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Abstract: This research presents a time-effective approach for mapping streambed and 

riparian zone extent from high spatial resolution LiDAR derived products, i.e., digital 

terrain model, terrain slope and plant projective cover. Geographic object based image 

analysis (GEOBIA) has proven useful for feature extraction from high spatial resolution 

image data because of the capacity to reduce effects of reflectance variations of pixels 

making up individual objects and to include contextual and shape information. This 

functionality increases the likelihood of developing transferable and automated mapping 

approaches. LiDAR data covered parts of the Werribee Catchment in Victoria, Australia, 

which is characterized by urban, agricultural, and forested land cover types. Field data of 

streamside vegetation structure and physical form properties were used for both calibration 

of the mapping routines and validation of the mapping results. To improve the 

transferability of the rule set, the GEOBIA approach was developed for an area 

representing different riparian zone environments, i.e., urbanized, agricultural and hilly 

forested areas. Results show that mapping streambed extent (R
2
 = 0.93, RMSE = 3.6 m,  

n = 35) and riparian zone extent (R
2
 = 0.74, RMSE = 3.9, n = 35) from LiDAR derived 
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products can be automated using GEOBIA to enable derivation of spatial information in an 

accurate and time-effective manner suited for natural resource management agencies. 

Keywords: geographic object based image analysis (GEOBIA); LiDAR; streambed; 

riparian zone; Australia; pixel-based object resizing 

 

1. Introduction 

1.1. Riparian Zones 

Riparian zones along rivers and creeks have long been identified as important elements of the 

landscape due to the flow of species, energy, and nutrients, and their provision of corridors providing 

an interface between terrestrial and aquatic ecosystems [1,2]. Threats to riparian zones are 

compounded by increased anthropogenic development and disturbances in or adjacent to these 

environments. Riparian zones and related vegetation form corridors with distinct environmental 

functions and processes. To assess these functions and processes environmental indicators of riparian 

vegetation structure and physical form of stream banks are normally used [3]. Two of the most 

important environmental indicators to assess are streambed extent and riparian zone extent, as these 

allow further assessment of riparian environmental indicators within the stream and riparian zones [4]. 

Mapping streambed extent allows determination and assessment of a number of riparian environmental 

indicators such as streambed width, vegetation overhanging the stream, identification of stream banks 

for stream bank condition assessment, and water body assessment. Mapping the extent of the riparian 

zones defines the area within which riparian environmental indicators such as riparian zone width, 

plant projective cover, i.e., the percentage of ground area covered by the vertical projection of leaves 

and branches (PPC), vegetation continuity, and other vegetation structural parameters are to be 

assessed. Hence, a starting point and requirement for riparian zone assessment is the accurate mapping 

and identification of streambed and riparian zone extents. 

1.2. Remote Sensing of Riparian Zones 

Several papers have concluded that the use of remotely sensed image data is required for the 

assessment of riparian zones for areas >200 km of stream length, as field surveys become cost 

prohibitive at those spatial scales [5]. The availability of data from high spatial resolution sensors such 

as the IKONOS, QuickBird and GeoEye-1 satellite sensors and airborne multi-spectral, hyper-spectral 

and light detection and ranging (LiDAR) sensors have opened up new opportunities for development 

of operational mapping and monitoring of small features such as narrow riparian zones [6,7].  

Johansen et al. [8,9] found airborne LiDAR data to be suitable for mapping a number of riparian 

environmental indicators. They also assessed the use of LiDAR data for mapping streambed and 

riparian zone extents using geographic object based image analysis (GEOBIA) and obtained high 

mapping accuracies of streambed and riparian zone widths [8]. However, the rule sets applied to 

automatically map streambed and riparian zone extents were found time-consuming, especially for 

large area mapping because of the use of near pixel-level segmentations and region growing 
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algorithms. The rule sets were also found to work only in areas with streambeds clearly defined by 

bordering steep bank slopes.  

1.3. Geographic Object Based Image Analysis 

Object based approaches are increasingly used in image processing and particularly in the 

geospatial domain. Blaschke and Strobl [10] identified an increasing dissatisfaction with per-pixel 

image analysis. Although this critique was not new [10-12], Blaschke [13] analyzed whether this trend 

is significant within remote sensing and found that there is a hype in applications built on image 

segmentation, i.e., the partitioning of an image into meaningful geographically based objects [10,14-17]. 

Image segmentation is not a new approach [18,19], but it was not used extensively in geospatial 

applications throughout the 1980s and 1990s [12]. Today, GEOBIA is somehow matured and it is 

widely agreed [10-12,14-16,20-22] that object based image analysis builds on segmentation,  

edge-detection, feature extraction and classification concepts that have been used in remote sensing 

image analysis for decades [18,23]. 

Within remote sensing applications, segmentation algorithms are numerous and have been rapidly 

increasing over the past few years [12,24]. Image segmentation, from an algorithmic perspective, is 

generally divided into four categories: (a) point-based; (b) edge-based; (c) region-based; and  

(d) combined [19]. Segmentation provides the building blocks of GEOBIA [16,22]. Segments are 

regions which are generated by one or more criteria of homogeneity in one or more dimensions of a 

feature space respectively. Thus segments have additional spectral information compared to single 

pixels (e.g., mean values per band, median values, minimum and maximum values, mean ratios, 

variance, etc.), but of even greater advantage than the diversification of spectral value descriptions of 

objects is the additional spatial information of objects [10,14,22,25]. This spatial dimension (distances, 

neighborhood, shape, topologies, etc.) is crucial to GEOBIA methods, and this is a major reason for 

the marked increase in the use of segmentation based methods in recent times, compared to the use of 

image segmentation in remote sensing during the 1980s and 1990s [12,14,15,20]. It is this additional 

information and the reduction of feature reflectance variation at the object level that make object based 

feature extraction and conversion of image data sets into thematic map products so unique. 

GEOBIA is associated with ‘high spatial resolution situations’, where the pixels are significantly 

smaller than the objects under consideration [13]. Only then, regionalization of pixels into groups of 

pixels and finally objects is useful and needed. GEOBIA also provides a bridge between the spatial 

concepts applied in multi-scale landscape analysis [11,26], Geographic Information Systems (GIS) and 

the synergy between image objects and their radiometric characteristics and analyses in Earth 

Observation data. In fact, for the past 10 years, a major emphasis has been placed on GEOBIA 

approaches for mapping and monitoring earth surface objects and phenomena to achieve greater 

efficiency and objectivity, which are inherent to such approaches [12,27-32]. 

This paper builds on the GEOBIA concept when making up individual objects while including 

contextual and shape information. In the next sub-sections, it is demonstrated that objects and object 

based analyses allow for the characterization of topography and ecosystem structure from LiDAR 

derived products. The objective of this work was to develop a new, time-effective and transferable 

approach for mapping streambed and riparian zone extents from high spatial resolution LiDAR derived 
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products, i.e., digital terrain model (DTM), terrain slope and PPC for a complex rural urban area in 

Victoria, Australia using GEOBIA. Within the study area the riparian zones were located in urbanized, 

agricultural and forested areas with varying levels of topographic terrain slope and aspect. 

2. Data and Methods 

2.1. Study Area 

The riparian study area was located along the Werribee and Lerderderg Rivers and Pyrites, 

Djerriwarrh, and Parwan Creeks in the urbanized and cultivated temperate Werribee Catchment in 

Victoria, 50 km northwest of Melbourne. The extent of the study area covered approximately 59 km of 

stream length (Figure 1). The Werribee River is the major drainage stream emanating from the 

Werribee Catchment, and the rivers and creeks nominated for the study area confluence with it. In the 

northern part of the study area remnant forests of the Central Victorian Upland bioregion exist. The 

northern terrain is characterized by small streams cutting courses and gorges in heavily eroded hills. 

The water flow of the streams is generally south from the hilly areas until reaching the confluence with 

the Werribee River, where flows turns east and then southeast before eventually draining into Port 

Phillip Bay. The southern half of the study area is part of the flat Victorian Volcanic Plain bioregion 

characterized by disturbed terrain with agricultural (grazing and cultivation) and urban land  

use features. 

The study area includes two main geomorphic river types representing (1) partly confined valleys 

with discontinuous floodplain with the channel impinging on the valley margin and (2) alluvial 

channels of low sinuosity with fine grained bed and bank sediments with the channel rarely impinging 

on the valley margins. The northern most parts of the study area belong to the partly confined valleys 

with streambed material varying between bedrock and sand. The sections of the streams in the 

downstream parts of the study area with less topographic variation consist of alluvial material of gravel 

and coarse sediments. These sections of the streams are generally stable when vegetated but are highly 

unstable if modified and susceptible to avulsion at high flow stages [33]. 

2.2. Field Data Acquisition 

A field campaign was carried out in the Werribee Catchment between 31 March and 4 April 2008. 

The field data acquisition was designed to match the spatial resolution of the LiDAR data. Field 

measurements were obtained of several biophysical vegetation structural and physical form parameters 

along one transect for each of the 35 field sites (Figure 1). The transects were located perpendicular to 

the streams and ranged in length from 15 m to 85 m to cover the full width of the riparian zones. 

However, the only field measurements used in this research included: (1) streambed width; (2) riparian 

zone width; (3) PPC; and (4) stream bank slope and elevation. Streambed width was measured with a 

laser range finder. Riparian zone width was measured with a tape measure from the toe of the stream 

bank to the external perimeter defined by the stream bank flattening and the vegetation species that no 

longer dependent on the stream for survival. GPS point measurements were obtained by averaging the 

position of the start and end of each transect until the estimated positional error was below 2.0 m. 

Existing airborne high spatial resolution optical image data geometrically referenced to the LiDAR 
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data (RMSE = 0.85 m) were used to complement GPS points by identifying features visible in both the 

field and image data to precisely overlay the two data sets. 

Figure 1. (a) Area covered by the LiDAR data (outlined in yellow) in the Werribee 

Catchment; (b) zoomed in section of UltracamD image data showing more details of the 

Lerderderg River (north), Werribee River (middle), and Parwin Creek (south) and (c) study 

area location within the Werribee Basin, Victoria, Australia. Thirty-five field plots were 

assessed. A SPOT-5 image is used as a backdrop to illustrate the LiDAR data coverage. 

 

2.3. LiDAR Data Acquisition and Preparation 

The LiDAR data used in this study were captured using the Optech ALTM3025 sensor between  

7 and 9 May 2005 for the study area. The LiDAR data were captured with an average point spacing of 

1.6 m (0.625 points per m
2
) and consisted of the first and last returns and raw intensity. The LiDAR 
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returns were classified as ground or non-ground by the data provider using proprietary software. The 

flying height when capturing the LiDAR data was approximately 1,500 m above ground level. The 

maximum scan angle was set to 40° with a 25% overlap between different flight lines. The estimated 

vertical and horizontal accuracies were <0.20 m and <0.75 m respectively. GPS base stations were 

used for support to improve the geometric accuracy of the dataset. The LiDAR data were deemed 

suitable for integration with the field data despite the time gap between the data acquisitions. This 

assumption was based on existing riparian field measurements and photographs from 2004 provided by 

the Victorian Department of Sustainability and Environment [34]. Fourteen field sites visited in 2004 

were revisited during the field campaign in 2008 to compare field measurements of bank and riparian 

zone widths and associated photographs. This comparison and rainfall data indicating lower than 

average rainfalls between 2005 and 2008 [35] confirmed that no changes in streambed and riparian 

zone extents had occurred within the study area between the LiDAR and field data acquisitions. 

The following three LiDAR products were produced for use in the GEOBIA: DTM; terrain slope; 

and fractional cover count converted to PPC (Figure 2). The DTM was produced at a pixel size of 1 m 

using an inverse distance weighted interpolation of returns classified as ground hits. From this DTM, 

the rate of change in horizontal and vertical directions was calculated to produce a terrain slope layer 

measured in degrees [36,37]. Fractional cover count defined as one minus the gap fraction probability, 

i.e., the probability of an unobstructed path between the point and range in a set direction [38], was 

calculated from the proportion of counts from first returns >2 m above ground level within 5 m × 5 m 

pixels. The height threshold of 2 m above ground was also used in the field for measuring PPC. A 

detailed explanation of calculating PPC from fractional cover counts can be found in Armston et al. [39]. 

These LiDAR derived raster products were used for GEOBIA to map the streambed and riparian zone 

extents. A shapefile representing the location of the stream centers within the study area was provided 

by the Victorian Department of Sustainability and Environment and also used in the GEOBIA. 

2.4. Classifying Streambeds 

The streambed extent was defined as the continuous flat low-lying area from the toe of one bank to 

the toe of the opposite bank, which is generally where water is flowing. Mapping the extent of 

streambeds cannot be done simply by setting an elevation threshold from a DTM, as upstream areas 

will have different elevations to downstream areas. Johansen et al. [8] developed an approach using the 

DTM and terrain slope layers, but the processing was found very time-consuming and only useful for 

homogenous riparian zones in a natural state within savanna woodlands. In this case, the study area 

was much more complex represented urbanized, agricultural and forested areas. Cognition network 

language (CNL) in the software eCognition 8 was used for the development of a rule set for  

time-efficient mapping of the streambed extent using the DTM, slope and rasterized polyline 

representing the approximate stream centerline. CNL offers a multitude of options related to  

object-based image analysis. It supports programming tasks like branching, looping, and the use of 

variables. More specifically, it enables addressing single objects and supports manipulating and 

supervising the process of generating scaled objects in a region-specific manner. 
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Figure 2. Optical UltracamD image (a) showing part of the study area as a true color 

composite and corresponding LiDAR derived raster products, including: (b) DTM; (c) slope; 

and (d) PPC. Bright areas indicate high values and dark areas indicate low values. 

 

Pixel-based object resizing algorithms are new algorithms introduced in eCognition 8, which allow 

the growing, shrinking and coating of objects by directly connecting to single pixels of the underlying 

data sets. The growing mode adds and merges one row of pixels on the outside of an existing object. 

Through multiple loops, multiple layers of pixels can be added. The shrinking mode subtracts one row 

of pixels from an original object through classification of this row of objects as a separate class. The 

coating mode adjoins one row of pixels around an existing object and classifies it to a separate class, 

similar to buffering (Figure 3) [40]. Conditions can be set for adding, subtracting and adjoining layers 

of pixels, e.g., only pixels below a set threshold may be considered. Through looping, multiple layers 

of pixels can be added, subtracted or adjoined. These algorithms may replace some computational 

intensive object growing algorithms, which rely heavily on topological calculations between  

objects (polygons). 
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Figure 3. Pixel-based object resizing modes showing the principles of growing (adds one 

row of pixels on the outside of the existing object), shrinking (subtracts one row of pixels 

along the outer edge of the object) and coating (adjoins one row of pixels on the outside of 

the existing object). 

 

Initially, a multi-threshold segmentation was used to classify the rasterized stream centerline with 

pixel values of 1. As all other pixels within this layer had pixel values of 0 a set threshold of 0.9 was 

used to classify pixels with a value > 0.9 representing the polyline while pixels < 0.9 remained 

unclassified (Figure 4(a)). The next stage used the pixel-based object resizing algorithm to grow the 

stream centerline through two loops as long as the slope did not exceed 12° and the unclassified 

candidate pixels, i.e., pixels surrounding the stream centerline, were <0.5 m in elevation compared to 

the stream centerline. This approach was used to widen the stream centerline to 5 m through the two 

loops. A width of 5 m was chosen as all streams were wider than 5 m and as the widening of the 

centerline permitted more pixels to be included in the contextual relations of neighboring pixels in the 

subsequent steps. Subsequently, the pixel-based object growing was used to grow the widened stream 

centerline as long as the unclassified candidate pixels surrounding the widened stream centerline were 

<0.01 m in elevation compared to the widened stream centerline using an empirically derived surface 

tension of >0.2 within an 11 × 11 pixel window (Figure 4(b)). Surface tension looks at the relative area 

of classified pixels within a moving window centered at the candidate pixel, i.e., edge layer of pixels of 

an object, to optimize the object shape. The pixel-based object resizing algorithm was then used to 

further grow the streambed as long as the slope did not exceed 12° and the unclassified candidate 

pixels were < 0.08 m in elevation compared to the stream centerline. These thresholds were 

empirically derived. A surface tension of >0.5 within an 11 × 11 pixel window was used this time to 

smooth the border of the resizing object (Figure 4(c)). Finally, objects enclosed by the streambed were 

merged with the streambed objects (Figure 4(d)). 
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Figure 4. Mapping the streambed from the LiDAR derived DTM and slope layers and a 

rasterized polyline representing the stream centerline. The slope layer is used as a 

backdrop. (a) Classification of stream centerline using multi-threshold segmentation;  

(b) Pixel-based object growing of centerline; (c) Further pixel-based object growing based 

on the DTM and slope; (d) Final extent of streambed after merging. 

 

2.5. Classifying Riparian Zones 

The rule set used for classification of the streambeds and riparian zones was based on the approach 

developed by Johansen et al. [8]. However, as this approach used several computation-intensive 

segmentation (e.g., pixel-sized chessboard segmentations) and regionalization steps based on 

topological relations (e.g., image object fusion, merging and region-growing algorithms), it was found 

very time-consuming for use over large areas. The approach presented here focused on more  

time-effective mapping of the riparian zones using new algorithms implemented in eCognition 8.  

Riparian zone extent was defined as the area between the streambed and the external perimeter 

defined by a significant change in terrain slope (top of bank) and vegetation structure and species. This 

definition corresponds to the one used by the Department of Sustainability and Environment [41] and 

was found useful because of the highly modified landscape of the study area, with well-defined 

lowland channels and vegetation structure and species often changing abruptly due to bordering 

cultivation, grazing and urban development. The classification of the streambed was used to identify 

the streamside edge of the riparian zone. A number of steps were used for mapping the riparian zones, 

again focusing on the use of the pixel-based object resizing algorithm. To include distance measures 

around the streambed, it was not sufficient only to use the pixel-based growing algorithms starting 
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from the streambed, as non-connected elements were missing. Therefore, three different buffers in 

relation to the streambed were created (25 m, 150 m, and 200 m from the stream) to correspond to 

distance measures required within the individual processes of the rule set. The distance buffers were 

first created using the coating mode and then followed by the pixel-based object resizing algorithm 

using the shrinking mode. The shrinking algorithm was initially used to map PPC > 40% (Figure 5(a)). 

The shrinking algorithm was then used within the 25 m buffer to identify areas with >12° terrain slope, 

as these can be assumed to belong to the stream bank and hence riparian zone even if not vegetated. 

These thresholds were based on field observations. 

 

Figure 5. Mapping riparian zone extent from the LiDAR derived DTM, slope, PPC and 

streambed layers. The slope layer is used as a backdrop. (a) Buffers and mapping of 

streamside woody vegetation with more than 40% plant projective cover; (b) Mapping of 

stream banks based on slope; (c) Mapping of riparian zone extent adjusted based on 

elevation in relation to the streambed; (d) Adjusting riparian zone edges based on PPC. 

 

Gaps enclosed by the streambed and with PPC > 40% and bank slope > 12° were also assumed to 

be part of the riparian zone (Figure 5(b)). Those riparian elements, including objects with >40% PPC, 
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>12° bank slope and gaps were merged and those objects not in contact with the streambed were 

omitted. Elevation differences between the streambed and the external perimeter of the riparian zone 

provided very useful information for mapping riparian zone extent to ensure riparian zones do not 

extend into non-riparian areas in hilly landscapes. Based on field observations, a DTM value of 5 m 

above the streambed was set as the maximum elevation for riparian zones within a distance of 150 m 

from the streambed using relational topological features between objects and classes (Figure 5(c)). 

Riparian canopy vegetation extending beyond the edge of the bank top till provides riparian zone 

functions in terms of habitat and corridor continuity. Therefore, riparian canopy along the external 

perimeter was included as part of the riparian zone when PCC was > 60%. This threshold was based 

on field measurements of PPC within the riparian zones. The shrinking algorithm was used for this 

process (Figure 5(d)). 

Figure 6. Example of streambed and riparian zone classification for an area with a railway 

crossing the stream. (a) Classification issues of the stream and riparian zone because of 

distinct elevation and slope changes caused by the railway crossing; (b) Improved 

classification where the railway crossing has been classified based on distinct  

elevation differences. 
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Through the implementation of the rule set, streambed and riparian zone classification issues were 

recognized in areas with wide stream crossings such as some bridges and railway crossings  

(Figure 6(a)). A characteristic of all crossings within the study area was an elevation increase along the 

stream centerline, e.g., where bridges were constructed across the streams. These local but significant 

changes in the elevation of the streambed were isolated by applying a chessboard segmentation with an 

object size of 1 to convert the stream centerline into individual pixels after the initial multi-threshold 

segmentation to classify the streambed (Figure 4(a)). A spectral difference segmentation of the stream 

centerline with a maximum elevation difference of 2 m using the DTM layer was applied to merge 

sections of the stream centerline with similar elevation. Neighboring image objects, i.e., pixels because 

of the chessboard segmentation applied, were merged if the difference between their mean elevation 

was below 2 m. Hence, sections of the stream centerline exhibiting distinct elevation change, e.g., 

where bridges were crossing the streams, ended up with short segments compared to natural stream 

sections with limited spatial elevation differences within the study area. To separate streambed and 

riparian zone areas with and without crossings, segments with a border length of less than 80 pixels 

(80 m) were classified as crossings and subsequently merged. These crossings were not taken into 

account for the following streambed and riparian zone classification (Figure 6(b)). 

2.6. Validation 

The field measurements of streambed and riparian zone widths were used for validation of the 

GEOBIA classification results. The validation was performed using scatter plots and calculating the 

related coefficient of determination (R
2
) and root mean square error (RMSE). A total of 35 field 

measurements of streambed and riparian zone widths were used for the validation of the classification. 

3. Results and Discussion 

Substitution of most of the time and power consuming segmentation and object growing processes 

with the pixel-based object resizing algorithm using the growing, shrinking and coating modes proved 

very effective for reducing the processing time. A significant reduction in processing time, now 

approximately 25 times faster was possible without affecting the mapping accuracies. Also, tiling of 

the study area was not necessary anymore compared to the approach of Johansen et al. [8], which 

required multiple tiles to be developed and processed individually because of the use of chessboard 

segmentations producing very large numbers of objects. Reducing the number of tiles or eliminating 

the need for tiling and stitching processing avoids errors in the classification due to biases along the 

tiling edges and intensive post-processing [42]. The new approach developed was also found suitable 

for application in urbanized, agricultural and forested areas. The mapping results for these 

environments are presented in Figure 7. 

The comparison of field assessed streambed and riparian zone widths with those derived from the 

LiDAR data and GEOBIA showed high correlation with no distinct outliers (Figure 8). Measurements 

of streambed width were very accurately mapped, which may have been facilitated by the lack of water 

in most streams at the time of LiDAR data captured. The measurements of wider streambeds were 

mainly located within a reservoir, where the toes of the banks were poorly defined because of the very 

limited bank slopes. This added some uncertainty to the GEOBIA identification of the streambed 
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edges. LiDAR data with higher point densities may be more suitable for streams with no distinct bank 

toes to facilitate identification of detailed physical form characteristics of the stream/riparian zone 

interface to improve mapping accuracies [37]. 

Figure 7. Mapping results showing streambed and riparian zone extent with UltracamD 

image data used as a backdrop for an (a) agricultural; (b) forested; and (c) urbanized area 

depicted both without and with the classification result.  
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Figure 8. Scatter plots and trend lines comparing field and LiDAR derived (a) streambed 

width and (b) riparian zone width for 35 field sites. (a) RMSE = 3.6 m, P < 0.001;  

(b) RMSE = 3.9 m, P < 0.001. 

 

(a)       (b) 

Field and LiDAR derived measurements of riparian zone width matched up in most cases, but did 

generally show larger variation than the streambed width measurements. In the majority of cases, 

where riparian zone width was underestimated, the riparian zone had limited canopy cover appearing 

on relatively flat stream banks, such as the inside sections of meander bends (Figure 9). Because of the 

reliance on identification of bank slopes and/or canopy cover bordering the mapped streambeds, the 

rule set resulted in an underestimation of riparian zone width in some areas. This may be improved in 

future work through identification of meander bends based on the shape of the streambed and 

application of specific rule set processes for these areas to facilitate identification of riparian zone 

extent. This may be done using the DTM to identify the bank top/riparian zone external edge on the 

outside of meander bends and match this elevation level to the inside of the meander bend to delineate 

the external riparian zone edge in meander bends with limited bank slope and canopy cover [41]. 

In some situations, the riparian zone width was overestimated if dense non-riparian canopy occurred 

next to the riparian zone (Figure 9). The rule set may be improved to prevent non-riparian canopy 

cover from being mapped as part of the riparian zone, if these trees occur at a terrain elevation above 

the one identified as the bank top. If bank top identification on the one side of the stream with dense 

non-riparian canopies bordering the riparian zone is not possible, the elevation of the bank top on the 

opposite side of the stream may be used to determine whether or not to include tree canopies as part of 

the riparian zone. However, this will require complex rule set development to match two opposite 

stream bank sides, because of the non-linear shape of streams and riparian zone edges. 

4. Conclusions 

This research presented a GEOBIA approach for accurate and time-effective mapping of streambed 

and riparian zone extents in a complex rural urban environment based on LiDAR derived DTM, terrain 

slope and PPC layers as well as an additional rasterized stream centerline shapefile. To improve 
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processing power and time, the rule set relied heavily on the new pixel-based object resizing 

algorithms in eCognition 8. Through a combination of growing, shrinking and coating functions, the 

streambed and riparian zone widths were mapped with R
2
 values of 0.93 and 0.74, respectively in 

relation to field measurements. The developed rule sets also enabled processing of larger areas than 

previous research without using tiling and stitching functions. As the study area presented a number of 

different riparian environments from urban and agricultural sites to natural and hilly areas, the rule set 

may be applicable to other areas for streambed and riparian extent mapping. This is facilitated by the 

definition of variables at the beginning of the rule set, allowing a simple and fast calibration for other 

areas/conditions if needed. However, further research is required to reduce the under- and  

over-estimation of riparian zone width in areas with limited canopy cover and bank slope as well as 

areas with dense non-riparian canopies bordering the riparian zones. 

Figure 9. Example of riparian zone section (outlined in yellow) with very limited bank 

slope and canopy cover, which caused underestimation of riparian zone width in some 

areas. Non-riparian trees next to the riparian zone caused overestimation of riparian zone 

width. UltracamD image data used for illustration. 
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