w) +
µ
2 ||Gw − c(k)||22

(2) c(k+1) = c(k) − (Gw(k+1) − b)
(3) k = k + 1

Until stopping criterion is satisfied.

Then, the following definition can be used for addressing problem (18) via the variable
splitting: 

w =
[
Img, Sr

]
G = [T,−I]
b = 0
c = p
E(w) = g1(Img) + g2(Sr)

(21)
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E(w) is the established objective function for variable splitting, where g1(Img) and
g2(Sr) are defined as follows:{

g1(Img) = γ2||TImg − SE
r ||22

g2(Sr) = γ1(||T−1Sr||∗ + ||T−1Sr||1)
(22)

As the sum of two functions, Equation (18) is ultimately reformulated as a convex
optimization problem:

min
Img ,Sr

g1(Img) + g2(Sr)

s.t.Sr = TImg

(23)

According to the ALM–ADMM process, parameter k is defined as the number of
iterations. During each iteration, the split variables Img and Sr can be updated as follows:

I(k+1)
mg = argmin

Img
||TI(k)mg − SE

r ||22 + µ||I(k)mg − S(k)
r − p(k)||22

S(k+1)
r = argmin

Sr
g2(S

(k)
r ) + µ

2 ||I
(k)
mg − S(k)

r − p(k)||22
(24)

where µ is the penalty coefficient, and p is the intermediate variable with adequate initial-
ization and the convergence of the solution to Lagrange dual problem. The expression is
as follows:

p(k+1) = p(k) − (TI(k+1)
mg − S(k+1)

r ) (25)

In Equation (24), for the optimization problem that involves calculating I(k+1)
mg , redefine

the transform matrix T as T = CN. C is assumed to be a periodic convolution, and N
represents a Parseval frame that is tightly normalized to NNH = I. Then, based on the
solution to the minimized, strictly convex problem [37], the I(k+1)

mg is calculated as follows:

I(k+1)
mg = (NHCHCN + µI)−1

[
NHCHSE

r + µ(S(k)
r + p(k))

]
(26)

In Equation (26), the matrix NHCHCN+ µI is considered to be the regularized Hessian
of 1

2 ||TI(k)mg − SE
r ||22 and the previous multiplication factor can be calculated using the

Sherman–Morrison–Woodbury (SMW) matrix inversion formula:

(NHCHCN + µI)−1 =
1
µ

[
I − NH

[
(µ + 1)I]−1N

]
(27)

Combining Equation (26) with Equation (27), the final calculated result of I(k+1)
mg is

as follows:

I(k+1)
mg =

1
µ

[
NHCHSE

r + µ(S(k)
r + p(k))

][
I − NH

[
(µ + 1)I]−1N

]
(28)

The optimization problem for calculating S(k+1)
r refers to the iterative shrinkage/

thresholding (IST) algorithm, the key factor of which is the Moreau proximity mapping
function [38]. Therefore, S(k+1)

r is calculated as follows:

S(k+1)
r = argmin

Sr

1
2
||Sr − (I(k+1)

mg − p(k))||22 +
1
µ

g2(Sr) (29)

In Equation (22), g2(Sr) is the sum of the nuclear norm and the l1 norm.
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For the l1 norm, the commonly used closed-form solution is given by
S(k+1)

r1 = so f t(I(k+1)
mg − p(k), γ1), where so f t(.) is the soft threshold function expressed

as follows:

so f t(X, γ) = max
{

1 − γ

|X(i, j)| , 0
}

X(i, j) (30)

where X is a matrix and γ is a constant.
For the nuclear norm, the singular value thresholding (SVT) method [39] is employed,

and the solution is as follows:

S(k+1)
r2 = TU(k)so f t(∑(k),

1
µ
)(V(k))H (31)

where U(k), ∑(k), and V(k) are the singular value decomposition results of (I(k+1)
mg − p(k)).

Finally, the calculated result of S(k+1)
r for the minimum optimization problem is as follows:

S(k+1)
r = T(THT + 2I)

[
TH(I(k+1)

mg − p(k)) + S(k+1)
r1 + S(k+1)

r2

]
(32)

By continuously iterating the solution until the termination condition is satisfied, the
final imaging matrix Img can finally be obtained. The detailed processing steps of the whole
ALM–ADMM are shown in Algorithm 3.

Algorithm 3 Algorithm ALM-ADMM

1. Input : the dictionary matrix T and the signal data SE
r .

2. Initialization : set the iteration number k= 0, choose proper µ > 0, S(0)
r , p(0) and regularize parameters γ1, γ2 > 0

3. Repeat:

(1) update Img:

I(k+1)
mg = 1

µ

[
NHCHSE

r + µ(S(k)
r + p(k))

][
I − NH[

(µ + 1)I]−1N
]

(2) update SE
r :

S(k+1)
r1 = so f t(I(k+1)

mg − p(k), γ1)

S(k+1)
r2 = TU(k)so f t(∑(k), 1

µ )(V(k))H

S(k+1)
r = T(THT + 2I)

[
TH(I(k+1)

mg − p(k)) + S(k+1)
r1 + S(k+1)

r2

]
(3) update p:

p(k+1) = p(k) − (TI(k+1)
mg − S(k+1)

r )

(4) update k:

k = k + 1

Until stopping criterion is satisfied and output Img

4. Experiment

In this section, simulation and contrast experiments were conducted to validate the
effectiveness of the proposed algorithm. The experimental data were collected from the
Wuhan Iron & Steel Company No. 7 BF and Nanjing Iron & Steel Company No. 4 BF.
The experimental platform was MATLAB R2016b running Windows 10. The parameter
settings were 0 < γ1 ≤ 4 and γ2 = 0.5, the maximum number of iterations of k was 150,
and µ = γ2/10.

4.1. Comparative Simulation Results

In this subsection, a simulation test was conducted to compare the performances of
the proposed algorithm (denoted as JLRS-BSP in the following) against others such as the
traditional CS method (denoted as CS in the following) and the ISAR imaging algorithm
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jointly using low-rank and sparsity priors (denoted as JLRS in the following). A sample
point target scattering simulation was conducted. The root mean square error (RMSE) was
employed as the primary performance indicator, defined as follows:

RMSE = ||Sr − Sr||F/||Sr||F (33)

where Sr is the iterative calculated result from Algorithm 3. A smaller RMSE value indicates
a better performance. As shown in Algorithm 3, the final output Img can be evaluated by
another indicator, and the image correlation criterion (Corr) is defined as follows:

Corr(Img, Img) =

∣∣vec(Img), vec(Img)
∣∣∣∣|vec(Img)||2||vec(Img)||2

(34)

where Img is obtained by entropy weight interpolation (denoted as EWI in the following),
as shown in Equation (10), serving as the reference image, and vec() is the vector function.
This index depicts the similarity between the imaging result and the reference image,
indicating a better performance when the algorithm correlation is higher.

Furthermore, Gaussian white noise was added to the raw data to simulate high BF
noise. Comparative simulations were conducted under both low-SNR and high-SNR
conditions, and the SNR is expressed as follows:

SNR = 20lg(
∑

fH
fL

∣∣Sr( f )|2

∑
fH
0

∣∣∣Sr( f )|2 − ∑
fH
fL
|Sr( f )|2

) (35)

where fL is the starting frequency of the effective band in the FMCW, and fH is the termi-
nation frequency. The effective band was estimated in order to determine the scattering
intensity of the target. Table 1 details the comparative results of the above methods under
different SNR conditions. The values of RMSE and Corr were both average in 75 Monte
Carlo simulations.

Table 1. Comparison of algorithms under different SNR conditions.

SNR Algorithm RMSE Corr

5 dB
CS 0.1869 0.8115

JLRS 0.3055 0.7754
JLRS-BSP 0.1534 0.8798

20 dB
CS 0.1438 0.8449

JLRS 0.3868 0.7236
JLRS-BSP 0.1357 0.8917

No noise
CS 0.1196 0.9058

JLRS 0.3024 0.8538
JLRS-BSP 0.1168 0.9123

Table 1 shows that the RMSE of the proposed JLRS-BSP was the lowest, and the Corr
was the highest. The traditional CS method was unable to overcome the noise interference
caused by high temperatures, high dust levels, and high pressure in the BF, resulting in
performance degradation as the SNR decreased. The JLRS was not suitable for the FMCW
sample conditions originally designed for ISAR imaging.

The EWI algorithm has been used for a long time for calculating the Corr in BF
production, but this ignores the sparsity and low-rank property of the spectral matrix.
Using the EWI algorithm results as reference images may not be entirely reliable. The Corr
discrepancy between the EWI and JLRS-BSP is small. Therefore, in the following subsection,
the precision of Img and Img will be analyzed based on real data.
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4.2. Real Data Comparison

In this subsection, the experimental data are collected by the mechanical swing
radar measurement system installed on the BFs of the Iron & Steel Company, which
measured the burden surface profile data during various stages of the iron-making
process. The key parameters of the radar are shown in Table 2. Figure 7a shows the
installation procedure of the mechanical swing radar measurement system, and Figure 7b
shows its working process.

Table 2. Key parameters of the FMCW radar.

Initial Frequency Frequency Step Bandwidth Angle Interval Transmit Power

24 GHz 1.6 MHz 1.6 GHz 0.52◦ +9 dBm
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Figure 7. (a) Installation of system on BF. (b) Scanning measurement of radar.

Contrast experiments were conducted on the currently used EWI algorithm, the
traditional CS method, and the JLRS-BSP. The precision and reliability during actual
industrial production in the BF were evaluated. Before this, the validation of mechanical
swing radar measurement results had to be confirmed, as the BF is a “black box”, and
the real shape of the burden surface profile cannot be directly observed using an optical
method. At the experimental base of the Nanjing Iron & Steel Company (as shown in
Figure 8), a cold-state burden surface profile was created, and a mechanical swing radar
was deployed for testing.
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Figure 8. Experimental base for burden surface profile.

For experimental purposes, a cold-state burden surface profile was constructed using
coke and ore according to planned dimensions. The mechanical swing radar was installed
approximately 3 m above the constructed burden surface profile.
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Figure 9 shows the dimension diagrams of the constructed burden surface profile
and the imaging results. In Figure 9a, from right to left, the furnace wall to the furnace
core (as shown in Figure 1) is simulated; there is a higher platform that is 1.4 m wide,
followed by a slope that is 0.4 m wide and 0.25 m high. Finally, the lower platform is 1.9 m
wide. The whole width is approximately 3.7 m, and the whole height is approximately
2.4 m to 2.6 m.
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Figure 9b is the imaging result of Figure 9a; the color scale bar shows the spectral power
value S calculated in Equation (6). The radar is located on the origin of the coordinates;
the X-axis represents the relative radius position, and the Y-axis represents the vertical
distance from the radar.

It can be seen that the constructed dimension is completely consistent with the imaging
results. Moreover, the dimensions of the platform and slope are changed, and the diagram
and imaging results are shown in Figure 9c and Figure 9d, respectively.

The performances of different algorithms, including EWI, the traditional CS method,
and the proposed JLRS-BSP, are compared. The imaging results are shown in Figure 10; the
color scale bar shows the spectral power value S. The X-axis represents the relative radius
position of the furnace core, and the Y-axis represents the vertical distance from the radars;
dual radars are located on around (−3,0) and (3,0).
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Figure 10. Burden surface profile imaging results using different algorithms.

From left to right:
(1) EWI: cannot completely construct the radial shape of the burden surface profile

target. The distribution of the scattering intensity is sparse, and there are many large pixel
blocks contained in the images. (2) CS: when the noise is not high, the imaging results
are clear; when the noise is high, it fails to achieve satisfactory imaging. The ability to
constrain high noise levels is thus limited. (3) JLRS-BSP: the proposed algorithm can obtain
clear imaging results and accurately construct the radial shape of the burden surface profile
target, even under low-SNR conditions.

Three metrics for image resolution are calculated, and Table 3 shows that the imaging
resolution of the JLRS-BSP is the most superior and satisfactory for subsequent processing.
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The imaging resolution of CS is better in some cases, but when the noise is high, the imaging
resolution is the worst, and the average metrics are thus pulled down.

Table 3. Comparison of average metrics for image resolution.

Metrics EWI CS JLRS-BSP

Variance 599.94 768.94 795.62
Entropy 4.585 4.603 4.583

Teengrad 5.048 5.521 5.814

Based on the above imaging results, the imaging precision of different algorithms are
evaluated by reconstructed shape precision, and a shape detection method using deep
learning-based key point estimation [40] is employed. The exact shape of the burden
surface profile is extracted by converting its band region into a geometric curve (burden
line). Under the supervision of the BF experts and in conjunction with the mechanical
probe data, a comparison of the average RMSE between the real and extracted burden lines
using the above three algorithms was established. This is presented in Table 4.

Table 4. Comparison of average RMSE for shape detection.

RMSE

EWI CS JLRS-BSP

0.0156 0.0148 0.0132

As can be seen in this table, comparing EWI with the proposed JLRS-BSP, the average
RMSE decreases from 0.0156 to 0.0132 by 15.38%. For the traditional CS method and JLRS-
BSP, the difference in average RMSE may not be obvious when the quantity of high-noise
images in the experimental dataset is small; however, the average RMSE still decreases
from 0.0148 to 0.0132 by 10.81%.

The testing dataset consisting of 850 images is divided into four classes based on SNRs
of 5-dB, 5~10 dB, 10~30 dB, and 30+ dB, as shown in Table 5.

Table 5. RMSE comparison under different SNR conditions.

SNR Algorithm RMSE

5-dB
EWI 0.0275
CS 0.0314

JLRS-BSP 0.0232

5~10 dB
EWI 0.0177
CS 0.0217

JLRS-BSP 0.0138

10~30 dB
EWI 0.0144
CS 0.0152

JLRS-BSP 0.0128

30+ dB
EWI 0.0092
CS 0.0088

JLRS-BSP 0.0089

From Table 5, it can be seen that the RMSE of the traditional CS method increases
rapidly when the SNR is lower. When the SNR is under 5 dB, comparing EWI with JLRS-
BSP, the average RMSE decreases from 0.0275 to 0.0232 by 15.63%. The JLRS-BSP is more
robust than the others, especially under low-SNR conditions.
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5. Discussion
5.1. The Effectiveness of ADMM

In this study, the ADMM was chosen to address the double priors’ constrained
optimization problem. To validate the effectiveness of ADMM, the iterative shrinkage–
thresholding algorithm (ISTA) and fast iterative shrinkage–thresholding algorithm (FISTA)
were used for comparison, the results of which are shown in Table 6.

Table 6. Comparison of different iteration algorithms.

Algorithm Iterations Time (s)

ISTA 254 40.23
FISTA 112 15.16

ADMM 35 4.72

From this table, it can be seen that the ADMM requires the lowest number of iterations
and lowest running time to output the imaging results. The running times of ISTA and
FISTA are over 15 s, which is unfeasible for real-time measurement.

5.2. The Limitations of the Proposed Algorithm

The proposed JLRS-BSP has the following limitations:

(a) The compute burden is high. The JLRS-BSP needs iterative calculations, and the
running time is much longer than that of the EWI algorithm currently used in BFs.
When the SNR is very high, the difference in RMSE between JLRS-BSP and EWI
is very small, and the superiority of the higher imaging precision is not significant.
Comparative results using very-high-SNR (almost 50+ dB) datasets are shown in
Table 7. From Table 7, it can be seen that the RMSE of JLRS-BSP is only 0.0001 lower
than EWI, while the running time is about 6 times higher. The EWI is more suitable in
environments with almost no noise.

(b) The pattern for the optimal selection of the hyperparameters γ and µ needs more
experiments. In this study, the hyperparameter values were set according to other
sparse SAR imaging problems and were tuned in order to obtain the ideal results in
the experimental conditions. Under some harsh and rapid-change furnace conditions,
these imaging results are unsatisfying.

(c) JLRS-BSP is now applicable for 2D measurement. In the future, research should be
conducted on the 3D measurement of burden surface profiles.

Table 7. Comparison of different imaging algorithms under very-high-SNR conditions.

Algorithm RMSE Time (s)

JLRS-BSP 0.0084 4.86
EWI 0.0085 0.74

6. Conclusions

For SAR imaging in both enclosed and harsh environments, imaging precision is
limited by signal sparsity and high noise interference. In this case, the low-rank property
of the signal matrix and the sparsity of imaging matrix must be considered. Based on
the FMCW mechanical swing radar, this study proposed a valid algorithm jointly using
low-rank and sparsity priors to increase the burden surface profile imaging precision. In
the sparse signal model, the position transform matrix embedded in the dictionary matrix
was used for position calibration according to the BF’s dimensions. Furthermore, the
low-rank property of the signal matrix was analyzed, and a convex optimization problem
was established in which low-rank and sparsity priors were reformulated as split variables
with a regularized Hessian of the l2 data-fidelity term. The ALM was then employed to
address the two constraints, and the imaging result was finally obtained via ADMM. Finally,



Remote Sens. 2024, 16, 1509 18 of 19

the imaging precision was evaluated according to the reconstructed shape precision. As
confirmed through experiments using both simulated and real data, the proposed algorithm
is not only superior in terms of imaging precision, achieving the lowest RMSE of 0.0132, but
also more robust in high-noise environments, where RMSE is maintained at 0.0232 when
the SNR is under 5 dB. The higher burden surface profile imaging precision can provide
better assistance for BF operators in the iron-making process.

In future research, the algorithm proposed in this study will be further optimized to
improve running speed. The pattern of hyperparameter selection will also be found and
combined with the corresponding physical model inside a BF. Moreover, a system for 3D
measurement will be explored and established, probably combined with the ISAR concept.
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