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Abstract: In this study, we describe a system in which a GPS receiver mounted on the roof 
of a car is used to provide reference information to evaluate the elevation accuracy and 
georeferencing of airborne laser scanning (ALS) point clouds. The concept was evaluated 
in the Klaukkala test area where a number of roads were traversed to collect real-time 
kinematic data. Two test cases were evaluated, including one case using the real-time 
kinematic (RTK) method with a dedicated GPS base station at a known benchmark in the 
area and another case using the GNSSnet virtual reference station service (VRS). The 
utility of both GPS methods was confirmed. When all test data were included, the mean 
difference between ALS data and GPS-based observations was −2.4 cm for both RTK and 
VRS GPS cases. The corresponding dispersions were ±4.5 cm and ±5.9 cm, respectively. 
In addition, our examination did not reveal the presence of any significant rotation between 
ALS and GPS data. 
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1. Introduction 

Airborne laser scanning (ALS) has become one of the most popular methods for collecting  
three-dimensional (3D) data to construct digital terrain models (DTM), digital surface models (DSM) 
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and other end-products derived from these two main products. 3D coordinates of ALS point clouds can 
be directly georeferenced through a vector summation process, presuming that these vectors have 
already been rotated with regard to the relative orientations between target and inertial measurement 
unit (IMU) coordinates, laser and IMU units and the direction of the laser beam in relation to the  
laser unit [1]. External orientation between the platform and target coordinate system, i.e., direct 
georeferencing of the system, is solved using both GPS and inertial measurements. Because ALS 
systems include many components, accurate system calibration is necessary. System calibration 
determines the relative orientations between all of the sensors [2] and compensates for other errors that 
are typical of ALS components [3]. 

In practice, laser scanning strips of a larger scanning campaign require post-processing to ensure 
that data quality is adequate. Typically, ALS data is corrected using a strip adjustment procedure [4-6] 
that requires overlapping adjacent and across-track strips and/or ground truth information. However, 
ground truth information is needed for an absolute verification of ALS data accuracy [7]. One 
approach for improving accuracy involves direct correction of the physical calibration parameters of 
the laser scanning system; however, this approach requires knowledge of existing trajectory data 
information. An alternative solution involves estimation of a strip-wise correction of ALS data using 
ground control features; in this case, the corrections are added directly to the 3D ALS point clouds [8]. 
For example, the process of exploiting ground truth information can involve comparison to different 
reference surfaces [9-11] as well as to ALS-specific ground control targets that are validated in 
engineering scale mapping applications [12]. Additionally, the utility of tacheometer and real-time 
kinematic (RTK) point measurements and pavement markings as ground truth information for ALS 
systems have been investigated [13-15]. 

Currently, GPS can be accessed in real time using carrier-wave interferometry (RTK measurements) 
to obtain centimeter-precision positions. Easy visibility to most of the sky is required such that at least 
five satellites are almost continuously in view. Therefore, urban canyons or forests may be obstacles to 
collecting accurate GPS measurements. Despite occasional blockages, existing software is able to 
provide positions using reference objects in the landscape. The RTK technique presupposes the use of 
a base station in a known location, thereby allowing the roving GPS receiver to be corrected in real 
time. Alternatively, one can subscribe to a virtual reference station (VRS) service that conceptually 
provides the same information for a computationally constructed base station, which is based on a 
network of stations in known locations that are close to the roving user. The advantage of the VRS 
service is that base stations are not needed, and thus ground control points are not needed near 
measurement areas. The quality of GPS measurements is affected by errors in estimating the satellite 
clocks, ionospheric and tropospheric refraction errors, ephemeris errors, and multi-path reflections, 
providing a position accuracy of several centimeters.  

The objective of this paper is to assess the feasibility of using vehicle-borne GPS measurements to 
evaluate the correctness of ALS point cloud heights. Both mobile RTK and VRS GPS methods were 
utilized; consequently, our practical examples highlight differences and similarities between RTK and 
VRS GPS measuring methods. Roads were selected as tie features because good coverage can be 
obtained, the surfaces are approximately level and data acquisition is rapid using mobile GPS systems. 
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2. Materials  

The test area was located in Klaukkala (24°23′50″, 60°23′50″) 30 km north of Helsinki. ALS data 
were acquired in 2008 by the National Land Survey (NLS) of Finland with a minimum point density of 
0.5 points per m2. Currently, a nation-wide digital terrain model (DTM) that has an accuracy 
requirement of 30 cm is the primary product obtained from ALS data. The specified nominal 
vertical accuracy of the point data is 15 cm. The laser scan data were transformed into the  
EUREF-FIN/TM35FIN coordinate system [16] and the N2000 vertical datum using the FIN2005 geoid 
model [17]. The FIN2005 model is based on the Nordic NKG2004 geoid model. Post-processing was 
performed by the National Land Survey of Finland [18] using strip adjustment and georeferencing. 

Dual frequency Topcon HiPer Pro GPS+ receivers were used with a Topcon FC100 field computer 
and TopSurv software version 6.11.02. According to the manufacturer, the horizontal accuracy of this 
device is 1 cm plus 1 part per million (ppm) times the baseline distance, and the vertical accuracy is 
1.5 cm plus 0.5 ppm times the baseline distance. The GPS receiver was mounted on top of a vehicle. 
Figure 1 illustrates the measurement collection set-up. The 20-channel receivers tracked both GPS and 
GLONASS satellites. For RTK measurements, the same base station served the entire test area. For 
VRS GPS measurements, the GNSSnet.fi service was used. 

Figure 1. A Topcon HiPer Pro GPS+ receiver is shown on the reference point (left) and 
mounted on the top of the vehicle (right). (Photo: Panu Salo). 

 

3. Methods 

3.1. GPS Vehicle Installation  

The GPS antenna was attached to the roof rack of a vehicle as illustrated in Figure 1. The height of 
the antenna from the road surface was measured, accounting for the effect of the weights of the driver 
and passengers. The antenna height above the road surface was accounted for during GPS processing; 
therefore, the output referred directly to the road surface, and comparison with ALS point data can be 
performed directly. 

To find the distance between the GPS receiver and the road surface, the GPS receiver was mounted 
temporarily at the top of the measuring rod. The measuring rod with the attached GPS was moved 
close to each vehicle tire and leveled for each measurement. GPS measurements were thus obtained 
from different sides of the vehicle; the length of the measuring rod was subsequently subtracted from 
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the GPS height values, and the average height was calculated to determine the height of the road 
surface. This method assumed that the road is close to a plane. In the next step, the GPS receiver was 
mounted on the roof rack of the vehicle. The receiver was centered relative to the four tires, and the 
distance between the road surface and GPS antenna was determined by subtracting the previously 
measured height of the road surface from the GPS observation reported for the position on the roof 
rack. Later, this distance was utilized when all of the observed, moving GPS measurements were 
referenced to the road surface. The method used to measure the distance between the road surface and 
the antenna is illustrated in Figure 2. 

Figure 2. Determination of the distance between the road surface and the GPS antenna. 
The height level of the road was measured close to each tire. These four measurements 
were averaged to obtain an estimate for the general level of the ground surface. Next, this 
height value was subtracted from the observed height value of the GPS receiver mounted 
on the top of the vehicle.  

 

If the vehicle is not level during data acquisition, a small error is generated, due to the drop in the 
GPS observation directly downwards relative to the GPS height calibration. In these cases, the angle of 
the vehicle should be taken into account when determining the corrected heights. However, the road 
slopes in our test area were not steep enough to require this kind of correction.  

3.2. GPS System Measurements 

GPS measurements were collected as the vehicle was driven along the test roads. The distribution of 
the roads used for measurement collection is illustrated in Figures 3 and 4. The weather during 
measurement collection was clear. Testing occurred during the winter season, and the temperature was 
−20 °C; however, the majority of the road surfaces had negligible or no snow cover.  

GPS height 
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Interpolated 
ground height

Estimated correction 
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Figure 3. Virtual reference station (VRS) GPS observations along the test area roads. Left: 
The complete test area. The VRS virtual reference station was provided by Geotrim Oy 
(GNSSNet.fi). Right: A detailed view from the test area (the area marked with a square in 
the left image). GPS observations are illustrated with black crosses, and airborne laser 
scanning (ALS) points near GPS observations are represented by green dots. 

    

Figure 4. Real-time kinematic (RTK)  GPS observations along the test area roads. Left: 
The complete test area. The RTK reference station is marked with a triangle. Right: A 
detailed view from the test area; the location of the detailed view is marked with a square 
in the left image. GPS observations are illustrated with black crosses, and ALS points near 
GPS observations are represented by green dots. 

    

During GPS data acquisition, measurements were collected using the “fixed” mode. In the “fixed” 
mode, the GPS delivers centimeter-level positioning precision if the integer estimate of the ambiguity 
search succeeds. The speed of the vehicle was maintained at approximately 30 km/h to achieve the 
desired point density. When the receiver dropped out of “fixed” mode, the vehicle was stopped until 
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“on-the-fly” (OTF) re-initialization was achieved. This type of difficulty occurred only for VRS 
measurements, and the test area was measured twice using VRS. However, the busiest road was not 
measured with VRS GPS because it was not safe to stop the vehicle to wait for re-initialization. Using 
RTK, the complete test area was measured once without stops. A total of 1,589 points were collected 
using the base station (RTK) mode, and 2,183 points were collected using VRS mode; each set of data 
points corresponds to a driving distance of about 15 km. 

3.3. Comparison of Laser Point Clouds and GPS Observations 

Both laser scanning and GPS devices create 3D point clouds. These data sets have practically no 
points that exactly correspond with each other. Therefore, we interpolated ALS points to achieve better 
correspondence with GPS points. The interpolation method (Figure 5) utilized weighted averages 
based on the distances from the four nearest ALS points (Equation (1)): 
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where ALS
ih  is the height of an interpolated ALS point to which we compare the GPS height, ALS

ijh  are 

the heights of nearby ALS points, and ( )ALS
ij

GPS
i x,xd  are the distances between GPS and ALS points.  

N is the number of laser points used, and i and j are the GPS point and ALS point indices, respectively. 

Figure 5. Interpolation using four ALS points (green) to attain points corresponding with 
GPS observations. 
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The test area was also divided into five sub-areas for more detailed examination (Figure 6). Only 
sub-areas four and five had excellent satellite visibility. In areas one, two and three, trees and buildings 
occasionally reduced satellite visibility. Particularly in the case of VRS GPS measurements, these 
visibility obstacles caused a few gaps in data collection when the receiver dropped out. 

Figure 6. ALS data were evaluated within five sub-areas due to their different characteristics. 

 

4. Results and Discussion  

Overall, when RTK and VRS measurements were compared with ALS points, the results were 
notably similar (Table 1). Comparisons of the results of each measurement mode to ALS suggest that 
the overall shift between the data sets was −2.4 cm. The identical mean results were surprising because 
other researchers have indicated that reproducible 1.5–3.5 cm GPS height accuracies are obtainable 
(e.g., [19]). In our test case, VRS measurements exhibited more deviation than did RTK-derived 
measurements and thus also included larger gross errors. 

Table 1. Overall height differences of interpolated laser points and GPS observations. 

Interpolation  Height differences (cm) 
No. of pts Mean Dispersion Max. Min. 

RTK–ALS 1,589 −2.4 ±4.5 30.1 −35.9 
VRS–ALS 2,183 −2.4 ±5.9 36.4 −41.4 

In Tables 2 and 3, each sub-area is examined separately for RTK and VRS modes, respectively, and 
both similarities and differences between sub-areas are observed. For areas one and four the mean 
differences between the methods are similar. Satellite visibility in these areas was adequate, providing 
good satellite geometry and accuracy. For area five, the results from both methods were similar. 
However, the results from areas two and three had noticeable differences; these areas also exhibited 
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the largest standard deviations, indicating that the accuracy of the GPS measurements was reduced. 
The high level of agreement between RTK and VRS observations is also illustrated in Figure 7; in this 
figure, only the corresponding points that had a distance of 30 cm or less were included. Therefore, 
some gaps are visible in areas where driving trajectories differ by more than 30 cm. 

Table 2. Height differences between RTK GPS observations and interpolated laser points. 

Test  
area 

No. of  
RTK pts 

Height differences (cm) 
Mean Dispersion Max. Min. 

Area 1 630 −4.0 ±3.8 11.4 −24.3 
Area 2 340 −4.0 ±5.5 8.5 −35.9 
Area 3 311 −1.1 ±3.9 30.1 −23.0 
Area 4 162 2.4 ±3.8 20.0 −9.5 
Area 5 146 0.6 ±2.0 6.7 −4.8 

Table 3. Height differences between VRS GPS observations and interpolated laser points. 

Test  
area 

No. of  
VRS pts 

Height differences (cm) 
Mean Dispersion Max Min 

Area 1 761 −4.0 ±4.5 29.5 −22.6 
Area 2 363 −5.5 ±5.2 14.4 −32.3 
Area 3 458 −2.9 ±7.6 36.4 −41.4 
Area 4 365 2.4 ±4.0 13.7 −9.5 
Area 5 236 1.0 ±3.9 11.1 −20.3 

Figure 7. Visualization of height differences between VRS GPS and RTK GPS 
measurements. Points were included only when the distance between corresponding points 
was less than 30 cm. 
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If only numerical values are considered, the results may indicate that a slight rotational difference 
exists between ALS data and GPS observations. Areas one and two have negative height differences, 
whereas areas four and five, which are located on the opposite side of the test area, have positive 
values. However, this straightforward conclusion is not necessarily the correct one. Figure 8 illustrates 
the distribution of height differences between RTK GPS measurements and interpolated ALS points, 
and Figure 9 illustrates the corresponding case of VRS GPS observations and interpolated ALS points. 
However, there is no clear pattern that confirms a possible rotation although the noise increases in 
some parts of the test area. The largest dispersions in the sub-areas were ±5.5 cm in the case of RTK 
GPS and ±7.6 cm in the case of VRS GPS. In this case, the ALS data was well prepared, georeferenced 
and of good quality. Therefore, our analysis did not reveal significant need to correct the data when the 
final product, a DTM with an accuracy of 30 cm, was considered. The analysis also demonstrated that 
mobile vehicle-based GPS measurements along the road network can be used to evaluate the 
correctness of ALS point cloud heights. The expected accuracy of GPS in the vertical direction is close 
to 2 cm when measurement conditions are good, which limits the evaluation accuracy. 

Figure 8. Visualization of height differences between RTK GPS measurements and 
interpolated ALS points. 

 

There are several advantages of using the methods described in this study: GPS data acquisition is 
relatively easy to perform, the road networks are easily accessible, the instrumentation is relatively 
inexpensive, the GPS systems can be rapidly set up, and these systems produce a considerable amount 
of reference information. The numerous observations permit robust comparisons and provide 
information about possible internal problems with ALS data. Therefore, this method provides a 
feasible alternative to current methods for collecting ground control data. Currently, ground control 
data is principally collected via manual measurements of several relatively small control areas using 
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the campaign area, which may be an obstacle to obtaining sufficient information in some remote areas. 
In addition, satellite visibility may be an obstacle to obtaining sufficient information in urban areas or 
dense forests. A single GPS measurement can include errors; based on satellite geometry conditions, 
erroneous observations can sometimes be detected. However, in the case of mobile GPS measurements, 
repeating measurement trajectories can yield valuable information about their accuracy.  

Figure 9. Visualization of height differences between VRS GPS measurements and 
interpolated ALS points. 

 

5. Conclusions 

We tested the use of vehicle-mounted RTK and VRS GPS positioning for the evaluation of the 
correctness of ALS data. The road network in the test area was measured with both vehicle-based GPS 
equipment and ALS. When the complete test area was included, the mean height difference between 
ALS data and GPS observations was −2.4 cm, and the same result was achieved using either RTK or 
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VRS GPS data exhibited slightly more dispersion than RTK GPS data. These discrepancies were 
distributed evenly over the test area, and, therefore, we were not able to detect any significant rotation 
between ALS data and GPS observations. 

The maximum difference of the mean error between RTK- and VRS-based comparisons within a 
single sub-area was 1.8 cm (Test area three). In this sub-area, satellite visibility problems caused gaps 
in acquired data, especially for VRS GPS. In the best cases (Test areas one and four), the mean 
difference between the two GPS measurement methods was zero. It can be concluded that satellite 
visibility is one of the main concerns affecting accuracy when GPS observations are used as reference 
data. The positioning accuracy of a vehicle is known to be improved when GPS devices are used in 
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conjunction with IMU and odometers; however, IMU is notably expensive. In our test setup, only GPS 
receivers were included. Our method has the advantages of using a relatively inexpensive system, easy 
access to the road network, rapid setup, and the amount of generated data. In areas having non-optimal 
satellite visibility, redundant observations are recommended. This redundancy can be achieved by 
revisiting known benchmarks or measuring the same roads repeatedly. 

In our test case, the reference measurements using either RTK or VRS GPS were sufficiently 
accurate for the evaluation of the correctness of ALS data heights. The vertical accuracy requirement 
for ALS data is 30 cm; according to our analysis, this accuracy requirement was fulfilled well. 
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