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Abstract: In this paper, we propose a method for efficient target classification based on the spatial
features of the point cloud generated by using a high-resolution radar sensor. The frequency-
modulated continuous wave radar sensor can estimate the distance and velocity of a target. In
addition, the azimuth and elevation angle of the target can be estimated by using a multiple-input
and multiple-output antenna system. Using the estimated distance, velocity, and angle, the 3D point
cloud of target can be generated. From the generated point cloud, we extract the point cloud for each
individual target using the density-based spatial clustering of application with noise method and a
camera mounted on the radar sensor. Then, we define the convex hull boundaries that enclose these
point clouds in both 3D and 2D spaces obtained by orthogonally projecting onto the xy, yz, and zx
planes. Using the vertices of convex hull, we calculate the volume of the targets and the areas in
2D spaces. Several feature points, including the calculated spatial information, are numerized and
configured into feature vectors. We design an uncomplicated deep neural network classifier based
on minimal input information to achieve fast and efficient classification performance. As a result,
the proposed method achieved an average accuracy of 97.1%, and the time required for training
was reduced compared to the method using only point cloud data and the convolutional neural
network-based method.

Keywords: deep neural network; frequency-modulated continuous wave; multiple input and
multiple output; quickhull algorithm; target classification

1. Introduction

Automotive radar systems commonly use frequency-modulated continuous wave
(FMCW) [1,2] technology. By employing frequency modulation on a continuous wave (CW)
signal, it becomes possible to simultaneously estimate both the distance and velocity of a
target. Moreover, a multiple-input and multiple-output (MIMO) antenna system [3,4], consist-
ing of transmitting and receiving antenna elements, is used to estimate the angle of a target.
Therefore, the recently developed concept of imaging radar can provide high-resolution point
cloud images with enhanced imaging performance [5]. Target classification is a key technol-
ogy directly related to driver safety in the driving assistance system. Traditionally, target
classification in radar systems was mostly based on Doppler information [6–8]. However,
recent advancements in radar sensors have enabled the acquisition of high-resolution point
cloud data, leading to active research in target classification based on point cloud data. The
authors in [9] proposed a method of classification and segmentation in driving environments
using point clouds. As such, studies using various clustering techniques and classifiers were
conducted to improve target classification performance [10–12]. In addition, the authors
in [13] proposed a method for detecting and classifying the positions of dynamic road users

Remote Sens. 2024, 16, 1522. https://doi.org/10.3390/rs16091522 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16091522
https://doi.org/10.3390/rs16091522
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2555-9575
https://orcid.org/0000-0002-7860-9348
https://orcid.org/0000-0001-9611-9062
https://orcid.org/0000-0001-9115-4897
https://doi.org/10.3390/rs16091522
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16091522?type=check_update&version=1


Remote Sens. 2024, 16, 1522 2 of 17

by combining various classifiers. The authors in [14] proposed efficient real-time road user
detection for multi-target traffic scenarios through FMCW measurement simulation.

Research on target classification methods using deep learning algorithms in radar sys-
tems has been recently conducted [15–17]. The authors of [15] applied a multi-view convo-
lutional neural network (CNN) to the point clouds acquired using a high-resolution MIMO
FMCW radar system for target classification. The authors in [16] proposed graph neural
networks for radar object-type classification, which jointly process the radar reflection list
and spectra. Also, the authors of [17] performed multiperson activity recognition tasks
through a four-channel CNN classification model based on the Doppler, range, azimuth,
and elevation features of the point cloud. Moreover, research has also been conducted
using spatial features in conjunction with target information such as distance, velocity, and
angle [18,19]. The authors of [18] transformed sparse point cloud data into radio frequency
(RF) images to infer precise target shapes. In addition, the authors in [19] used the rolling
ball method to extract accurate contour information from high-resolution radar point cloud
data. In this paper, we focus on target classification in driving environments. We pro-
pose a method that effectively classifies stationary targets based on the spatial features
of point clouds. We apply the density-based spatial clustering of applications with noise
(DBSCAN) [20] method to cluster commonly encountered pedestrians, cyclists, sedans,
and sports utility vehicles (SUVs) in road scenarios and define convex hull boundaries that
enclose the point clouds in 3D and 2D space obtained by orthogonally projecting the data
in three different directions (i.e., xy, yz, and zx planes). Using the vertices of convex hull,
we calculate the volume of the targets and the areas in 2D spaces. These spatial features
are then complemented with the number of points in the point cloud. Additionally, we
identify significant features that affect classification and validate the performance of the
classification method with corresponding feature vectors.

In summary, the key contributions of our work can be outlined as follows:

• Through the proposed method, we obtain the vertices of convex hull that encloses
the point cloud and extract spatial features by calculating the volume and areas in
3D and 2D space. Unlike conventional methods that merely cluster point cloud data,
our approach considers the shape and perimeter of each cluster, enabling a deeper
utilization of the target’s spatial features.

• The proposed spatial feature-based target classification method shows improved target
classification performance compared to the case using spatial features extracted only
with the DBSCAN method.

• By integrating spatial information into the classification process, our proposed method
not only achieves higher accuracy but also reduces the training time compared to deep
learning-based object classification methods that do not use spatial information.

The remainder of the paper is organized as follows. Section 2 provides an introduction
to target estimation in the MIMO FMCW radar system, covering the fundamental concepts,
and describing the experimental environment. In Section 3, we describe the process of
extracting the vertices of the convex hull through the proposed method and the feature
selection process for target classification. In Section 4, we describe the structure of the
classifier. We also perform an analysis to identify the most significant features and evaluate
the performance by comparing it with other target classification methods. Finally, we
conclude this paper in Section 5.

2. Materials
2.1. Estimating Distance and Velocity of Targets with FMCW Radar System

In an automotive radar system, FMCW radar sensors can be used to simultaneously
estimate the range, velocity, and angle of targets. Figure 1 shows the general block diagram
of the MIMO FMCW radar system. The FMCW radar system sequentially transmits Np
chirps, of which the frequency increases linearly in the time domain. Tf denotes the frame
time for transmitting the chirps, as shown in Figure 2.
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Figure 1. Block diagram of the MIMO FMCW radar system.

Figure 2. Process of estimating distance and velocity based on the transmitted and received signals
from the FMCW radar system.

Based on the returning echo signal from the target, we can estimate the velocity and
distance of the kth target. The received signal is downconverted to a baseband signal by
applying a frequency shift using a mixer and a low-pass filter. The baseband signal is
transformed into a discrete-time signal through an analog-to-digital converter (ADC). The
discrete-time signal can be expressed as

x[n, p] =
Nk

∑
k=1

akexp
[

j2π

{(
2∆ f (Rk + vk p∆t)

c∆t
+

2vk fc

c

)
nTs

+
2 fc

c
(Rk + vk p∆t)

}] (1)
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where fc, ∆ f , and ∆t represent the center frequency, bandwidth, and sweep time for each
chirp, respectively. Moreover, vk and Rk denote the velocity and distance of the kth target.
Also, Nk represents the number of targets, ak represents the amplitude of the kth baseband
signal, and ψ0 represents 2Rk fc/c. In addition, n (n = 1, 2, · · · , Nn) represents the time
sample index of each chirp, p (p = 1, 2, · · · , Np) represents the index of each chirp, and Ts
represents the sampling period. Applying the fast Fourier transform (FFT) with respect to
the n-axis enables the estimation of the distance of the target, and applying the FFT with
respect to the p-axis enables the estimation of the velocity of the target. This process is
shown in Figure 2.

2.2. Target Angle Estimation Based on MIMO Antenna System

In an MIMO FMCW radar system, an array antenna can be used to determine both the
azimuth and elevation angle of the target. Assuming that θk and ϕk represent the azimuth
and elevation angle, respectively, between the center of the antenna and the kth target,
(1) can be expanded as

x[n, p, l, u] =
Nk

∑
k=1

akexp
[

j2π

{(
2∆ f (Rk + vk p∆t)

c∆t
+

2vk fc

c

)
nTs

+
fcdt,a sin θk

c
(l − 1) +

fcdr,a sin θk
c

(u − 1)

+
fcdt,e sin ϕk

c
(l − 1) +

fcdr,e sin ϕk
c

(u − 1)

+
2 fc

c
(Rk + vk p∆t)

}]
(2)

where dt, a and dt, e represent the distances between the transmitting antenna elements in the
azimuth and elevation directions, while dr, a and dr, e represent the distances between the
receiving antenna elements. In the MIMO antenna system, l (l = 1, 2, · · · , NT) represents
the index of the transmitting antenna elements, and u (u = 1, 2, · · · , NR) represents the
index of the receiving antenna elements. Using these elements, NT × NR virtual channels
can be generated. When NT × NR receiving channels are generated, a total of NT × NR 2D
FFT results are obtained.

Assuming that the number of receiving channels arranged in the azimuth direction
is NA, and representing the 2D FFT results corresponding to the kth target in each virtual
channel as tk and rk, we obtain a total of NA sampled values. This process is shown in
Figure 3, and the signal vector can be expressed as

XA =


X1[tk, rk]
X2[tk, rk]

...
XNA [tk, rk]

 (3)

The spectrum-based beamforming technique, the Bartlett angle estimation algorithm [21],
is employed using the signal spectrum from (3). By multiplying XA with the Hermi-
tian transpose of XA, denoted as XH

A , we generate a correlation matrix. The normalized
pseudospectrum can be expressed as

PA(θ) =
1

NA

aH
A (θ)XAXH

A aA(θ)

aH
A (θ)aA(θ)

(4)

where aA(θ) is the steering vector that takes into account the distance between the receiv-
ing channels in the azimuth direction. Similarly to estimating the azimuth angle of the
target, the elevation angle can be estimated by assuming the number of sampled values
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containing information in the elevation direction as NE. The corresponding steering vector
is represented as aE(ϕ).

(a)

(b)

Figure 3. Angle estimation of the azimuth direction. (a) selection of receiving channels and (b) selec-
tion of the time sample index and chirp index where the target is located.

2.3. 3D Target Generation Using FMCW Radar System
2.3.1. Radar Sensor Used in Measurements

For this experiment, we used a radar sensor manufactured by Bitsensing inc., Seoul,
Republic of Korea, known as the 79 GHz AIR 4D [22]. The radar sensor operated at a
center frequency of 79 GHz with a bandwidth of 1500 MHz, resulting in a range resolution
of 10 cm, which is determined by c/2B. The system consisted of 32 chirps, with each
chirp comprising 1024 time samples. It features 12 transmitting antenna elements and
16 receiving antenna elements. The frame time is set to 100 ms. The velocity resolution is
1.9 cm/s, and the angular resolutions for elevation and azimuth are 5◦ and 2◦, respectively.
The specifications of the radar sensor are summarized in Table 1.
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Table 1. Characteristics of the MIMO FMCW radar system.

Parameter Value

Center frequency, fc 79 GHz
Bandwidth, ∆ f 1500 MHz

Number of transmitting antenna elements, NT 12
Number of receiving antenna elements, NR 16

Number of chirps, Np 32
Number of time samples in each chirp, Nn 1024

Frame time, Tf 100 ms
Range resolution, ∆R 10 cm

Velocity resolution, ∆v 1.9 cm/s
Azimuth angular resolution, ∆θ 2◦

Elevation angular resolution, ∆ϕ 5◦

2.3.2. Measurement Scenarios

We obtained data from different targets commonly encountered during road driving,
including pedestrians, cyclists, sedans, and SUVs from radar sensors. Because of the
dynamic nature of non-stationary targets, where spatial features can change over time, we
focused our analysis on stationary targets to clearly analyze the impact of spatial features
without complicating effects of velocity. The length, height, and width of the observed
stationary targets are provided in the Table 2. The radar sensor was positioned at a height
of 60 cm above the ground surface. To classify stationary targets from various angles, the
angle and distance between the radar and the target were adjusted, and data were acquired
by measuring 200 frames at 14 different points as shown in Figure 4a. We also obtained data
for cases where targets are adjacent (e.g., cyclists and pedestrians, SUVs and pedestrians
within 1 m) to ensure that they can be applied to complex environments. Measurements
were taken over 200 frames, identical to when observing stationary targets at 6 different
points, as shown in Figure 4b. In this case, we empirically determined that the maximum
distance between point clouds associated with a specific target is approximately 70 cm.
Considering the radar’s range resolution, we adjusted the distance hyperparameter of the
DBSCAN algorithm to 80 cm and set the minimum number of points required for a cluster
to 4. Based on these hyperparameters, we ensured a minimum separation of 1 m between
targets in all experiments, which were conducted in an outdoor environment free from
obstructions. In addition, we merged point clouds collected from multiple sensor positions
into a unified dataset. Using this integrated dataset, we trained our classification model to
accurately classify targets regardless of the direction from which they are observed.

Table 2. Length, height, and width of each target class.

Target Class Length (mm) Height (mm) Width (mm)

Pedestrians 280–540 1680–1830 575–645
Cyclists 1680–1760 1750–1900 500–580
Sedans 4588–4995 1470–1485 1860–1870
SUVs 4410–4750 1020–1715 1830–1930
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(a)

(b)

Figure 4. Measurement scenarios (a) for individual targets and (b) for multiple targets.

2.4. Point Cloud Refinement Process

Through the use of the estimated distance and angle parameters (i.e., Rk, θk, and ϕk)
obtained from Sections 2.1 and 2.2, the spatial location of the targets in 3D space can be
estimated. We used the DBSCAN method and a camera mounted on a radar sensor to
define a virtual bounding box (i.e., the smallest cuboid that encloses the point cloud) and
consider all points outside this area as outliers, displaying only the point cloud within this
area. By adjusting the hyperparameters (i.e., the number of points and clustering size) of the
DBSCAN method, it was possible to cluster targets even in complex environments. Figure 5
represents point clouds in the xy, yz, and zx planes and 3D space, respectively, starting
from the top left. Also, Figure 6 shows the clustering results for multiple targets, with the
point clouds for each target displayed in different colors according to the clustering, as
shown in Figure 6b.
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(a) (b)

(c) (d)

Figure 5. Generated point clouds in the xy, yz, and zx planes and 3D space for (a) pedestrians,
(b) cyclists, (c) sedans, and (d) SUVs.

(a)

Figure 6. Cont.
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(b)

Figure 6. Generated 3D point cloud data in multi-target scenario (a) before applying clustering and
(b) after applying clustering.

3. Methods

In this section, we propose a method of extracting vertices from the convex hull of
the point cloud. The process of obtaining the volume and areas of the target through the
extracted vertices is explained, and other features for target classification are considered.

3.1. Process for Extracting Vertices of a Convex Hull

We propose a method for extracting the convex hull’s vertices of a finite set of points
in n-dimensional space using the divide-and-conquer method [23,24], based on the point
clouds generated through the MIMO FMCW radar system. Figure 7 shows the process
of selecting vertices to form a convex hull: red dots represent the selected vertices, blue
dots represent points under consideration, and black dots represent points excluded from
consideration. Also, the red line represents the line generated by repeating Figure 7a and
Figure 7b, and the blue line represents the final boundary of the convex hull. Using the two
furthest points in the 2D point cloud as reference points as shown in Figure 7a, the point
cloud is divided into two groups according to a baseline connecting these reference points.
For each group of points, we find the furthest point that is orthogonal to the baseline. As
shown in Figure 7b, this point becomes a new vertex, forming a triangle with the reference
point. Points inside the triangle cannot be part of the convex hull and can, therefore, be
ignored in subsequent steps. Then, continue to recursively apply the previous two steps to
the lines created by the new sides of the triangle. By repeating these two steps recursively
on the two lines formed by the new sides of the triangle until no more points remain, the
line segments depicted in Figure 7c are created. As a result, the selected vertices form a
convex hull, as shown in Figure 7d. We apply the proposed method to the point clouds
generated in Section 2.3.2. Figure 8 shows the application of the proposed method to
Figure 5. In Figure 8, the color intensity of the triangles corresponds to their relative height
within the point cloud, with darker shades indicating lower elevations.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Process of selecting the vertices that form a convex hull using the proposed method:
(a) set a baseline connecting the two furthest points, (b) form a triangle by selecting the point that is
orthogonally furthest from the baseline, (c) The line segments and selected vertices that are generated
by repeating the previous process, and (d) final selected vertices and convex hull.

(a) (b)

(c) (d)

Figure 8. Applied proposed method to the point clouds (a) for pedestrians, (b) for cyclists, (c) for
sedans, and (d) for SUVs.
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3.2. Features Selection with Proposed Method

To calculate the areas, we used the coordinates of the vertices of the convex hull. The
equation for calculating the areas of the obtained vertices can be expressed as

Axy =
1
2

∣∣∣∣∣m−1

∑
i=1

xiyi+1 + xmy1 −
m−1

∑
i=1

xi+1yi − x1ym

∣∣∣∣∣ (5)

Ayz =
1
2

∣∣∣∣∣m−1

∑
i=1

yizi+1 + ymz1 −
m−1

∑
i=1

yi+1zi − y1zm

∣∣∣∣∣ (6)

Azx =
1
2

∣∣∣∣∣m−1

∑
i=1

zixi+1 + zmx1 −
m−1

∑
i=1

zi+1xi − z1xm

∣∣∣∣∣ (7)

where the coordinates of x, y, and z in (5)–(7) represent the coordinates of the vertices
forming the convex hull in each of the three different planes and are conditioned on the
following equation:

xn+1 = x1, x0 = xn, yn+1 = y1, y0 = yn, zz+1 = z1, z0 = zn (8)

Similarly, the volume of the convex hull in 3D space can also be calculated. The equation
can be expressed as

Vxyz =
1
6

m−1

∑
i=1

m

∑
j=i+1

m

∑
k=j+1

vi × (vj − vi)× (vk − vi) (9)

where v represents the coordinates of the vertices that form the convex hull, and m repre-
sents the number of vertices. In addition, we considered the number of points in the point
cloud and denoted it as Npoints.

4. Results

In this section, we describe structure of the deep neural network (DNN) for target
classification and configure the feature vectors from the features considered in Section 3.2,
through the performance evaluation. Furthermore, we compare the performance with
other target classification methods that do not use spatial information.

4.1. The Structure of the DNN for Target Classification

DNNs have the advantage of enhanced training ability compared to artificial neural
networks, as they have multiple hidden layers. As a result, there have been numerous
studies applying radar sensor data to DNNs. The authors in [25] proposed a machine
learning-based method to classify pedestrians using automotive radar. They used the
DBSCAN method for clustering detected targets and calculated features to identify targets
belonging to the same moving object. In addition, the authors in [26] proposed a method to
improve the target classification accuracy of automotive radar sensors by directly applying
deep convolutional neural networks to the region of interest on the radar spectrum.

Figure 9 shows the structure of the DNN for target classifications. The DNN model
used in this paper consists of three hidden layers, and each layer is composed of 30 nodes.
The activation functions of the hidden layers are connected in the order of sigmoid, hyper-
bolic tangent, and hyperbolic tangent. Finally, they pass through the softmax layer and
output layer to generate the output. Training is carried out by feedforward, where the
nodes of the input layer are multiplied by weight and added with bias as they are passed
to the next layer. Then, the process passes through the activation function and reaches the
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output layer. If the training is incorrect, the process is adjusted by correcting the gradient
of the nodes through error backpropagation.

Figure 9. Block diagram of the proposed DNN for target classification.

For the input, we started with five types of features (i.e., the areas of the convex hull
observed from three directions, volume, and the number of points) and empirically reduced
them to the most significant features. The output types of targets were fixed to pedestrians,
cyclists, sedans, and SUVs. We obtained a total of 11,200 feature vectors for different types
of pedestrians, cyclists, sedans, and SUVs. The input data are divided with 75% of the data
allocated to training and 25% allocated to testing. The maximum number of epochs for
training is set to 1500, where each epoch represents one complete iteration over the entire
feature vector. The training data are further divided into random independent samples,
with 70% for training, 15% for validation, and 15% for testing purposes.

4.2. Performance Evaluation

For efficient target classification, we constructed feature vectors for the two cases
and evaluated their performance. First, the performance was evaluated considering all
five types of features considered in Section 3.2. Then, the classification performance was
evaluated using only the areas and volume of the target obtained through the proposed
method, excluding the number of points. The average classification accuracy is presented
in Table 3.

Table 3. Classifier evaluation for different feature vectors.

Feature Vectors Average Classification Accuracy

f0 = (Axy, Ayz, Azx, Vxyz, Npoints) 91.7%
f1 = (Axy, Ayz, Azx, Vxyz) 87.0%

4.2.1. Classification Using All Features

As shown in Table 3, the feature vector consisting of all five features considered is f0.
Figure 10a shows the confusion matrix for f0. As shown in Figure 10a, pedestrians showed
the highest classification accuracy at 97.1%. In contrast, the accuracy of prediction for
cyclists was relatively low at 89.6%, and the highest error rate was 9.4% when cyclists were
confused with pedestrians. The average classification accuracy of all features was 91.7%.
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(a)

(b)

Figure 10. Confusion matrices based on (a) f0 and (b) f1.

4.2.2. Classification Using Selected Features

To determine which features significantly affect classification performance, we con-
structed a feature vector f1 = (Axy, Ayz, Azx, Vxyz). Figure 10b represents the confusion
matrix obtained from the feature vector f1. The classification performance decreased by
4.7% when the number of points comprising the targets was removed. Despite a slight
decrease in classification performance, the spatial features of areas and volume exhibited a
high classification accuracy of 87.0%. This finding confirms that these spatial features are
significant factors in the classification process.

4.3. Comparison of Spatial Features from a Virtual Bounding Box and the Proposed Method

To evaluate the performance of the proposed method, we compared it with the use of
spatial features extracted by a virtual bounding box. In Section 2.4, we used the camera
mounted on the radar sensor to define a virtual bounding box corresponding to the targets.
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The spatial features extracted in Section 4.2.2 (i.e., Axy, Ayz, Azx, and Vxyz) were replaced by
the area and volume obtained by orthogonally projecting the virtual bounding box in three
different directions. The feature vectors were organized in the form of f0, which yields the
highest classification accuracy.

Table 4 shows the classification accuracy when using spatial features from virtual
bounding boxes and the proposed method. The accuracy of predicting pedestrians was
improved by 2.8% when using the feature vectors processed with the proposed method.
Particularly, the accuracy of predicting cyclists was improved by 4.9%, and the overall
average classification accuracy was enhanced by 3.5%.

Table 4. Classification accuracy for different clustering methods.

Target Class Methods DBSCAN + Proposed DBSCAN
Pedestrians 97.1% 94.3%

Cyclists 89.6% 84.7%
Sedans 92.2% 91.5%
SUVs 93.8% 92.2%

4.4. Comparison with Other Target Classification Methods

In this section, we compare the proposed method with other deep learning-based
target classification methods. We compare the performance of the proposed method against
following models that are widely used for target classification: PointNet and SqueezeNet.
PointNet uses the coordinate information of the point cloud as the input, while SqueezeNet
uses the point cloud images from the xy, yz, and zx planes. Figure 11 shows the confusion
matrices for target classification result. The training time was computed based on the
Intel Core i7-9750H CPU (Intel Corporation, Santa Clara, CA, USA), GeForce GTX 1650
GPU (NVIDIA Corporation, Santa Clara, CA, USA), and Samsung 16 GB RAM (Samsung
Electronics, Suwon, Republic of Korea).The required training time and average accuracy
are shown in Table 5. As shown in Table 5, the average classification accuracies when
using PointNet and SqueezeNet were 67.9% and 91.1%, respectively. Compared to the
proposed method, the accuracies of each method were 23.8% and 0.6% lower, respectively.
Additionally, when comparing the time required for training, the proposed method showed
a faster training time than the other two methods. As a result, the proposed method
showed the highest performance relative to the required training time compared to target
classification methods that do not use spatial information.

Table 5. Performance comparison with proposed method, PointNet, and SqueezeNet.

Target Classification Method Proposed PointNet SqueezeNet

Average classification accuracy 91.7% 67.9% 91.1%
Time required for training 2 m 3 s 8 m 12 s 46 m 17 s

Moreover, we also compared the proposed method with other research methods that
classify targets using spatial features, which are currently attracting attention. The first
method mainly converts the sparse point cloud into an RF image to obtain the accurate
shape of the target. For instance, PointNet can accurately capture the local structure and
geometry of a vehicle from dense point clouds. However, millimeter-wave radar only cap-
tures the vehicle’s edge in the point cloud, leaving other regions unknown. Consequently,
PointNet cannot accurately infer the shape and category of vehicles from these sparse point
clouds. Therefore, the researchers noted that RF images from automotive radars provide
more information for target detection than point clouds. However, they contain significant
noise, increasing neural network complexity and slowing down processing. In contrast,
radar point clouds offer simpler data collection, lower noise, and faster processing through
peak detection algorithms such as constant false alarm rate. Therefore, our proposal used
radar point clouds to not only identify clusters but also accurately describe the outlines of
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these clusters, thereby improving the general accuracy of deep learning even for sparse
point clouds. The second method is to estimate target outline information from a high-
resolution target point group using the rolling ball technique. This technique is effective
in detailing the fine contours of radar point cloud data, similar to the proposed method.
Parameters with optimal results must be set depending on the type of target, but the
proposed method does not require parameter adjustment depending on the type of target.
In addition, our method using convex hull processing is less sensitive to noise and outliers
compared to rolling ball methods because the convex hull naturally excludes extremes.
This property also improves computational efficiency, making convex hull calculations
relatively efficient even for large data sets, making them suitable for computer vision and
machine learning tasks. These features highlight the advantages of our approach over
existing methods, providing a strong foundation for improved target classification and
tracking in automotive radar applications.

(a)

(b)

Figure 11. Confusion matrices in (a) the PointNet and (b) the SqueezeNet.
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5. Conclusions

In this paper, we proposed a DNN-based target classification method for high-resolution
automotive radar systems. From the raw data obtained by the MIMO FMCW radar sensor,
we processed and transformed it into point clouds representing four different target types:
pedestrians, cyclists, sedans, and SUVs. Then, we extracted the vertices of the point cloud
surrounding the targets in 3D and 2D space. Using the vertices constituting the convex
hull of the targets, we obtained more accurate spatial information regarding the target.
We configured the feature vectors by incorporating the obtained spatial features along
with the number of points. Then, we evaluated the classification performance of the DNN
classifier using the selected features. Finally, we compared the proposed method with other
target classification methods that do not use spatial information, and the proposed target
classification method exhibited faster training time and higher classification accuracy.
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