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Abstract: Grasslands hold varied grazing capacity, provide multiple habitats for diverse 
wildlife, and are a key component of carbon stock. Research has indicated that grasslands 
are experiencing effects related to recent climate trends. Understanding how grasslands 
respond to climate variation thus is essential. However, it is difficult to separate the effects 
of climate variation from grazing. This study aims to document vegetation condition under 
climate variation in Grasslands National Park (GNP) of Canada, a grassland ecosystem 
without grazing for over 20 years, using Normalized Difference Vegetation Index (NDVI) 
data to establish vegetation baselines. The main findings are (1) precipitation has more 
effects than temperature on vegetation; (2) the growing season of vegetation had an 
expanding trend indicated by earlier green-up and later senescence; (3) phenologically-tuned 
annual NDVI had an increasing trend from 1985 to 2007; and (4) the baselines of annual 
NDVI range from 0.13 to 0.32, and only the NDVI in 1999 is beyond the upper bound of 
the baseline. Our results indicate that vegetation phenology and condition have slightly 
changed in GNP since 1985, although vegetation condition in most years was still within 
the baselines.  
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1. Introduction  

Grasslands are economically essential for achieving higher agricultural productivity as they hold the 
largest grazing capacity in the world [1]. In addition, grasslands are ecologically important because 
they provide multiple habitats for diverse wildlife [2] and play an important role in carbon stock [3]. 
Research has indicated climate impacts on grasslands (e.g., [4,5]), which affect agricultural productivity, 
wildlife habitats, and carbon stocks. At the same time, mixed grasslands in Canada are experiencing 
increased frequency of extreme weather events [6] such as drought and floods. In addition, climate 
modeling projects that the precipitation pattern in Canadian prairie may be subject to change in the 
future [7]. Under such circumstances, the grazing capacity and carbon stock capacity of Canadian 
prairie may be subjected to change, and wildlife may have to undergo migration, adaptation, or even 
extinction. Therefore, it is essential to understand how vegetation in Canadian prairie responds to 
climate variation in order to come up with adaptations to deal with climatic variation.  

Grasslands National Park (GNP), located in the southern Canadian prairies and the northern portion 
of the mixed grass prairie of the northern Great Plains, is an important gene pool of wildlife and a sink 
of carbon dioxide [8]. GNP is at the northern edge of the continental distribution of C4 species [9], 
and it has been conserved since 1984 with few anthropogenic effects [10]. Considerable research has 
been conducted in GNP. Using remote sensing techniques, C4 species cover [11], biophysical 
parameters [12,13] and spatial and vertical heterogeneity [2,14], as well as CO2 exchange rate [15] 
have been estimated. These studies have shown the promise of using satellite imagery to study vegetation 
in GNP. However, relatively little research has focused on climate effects on vegetation in GNP.  

Weather has moderate effects on the seasonal and annual variation of Net Primary Productivity 
(NPP) and spatial biological heterogeneity in GNP [2]. It was asserted that vegetation vigor 
significantly increased from 1985 through 2006 in the Northern Great Plains, except for sparse 
vegetation regions [16]. In addition, predictions from the CENTURY model indicate that the stability 
of the vegetation community in GNP was affected by precipitation variability [9]. These studies 
indicate climate effects on vegetation growth in GNP. But little research was found to 
comprehensively investigate how vegetation in the mixed grass prairie responds to climate change, 
which is important for coming up with adaptations to maintain wildlife habitat.  

Normalized Difference Vegetation Index (NDVI) is a good indicator of various vegetation 
biophysical parameters, including biomass, green leaf area index, percent green cover [17], and net 
primary production [18], as well as fraction of absorbed photosynthetically active radiation [19]. NDVI 
also demonstrates strong linear relationships with environmental variables, such as temperature and 
precipitation, under various environmental circumstances [20]. NDVI data have been widely used to 
study the temporal response (e.g., [21,22]) and spatial pattern (e.g., [23,24]) of vegetation to climate 
fluctuations. NDVI data have also been used to explore trends of vegetation (e.g., [25–27]) under 
climatic variation. In addition, previous studies showed that NDVI could be quantified to measure the 
deviation of vegetation condition from the normal conditions [16,28,29]. In summary, NDVI can be 
used to study vegetation response to climatic variation at a range of time and spatial scales [20]. 

In this paper we examine the impacts of climatic variation on vegetation productivity in GNP, 
quantified using NDVI, and establish the NDVI baselines. Prior to these analyses, the capability of 
NDVI as an indicator of vegetation productivity is evaluated using aboveground biomass measurements. 
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In addition, intra-annual relationships between NDVI and climate variables, including temperature and 
precipitation, are quantified, and variation of growing season in response to climate change is 
investigated. 

2. Field Site and Data  

2.1. Study Area 

This study was conducted in the west block of GNP (49.10°N, 106.89°W), which is located in 
southern Saskatchewan, Canada (Figure 1). The landscape in GNP is characterized by upland prairie, 
which makes up approximately 70% of the total area, broad valley, and badland. On the upland, the 
dominant grass species are needle-and-thread grass (Stipa comata Trin. & Rupr.), blue grama grass 
(Bouteloua gracilis (HBK) Lang. ex Steud.), and western wheatgrass (Agropyron smithii Rydb.). Sparse 
shrubs are also present. In the valley, western wheatgrass and northern wheatgrass (Agropyron 
dasystachym) are dominant, along with higher densities of shrubs and occasional trees. Natural fire 
was almost eliminated from the area and no prescribed burning has occurred since 1980s [10]. 
Seventy-one bison, including 60 calves, were introduced to a large area (181 km2) in the west block of 
GNP in 2006 for conservation purposes. Light to moderate grazing has much fewer effects on 
vegetation productivity than climate during 1986–2005, which was indicated by the research 
conducted in GNP and its surrounding area where light to moderate cattle grazing history extends for 
at least 100 years [30]. The study period of this study is 1985–2007. It only had light grazing for 2006 
and 2007 and grazing impacts would not be significant. The changes of vegetation condition in the 
study area during the period of 1985–2007 were mainly caused by climatic variation.  

GNP is located in a dry and cold steppe climate region. During the period of 1971–2000, the 
average low temperature in January is −22 °C and average daily July temperature is 28 °C with 
extremes exceeding 40 °C. The mean annual temperature is 3.8 °C. The averages of the annual total 
precipitation are 300–400 mm a year, while they are less than 100 mm in drought years. Rainfall 
during evening storms in May and June accounts for most of the precipitation. As a result, low 
moisture availability is the dominant climatic feature of the area [10], but growth rates can be high 
when soil moisture is sufficient [10]. 

2.2. Data  

NDVI, biomass, and climate data are used in this study. The NDVI data were extracted from 
Canada-wide 10-day Advanced Very High Resolution Radiometer (AVHRR) 1 km spatial resolution 
composites. The composites were processed via the New Geocoding and Compositing System 
(GEOCOMP-n) [31,32] by the Manitoba Remote Sensing Centre, Canada. Compared to the old 
compositing system, the GEOCOMP-n system produces higher level products with improvements on 
geocoding, inter-sensor calibration, atmospheric correction, bi-directional reflectance distribution 
function (BRDF) correction, and identification and removal of cloud contamination [32]. The NDVI 
composites used were from April 1st to October 31st during the period of 1985 to 2007 and were 
produced from the imagery of AVHRR onboard the National Oceanic and Atmospheric 
Administration (NOAA) 9, 11, 14, 16, 17 and 18 satellites. The biomass data were obtained by drying 
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fresh green biomass for 48 h at 60 °C in an oven. The fresh aboveground biomass was harvested from 
the sampling sites shown in Figure 1. At each sampling site, biomass was clipped within a 20 × 50 cm 
quadrat at 20 m intervals over two 100 m long transects crossing at right angles in 2003 to 2005. 36, 
48, and 72 samples were collected in mid June, late June, and early July in 2003, respectively. 132 and 
36 samples were collected in mid June and late June in 2004, respectively. 168, 36, and 156 samples 
were collected in mid June, late June, and mid July in 2005, respectively.  

Climate data used are daily temperature and precipitation from 1985 to 2007 in Val Marie, a 
weather station about 1 km away from the study area.  

Figure 1. Current holding of the west block of GNP and the distribution of the centers of 
biomass sampling transects in 2003 to 2005. (The star in the Canada map marks the 
geographic location of GNP).  

 

3. Methods 

3.1. Applicability of AVHRR/NDVI Data  

Negative values in the extracted NDVI data were removed as such values are certainly too low to 
reflect vegetation. Representativeness of the NDVI data regarding biomass of the sites was 
investigated prior to the weather data and NDVI baseline analyses. Whether variations of NDVI 
respond to actual variations of vegetation cover in semiarid areas is debatable, due to seasonal 
variations in atmospheric water vapor [33], atmospheric aerosol content [34], and large areas of bare 
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soil [35,36]. Orbital drift and sensor changes also exert certain effects on time series AVHRR NDVI 
datasets [37]. Hence, the first step of this study is to verify the capability of AVHRR/NDVI data to 
monitor vegetation productivity in GNP, although the promise of using 10 day AVHRR 1 km NDVI 
data in GNP and the northern Great Plains has already been shown [2,16]. The collected biomass data 
from all sampling sites were averaged during a 10 day period to match the compositing period of 
AVHRR imagery. Also, NDVI data extracted for all sampling sites were averaged based on each  
10 day period during which biomass data were collected. Finally, the averaged aboveground biomass 
and NDVI data were plotted to investigate the representativeness of the NDVI data regarding biomass 
of the sites, and the sample NDVI values were compared to mean NDVI values from the entire study 
area to assess the representativeness of the sample sites for the study area as a whole. 
3.2. Vegetation Phenology 

The curvature-change rate method developed in [38] was used to estimate vegetation phenology, 
namely green-up, peak growth, and senescence in our study. The method was chosen due to its ability 
to handle multiple growth cycles and its lack of arbitrarily defined thresholds to identify phenological 
transition dates. 

3.3. Relationships between NDVI and Climate Variables 

In order to investigate intra-annual NDVI-temperature and NDVI-precipitation relationships, 
temperature was averaged and precipitation was accumulated based on particular time intervals 
(Table 1) designed to accommodate a range of potential lag effects of environmental variables on 
NDVI. The first and last NDVI data used in the correlation analysis were phenologically-tuned, which 
means they were determined by onset of green-up and end of senescence. While averaging temperature 
and summing precipitation, a few values were removed that had at least three consecutive days missing 
data within a 10 day composite period. Finally, the effects of temperature and precipitation on NDVI 
were determined based on their correlations at the different time intervals. 

Table 1. The time intervals during which precipitation is accumulated and temperature is 
averaged (0 indicates the current 10 day period, 1 indicates the first previous 10 day period, 
2_1 indicates two periods prior to one period prior, etc.) (Adapted from [39]).  

Duration 
Lag 

0 1 2 3 4 
1 0 1 2 3 4 
2 1_0 2_1 3_2 4_3 5_4 
3 2_0 3_1 4_2 5_3 6_4 
4 3_0 4_1 5_2 6_3 7_4 
5 4_0 5_1 6_2 7_3 8_4 

To find the time period over which temperature and precipitation most affect vegetation growth in 
GNP, correlation of NDVI in the current 10 day period (one period refers to 10 days hereafter) was 
measured with respect to temperature and precipitation within different 10 day periods, first, involving 
the current period, then the first, second, third, and fourth previous period, respectively (as shown in 
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the first row in Table 1). Second, NDVI in the current period was measured with respect to 
temperature and precipitation within 20 days periods, initially, covering the first previous period to the 
current period, then two periods prior to one period prior, three periods prior to two periods prior, and 
five periods prior to four periods prior (second row in Table 1). This same approach was repeated for 
30 day periods, 40 day periods and 50 day periods (row 3–5 in Table 1). 

3.4. Trend Detection  

The non-parametric Mann-Kendall test (M-K) has been widely used for trend detection of normally 
or non-normally distributed time series in environmental sciences [40]. It can be applied to detect the 
trends of vegetation phenology, annual NDVI, mean temperature, total precipitation, and monthly 
NDVI. For monthly NDVI trends, it was applied to every month from April to October.  

Taking NDVI as an example, given the annual NDVI time series NDVI1, NDVI2 …, NDVIn are 
sequential data values and n (23 in this study) is the data set record length, then the M-K test statistic S 
is given by the formula: ∑ ∑      (1) 

In this expression,  and  are the mean annual growing season NDVI values, and  

   1    0 0   01   0    (2) 

The variance of S is computed as:         (3) 

The test statistic Z is calculated as: 

   0 0     0
   0      (4) 

The statistical trend of mean NDVI is evaluated using the Z value. A negative (positive) Z value 
indicates a downward (upward) trend, and a zero Z value means that the time series data have no trend 
of change. The significance of the detected trend was tested based on 0.05 and 0.10 significance levels. 

3.5. NDVI Baselines 

Statistically, values beyond two standard deviations of the mean can be defined as anomalies [41]. 
Regarding AVHRR NDVI, a 0.5 standard deviation value was used to define baselines by Thaim [42], 
however, it was considered to be too low to highlight the sensitive areas [43]. A two standard deviation 
value was used to create NDVI baselines for the Northern Great Plains and define the NDVI 
anomalies [16]. Thus, two standard deviations were also used in this study to establish NDVI baselines 
in GNP. Annual NDVI baselines were established by subtracting two standard deviations from mean 
NDVI value of 1985–2007. The same method was used to create monthly NDVI baselines from April 
to October. 
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4. Results and Discussion 

4.1. Applicability of AVHRR NDVI  

The averaged dry biomass and NDVI from the sampling sites and the mean NDVI in the study area 
are shown in Figure 2. Biomass and NDVI demonstrated clear inter-annual consistency indicated by 
the larger amount of dry biomass and the corresponding higher NDVI values in 2003 and 2004 and the 
smaller amount of biomass and lower NDVI in 2005. Within each year, the variations in the biomass 
are fairly well represented by the changes of NDVI. In addition, NDVI from the sampled area fairly 
well represents the mean NDVI in the study area. The seasonal and inter-annual consistency of NDVI 
and biomass support the common use of NDVI to study vegetation response to climate variation [44,45].  

Figure 2. Biomass versus NDVI averaged across the specific sampling sites and the mean 
NDVI averaged across the entire west block of GNP from mid-June to mid-July in 2003, 
2004, and 2005 (The error bars of NDVI are shown with 1 stand deviation). 

 

4.2. Relationships between NDVI and Climate Variables 

The intra-annual relationships between NDVI and temperature and precipitation at various lags are 
shown in Figure 3. The mean temperature in the current period shows the most significant effect on 
NDVI with an r value of 0.63 (P = 0.000), followed by the mean temperature during the previous two 
periods (r = 0.62) (Figure 3(a)). This finding is consistent with the assertion of [9] that seasonal 
temperature has strong impacts on productivity of grass in GNP based on the prescribed temperature 
trends in the CENTURY model. Precipitation during the 50 day span ending with the current period 
(“4_0” in Table 1) has the strongest correlation with NDVI in the current period, indicated by the r 
value of 0.69 (P = 0.000) (Figure 3(b)). This is consistent with the finding of [39] that precipitation and 
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NDVI in the central Great Plains of North America are strongly correlated at a certain temporal scale. 
The 40 day influence lag of precipitation and non-lag effect of temperature on NDVI indicate that the 
effect of precipitation lasts much longer than that of temperature in GNP.  

Figure 3. Intra-annual relationships between (a) NDVI and temperature, and (b) NDVI 
and precipitation. 

 
(a) 

 
(b) 
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0.43 0.01  0.19   (r2 =0.30; n=23; P<0.05)   (5) 

where  is phenologically-tuned mean annual NDVI;  is mean temperature (°C); and  is the 
accumulated precipitation (mm) throughout the growing season, considering the lag effects described 
above;  is the base-10 logarithm transformed precipitation; and n (23) is the number of years. 

As stated in the description of the study site, climate variation is the major contributor to inter-annual 
NDVI variation, because the effects of grazing and fire are negligible during the study period. But 
temperature and precipitation can only explain 30% of the inter-annual variations of NDVI. The 
unexplained portion of the inter-annual variation might be accounted for by variations of some other 
environmental variables, such as soil moisture, which is controlled by precipitation [46], wind [47], 
topography [48], and soil type and humus in soil [23].  

The multiple regression analysis indicates that the co-effects of temperature and precipitation on 
inter-annual variation of NDVI in GNP are statistically significant. Spearman correlation analyses were 
also implemented to investigate the effects of temperature and precipitation separately. The results show 
that the effect of temperature on the inter-annual NDVI variation is not significant (P > 0.10), while the 
impact of precipitation is significant (P < 0.05). The finding that precipitation is more important than 
temperature on inter-annual variability of vegetation productivity in GNP is in agreement with the 
findings of [9] based on the manipulated climate scenario in the CENTURY model. It is also supported 
by the assertion of [49] that vegetation growth in northern semi-arid mixed grassland is primarily 
constrained by soil moisture, which is highly determined by precipitation [45]. Soil moisture or 
evapotranspiration data, despite the fact that they are not regular observational data in weather 
networks, can be used to further investigate the impact of climate variation on vegetation productivity 
in semi-arid mixed grassland.  

4.3. Trends of Phenology  

The results of the trend analyses on green-up, peak growth, and senescence are demonstrated in 
Table 2. The negative Z value of green-up indicates that vegetation in GNP has trended to start growing 
earlier from 1985 to 2007. This green-up trend is consistent with more general conclusions that the 
growing season start is trending earlier at higher northern latitudes [50,51]. The earlier green-up can be 
explained by the increased winter temperatures in southern Canada [52].  

The positive Z value shows that peak growth was delayed at the 0.10 significance level. Senescence 
also had a delayed trend. The increased annual maximum temperature [52] may account for the 
delayed peak growth, because high maximum temperature can stunt vegetation development. The 
increased minimum temperature [52] delayed the occurrence of frosts, which help explain the delayed 
trend in senescence.  

Table 2. The trends of green-up, peak growth, and senescence indicated by the Z values 
during the period of 1985–2007 in GNP. 

Phenology Green-up Peak Growth Senescence 
Z value −0.79*  1.75* 0.16* 

* indicates significance at the 0.10 level. 
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4.4. Trends of NDVI, Temperature, and Precipitation  

The results of the M-K test on annual NDVI, mean temperature, total precipitation throughout the 
growing season, and monthly NDVI are shown in Table 3. During the time period of 1985–2007, 
annual NDVI had an increasing trend indicated by the positive Z value (0.26). Both annual temperature 
and precipitation demonstrated an increasing trend indicated by the positive Z values of 0.03 and 0.08, 
respectively. The trend of temperature is significant at the 0.05 level, while the precipitation is 
significant at the 0.10 level. The increased mean temperature during the growing season is consistent 
with the fact that annual mean temperature increased from 1900 to 1998 in southern Canada [51]. The 
increasing trend of precipitation is consistent with the finding of [52,53] that precipitation in Canadian 
prairies has increased. The increasing trend of annual NDVI can be accounted for by the increased 
temperature and precipitation.  

The positive Z values indicate that monthly NDVI in April, May, August, September and October 
all show increasing trends, which are statistically significant at the 0.10 level. The slightly increased 
monthly NDVI can be explained by the earlier green-up and the later senescence, which were driven 
by increased temperature and precipitation.  

Table 3. The trends of annual NDVI, temperature, and precipitation throughout the growing 
season, and monthly NDVI from April to October indicated by the Z values during the 
period of 1985–2007 in GNP.  

Variables Temperature Precipitation 
NDVI 

Annual Apr May Jun Jul Aug Sept Oct 

Z values 0.03** 0.08* 0.18* 0.03* 0.08* 0.18* 0.13* 0.08* 0.03* 0.03* 

** and * indicates significance at the 0.05 and 0.10 level respectively. 

4.5. NDVI Baselines  

The baselines of annual NDVI and monthly NDVI from April to October and the years in which 
NDVI were out of baselines are listed in Table 4. The baseline of annual NDVI ranges from 0.13 to 
0.32. The largest baseline range (0.12–0.40) was observed in June, followed by July and August, while 
the smallest baseline range (0.06–0.20) occurred in October. In 1986 and 2000, monthly NDVI values 
in April are below the low limit of the baseline. 1999 was the only year in which monthly NDVI in 
May to July and annual NDVI are beyond the upper baselines. Other NDVI and monthly NDVI values 
were all within the baselines. The anomalies of monthly NDVI in April of 1986 and 2000 may be 
explained by the cold events in the winters of 1985–1986 and 1999–2000. The occurrence of NDVI 
anomalies in 1999 may be accounted for by the lag effect of anomalous warming associated with the 
largest El Niño/Southern Oscillation (ENSO) phenomenon observed last century during the period of 
June 1997 to May 1998 [20,54]. However, the relationship between NDVI anomalies and ENSO 
events requires further study to draw any firm conclusion. The multiple temporal scales of the impact 
of temperature and precipitation as well as extreme climate events (e.g., ENSO) on vegetation 
conditions could be further investigated with longer time series. 
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Table 4. The baselines of monthly and annual NDVI and years out of baselines from 1985 to 2007. 

NDVI Baselines Years out of Baselines 
Time Period Low Limit Upper Limit Below Low Baseline Above Upper Baseline

April 0.02 0.22 1986, 2000 / 
May 0.09 0.30 / 1999 
June 0.12 0.40 / 1999 
July 0.13 0.39 / 1999 

August 0.08 0.34 / / 
September 0.07 0.27 / / 

October 0.06 0.20 / / 
Annual 0.13 0.32 / 1999 

5. Conclusions 

The comparisons between Normalized Difference Vegetation Index (NDVI) and biomass indicate 
that Advanced Very High Resolution Radiometer (AVHRR) 1 km spatial resolution NDVI data are 
suitable for monitoring vegetation condition in Grasslands National Park. The mean temperature in the 
previous 10 day period shows the second greatest impact on NDVI variations. Precipitation has 
stronger effects on NDVI than temperature with a lag of 40 days. Temperature and precipitation 
account for 30% of inter-annual variations in NDVI. However, measured separately the influence of 
precipitation is statistically significant, while the effect of temperature is not. Trend analyses indicate 
that vegetation growing season had an increasing trend from 1985 to 2007 with an earlier green-up and 
later senescence. Concurrently, peak growth has a trend of starting later. Phenologically-tuned annual 
NDVI demonstrated an increasing trend. There was a significant increasing trend for both annual 
temperature and precipitation, which accounted for the increasing trend of annual NDVI. Monthly 
NDVI demonstrated an expanding trend in each month from April to October.  

The annual AVHRR NDVI baselines range from 0.13 to 0.32. Under climate variation, annual 
NDVI in most years of 1985–2007 are within the baselines, and the only exception is 1999. Monthly 
NDVI baselines from April to October were also established and most monthly NDVI are within the 
baselines. The exceptions are monthly NDVI in April of 1986 and 2000, which are below the 
minimum baselines, and monthly NDVI in May to July in 1999, which are above the maximum 
baselines.  

This study demonstrates the successful application of AVHRR NDVI products on climate change 
studies in northern mixed prairie. By comparing retrieved NDVI values from AVHRR composites to 
the created NDVI baselines, park managers are able to evaluate the climatic effects on vegetation in 
every month for any year, and thus adjust corresponding conservation plans (e.g., prescribed fire or 
grazing) to minimize the effects. The approaches used in this study can be applied to other areas to 
investigate vegetation response to climate variation.  
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