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Abstract: Mapping the spatial distribution of plant species in savannas provides insight 
into the roles of competition, fire, herbivory, soils and climate in maintaining the 
biodiversity of these ecosystems. This study focuses on the challenges facing large-scale 
species mapping using a fusion of Light Detection and Ranging (LiDAR) and hyperspectral 
imagery. Here we build upon previous work on airborne species detection by using a  
two-stage support vector machine (SVM) classifier to first predict species from hyperspectral 
data at the pixel scale. Tree crowns are segmented from the lidar imagery such that crown-level 
information, such as maximum tree height, can then be combined with the pixel-level 
species probabilities to predict the species of each tree. An overall prediction accuracy of 
76% was achieved for 15 species. We also show that bidirectional reflectance distribution 
(BRDF) effects caused by anisotropic scattering properties of savanna vegetation can result 
in flight line artifacts evident in species probability maps, yet these can be largely 
mitigated by applying a semi-empirical BRDF model to the hyperspectral data. We find 
that confronting these three challenges—reflectance anisotropy, integration of pixel- and 
crown-level data, and crown delineation over large areas—enables species mapping at 
ecosystem scales for monitoring biodiversity and ecosystem function. 

Keywords: species mapping; SVM; crown segmentation; CAO; Carnegie Airborne 
Observatory; Kruger National Park; South Africa  
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1. Introduction 

Savannas harbor spatially complex assemblages of vegetation that are mediated by an array of 
biotic and abiotic factors including plant competition, fire, herbivory, soils and climate [1–4]. Mapping 
the distribution of species abundances across spatial scales relevant to these processes is requisite to 
understanding their role in shaping and maintaining savanna biodiversity. Remote sensing continues to 
increase in importance in providing the spatial information needed to quantify and monitor spatial and 
temporal variation in savanna vegetation, but few approaches have yielded detailed data on species 
occurrence and distribution. Nevertheless, high spatial resolution airborne imaging spectrometers and 
Light Detection and Ranging (LiDAR) sensors are promising in this regard because they allow detailed 
spectral and structural analysis of vegetation at large scales [5–9].  

Airborne imaging spectroscopy has recently been used to discriminate different tree species, which 
can serve as the starting point for mapping spatially explicit patterns of biodiversity in the context of 
environmental controls. Cho et al. [6] used the spectral angle mapper (SAM) classifier to minimize 
intraspecific spectral variability to discriminate among South African savanna tree species, while 
Naidoo et al. [10] integrated hyperspectral and LiDAR measurements using the Random Forests 
approach to improve savanna species identification. Elsewhere, the support vector machine (SVM) 
classifier has been applied to hyperspectral and LiDAR data to predict tree species in deciduous [7] 
and tropical forests [11]. The SVM classification technique has been increasingly applied to 
classification of airborne hyperspectral imagery [12–14], where its higher accuracy compared to 
traditional techniques (e.g., maximum likelihood, neural networks, decision tree classifiers) stems from 
a lower sensitivity to high dimensionality (i.e., the Hughes effect) [15]. These and other studies clearly 
indicate the value of SVM classification and of hyperspectral and LiDAR measurements, yet three 
issues continue to impact the accuracy of airborne species mapping at large ecosystem scales  
(e.g., >10,000 ha): anisotropy of land surface reflectance, delineating tree crowns over large areas, and 
integration of pixel-level with crown-level data.  

The reflectance properties of tree canopies vary with view angle and sun position (anisotropy), and 
the mathematical expression of these properties is known as the bidirectional reflectance distribution 
function (BRDF) [16–20]. BRDF effects can either be treated as noise or as additional information, 
depending on the application [21–23]. In the context of species or land cover classification from 
spectral imagery, BRDF effects are often considered noise due to the variation in reflectance across an 
image (i.e., cross-track brightness gradients), even if the cover type is constant. This is a particularly 
important issue with airborne data when multiple flight lines are mosaicked into a single scene, which 
is often necessary for mapping at larger spatial scales. BRDF models aim to correct for this effect by 
normalizing each reflectance sample (pixel) to a common view and solar geometry by modeling the 
light scattering and shadowing occurring within each sample. For example, MODIS multispectral and 
albedo products are first corrected using the Ross-Li model, a geometric-optical, kernel-based 
approach [24,25]. Yet the effects of BRDF on the accuracy of species predictions derived from 
hyperspectral data are unknown, since few studies have applied such anisotropic BRDF corrections to 
airborne hyperspectral imagery [26–28] due to the additional viewing and solar angle data required for 
each reflectance pixel and the added complexity of calibrating the kernel coefficients. 



Remote Sens. 2012, 4 3464 
 

 

Another challenge to mapping species at ecosystem scales is the segmentation and extraction of 
thousands or potentially millions of polygons, or tree crown objects, from imagery. Previous 
species classification studies report higher accuracies at the crown-level compared to the  
pixel-level [11,29], yet training/validation crowns are typically manually delineated, making mapping 
over large geographic areas impractical. Automated crown segmentation has the potential to facilitate 
species mapping on a crown-by-crown basis at ecosystem scales over tens of thousands of hectares. 
However, tree segmentation using spectral data can be problematic in savannas because small trees can 
have similar LAI to that of shrubs or dense herbaceous plants [30,31]. This distinction also assumes a 
clear definition of shrub vs. tree; although this is primarily a matter of ecological definition, of which 
there are several (here we define a tree as greater than 1.5 m in height and greater than 5 cm in stem 
diameter). LiDAR-based segmentation instead uses vegetation height to detect crown edges and is thus 
far less susceptible to LAI-related issues. Moreover, LiDAR segmentation allows for extraction of 
crown-level structural information, such as tree height, which is beneficial for separating species in 
different size classes. The typical constraint to LiDAR segmentation is that LiDAR data is rarely 
simultaneously collected with hyperspectral data due to cost and complexity.  

Yet integration of crown-level structural characteristics with pixel-level species detection presents a 
third challenge for traditional classification methods. Previous studies integrating hyperspectral and 
LiDAR data have used pixel height along with spectral data for species classification [10,32]. Yet the 
pixel size of airborne data is typically smaller than most tree crowns, leading to pixel heights varying 
greatly within a tree canopy. Maximum height of the crown (MH) can instead be used to mitigate 
pixel-level variance in height and to discern shrubs from trees. Crown area (A), volume, and related 
allometric quantities may also be useful for discriminating among species, yet they have no  
pixel-level analog. 

Here we build upon previous savanna species classification studies in the following ways: (1) a 
stacked SVM model is used to integrate pixel-based species classification with crown-level LiDAR 
structural data; (2) an analysis of BRDF effects on species predictions results in a correction that 
enables ecosystem-scale species mapping across many airborne mapping flight lines collected over 
multiple days; and (3) an automated crown segmentation of airborne LiDAR data is used to delineate 
small, low-LAI trees as well as trees orders of magnitude larger. Our overarching goal is to integrate 
these three advances to achieve higher species mapping accuracies at ecosystem and regional scales. 

2. Methods 

2.1. Overview 

Our proposed processing flow for predicting and mapping species is shown in Figure 1. The 
methods section provides details for each step, and also for model calibration and several tests not 
illustrated in the flowchart, namely a comparison of SVM models and spatial effects of BRDF 
correction on species prediction.  
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2.2. Study Site 

Kruger National Park (KNP) (24°S, 31.5°E) is located in eastern South Africa, spanning an area  
360 km north-south and 70 km east-west (Figure 2). KNP is roughly equally split into granite substrates 
in the west and basalt substrates in the east, with granites weathered to sandy, nutrient-poor soils and 
basalts weathered to clay-rich, primarily smectitic soils [33]. The climate of KNP is mostly semi-arid 
with mean annual temperature and precipitation of 22 °C and 550 mm·year−1, respectively, and an 
average potential evaporation of 7 mm·day−1 [2]. Precipitation ranges from ~350 to 500 mm·year−1 in the 
north to 500–700 mm·year−1 in the south, with a similar east-west gradient in southern KNP. Five 
study areas were flown to cover KNP’s major vegetation types, geology, topography, and climatic 
gradients. Field inventory data of individual trees were then collected within each area to inform and 
validate airborne species prediction (see Field Data Collection below).  

Figure 2. Map of airborne study areas (hatched polygons) in Kruger National Park,  
South Africa.  

 

2.3. Airborne Data Collection  

The Carnegie Airborne Observatory (CAO) Alpha system [2] collected discrete-return LiDAR data 
and hyperspectral imagery in April–May 2008. For the LiDAR a pulse repetition frequency of  
50 kHz was used to generate three-dimensional maps of tree canopy structure at 1.12 m laser spot 
spacing (aircraft altitude = 2,000 m). Flights were planned with 100% repeat coverage, and therefore 
LiDAR point density averaged two points per spot. LiDAR spatial errors were less than 0.20 m 
vertically and 0.36 m horizontally [34,35]. A woody canopy height map was computed by subtracting 
a ground DEM (classified from LiDAR last return elevation) from a canopy surface DEM (first return 
elevation). A physical model was used to calculate both DEMs using the Terrascan/Terramatch 
(Terrasolid Ltd., Jyväskylä, Finland) software package. Ancillary information necessary for BRDF 
correction (i.e., view zenith angle, solar zenith angle, and relative azimuth angle) were calculated for 
each pixel using the LiDAR data and an onboard GPS-IMU (Global Positioning System-Inertial 
Measurement Unit).  

The hyperspectral data were collected using a modified version of the Compact Airborne 
Spectrographic Imager (CASI-1500), with custom anti-reflective lens coatings to decrease stray light 
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and to boost SNR, a high-throughput read-out to lower integration times, and a VNIR cooling system 
to increase sensor stability [34]. The sensor consisted of 72 bands from 385 to 1,054 nm at 1.12 m 
spatial resolution (co-aligned with the LiDAR). Here we define the visible portion of the spectrum 
(VIS) as 450–650 nm and the near-infrared portion (NIR) as 750–1,050 nm. Surface reflectance was 
derived from the radiance data using the atmospheric correction software, ACORN 5 BatchLi (Imspec 
LLC, Palmdale, CA, USA). ACORN used a MODTRAN look-up table to correct for Rayleigh 
scattering and aerosol optical thickness. 

2.4. Field Data Collection 

Field inventory data were collected in 2009 within the five overflight areas to inform and validate 
airborne species identification. Individual tree crowns (n = 729, Table 1) were identified for species, 
located with a hand-held GPS unit (GS50 Leica Geosystems Inc., Norcross, GA, USA), and measured 
for basal diameter (cm), crown diameter (m), and height (m). The target species shown in Table 1 were 
collected across as many sites as possible, with most species present at two or more sites. An 
additional 124 circular field plots of 30 m diameter were used to measure the abundance of each 
species, but these plots were not used in calibration or validation of the species classifiers since trees 
were not individually located within the plots. 

Table 1. Summary of field data collected to calibrate and validate the airborne species 
prediction models. From left to right: woody plant species, family, number of field-identified 
crowns, total sample size (in pixels) of airborne data (hyperspectral and LiDAR) available 
per species, and min-max ranges of field-measured basal diameter (cm), crown diameter (m), 
and height (m).  

Species Family 
Tree 

Crowns
Pixels 

Basal D 
(cm) 

Crown 
D (m) 

H (m) 

Acacia nigrescens Fabaceae 45 806 8–72 2–17 3–34 
Acacia tortilis Fabaceae 38 564 5–57 3–17 2–13 

Combretum apiculatum Combretaceae 60 365 2–49 2–11 2–9 
Combretum collinum Combretaceae 29 174 2–24 2–8 1–6 

Combretum hereoense Combretaceae 36 346 2–32 1–7 1–8 
Combretum imberbe Combretaceae 65 3,693 7–135 3–28 5–22 

Colophospermum mopane Fabaceae 44 542 5–96 1–13 2–18 
Croton megalobotrys Euphorbiaceae 12 114 7–90 2–9 2–6 

Diospyros mespiliformis Ebenaceae 31 1,425 16–182 4–28 4–26 
Euclea divinorum Ebenaceae 50 587 1–37 2–9 1–6 

Philenoptera violacea Fabaceae 44 1,397 6–109 2–18 0–19 
Spirostachys africana Euphorbiaceae 26 618 5–53 4–15 2–12 
Salvadora australis Salvadoraceae 26 298 3–45 2–14 1–7 
Sclerocarya birrea Anacardiaceae 73 1,469 4–87 4–20 6–15 
Terminalia sericea Combretaceae 48 408 1–43 2–13 2–11 

Other  106 1,306    
Total  729 13,998    
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The species and GPS locations were the only field data used to train the airborne species classifiers, 
although height and the other field structural measurements demonstrate the maximum size class 
reached by each species in the calibration/validation dataset (Table 1). Spectral data were extracted 
from the field-identified crown polygons and filtered to select pixels with NDVI ≥ 0.5 and mean NIR 
reflectance ≥ 20%. The NDVI filter was used to exclude soil and grass, and the NIR filter excluded 
heavily shaded samples. Only crowns with three pixels passing both filters were used as model 
calibration data, which are shown in Table 1. The resulting set of crowns was then grouped into 
species classes with a minimum of 25 crowns each. Crowns not belonging to one of these species were 
grouped together into a class labeled “other”. The two exceptions were Acacia burkei and Acacia 
nigrescens Lannea schweinfurthii, which were grouped with and Sclerocarya birrea, respectively, 
instead of “other”, due to similar foliar characteristics and canopy structure. 

2.5. Crown Segmentation 

Crown segmentation was performed using the eCognition (Definiens Developer 8.7) software 
package, with the following customized “region growing” algorithm and a LiDAR top-of-canopy, 
vegetation height map as input. In the first segmentation step a pixel was classified as a “crown seed” if 
both of the following conditions were met: (1) its height > 0.5 m; (2) the surrounding pixels were of 
similar height. The second criterion was satisfied if the height coefficient of variation (CV) of 
neighboring pixels was below a given threshold (CV < 0.3). CV was computed for each pixel as the 
standard deviation of the height of the eight neighboring pixels, divided by the height of the center 
pixel. A pixel was classified as an “edge” if h > 0.5 m but was above the height CV threshold. The next 
steps were to merge all neighboring seed pixels into crown objects, grow each crown object by one pixel 
but only into edge pixels (to prevent merging of trees), and split oblong crowns with roundness > 0.6. 
These threshold values were iteratively developed until the automatically generated object outlines 
matched field-verified crown outlines visually delineated in the field. The final crown objects were 
labeled as “tree crowns” if their maximum Hobj was > 1.5 m or otherwise as “shrubs”. The projected 
crown area (m2) and maximum height (m) were calculated for each tree crown in eCognition. 

2.6. BRDF Correction Model 

The BRDF correction model used here was adapted to suit airborne hyperspectral data from the 
BRDF model initially developed for the MODIS reflectance/albedo product, the “Ross Thick, Li 
Sparse reciprocal combination”, hereafter referred to as the Ross-Li model [16,24,36]. Like the 
MODIS Ross-Li model, we used a semi-empirical, kernel-based model derived from radiative transfer 
approximations within a vegetation canopy. Our model is similarly composed of two kernels, a 
geometric scattering kernel (F1) and a volume scattering kernel (F2); however, the drastically different 
spatial resolution of airborne data compared to MODIS lead to the primary deviation from the Ross-Li 
model: the use of the Li-dense reciprocal kernel to compute F1 (rather than Li-sparse). Preliminary 
testing of all four combinations of Ross-thin, Ross-thick, Li-sparse, and Li-dense showed that Li-dense 
with Ross-thick best reproduced target nadir spectra when given off-nadir spectra as input. This is 
supported by the physical consideration of individual leaves and branches within a 1.12 m pixel, which 
are likely to mutually shadow each other, thereby warranting the assumptions made in the Li-dense 
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kernel. Despite the low leaf area index (LAI) in savannas relative to forests, Ross-thick, which 
assumes LAI >> 1, always predicted more accurate spectra than Ross-thin (LAI << 1). Thus, the 
modeled surface reflectance R was computed for each band as: , , , , , ,  (1)

where θs is the solar zenith angle (radians), θv is the view zenith angle (radians),  is the relative 
azimuth angle (radians), F1 is the Li-dense kernel, F2 is the Ross-thick kernel, and ci are constants 
inverted from measurements, discussed below (where c0 represents the isotropic reflectance). The 
kernels were computed from [24,37] (with the reciprocal modification to the Li kernel) as:  1 cos sec secsec sec 2 1 sin cos sec sec  

cos tan tan sinsec sec  tan tan 2 tan tan cos  cos cos cos sin sin cos  tan tan  43 1cos cos 2 cos sin 13 

(2)

The values for the parameters h/b and b/r (object shape and height) set to 2.0 and 10.0 after iterative 
testing demonstrated these values minimized the residual difference between test and predicted spectra. 
A multiplicative model was used to compute the final BRDF-corrected reflectance, ρc, by multiplying 
the observed reflectance, ρ, by the ratio of the modeled reflectance at the reference geometry (i.e., 
nadir view and roughly the mean solar zenith angle across all flight lines of 40°) to the modeled 
reflectance at the observed geometry: 40°, 0, 0, , , ,  (3)

The BRDF model (Equation (1)) constants c1–c3 were calibrated for each reflectance mosaic using 
several thousand samples randomly selected throughout the mosaic. The reflectance mosaic was first 
classified into the following light scattering classes (based on NDVI and NIR filters): well-lit 
vegetation, shaded veg, grass, soil, other (e.g., water), and clouds. A separate set of the three BRDF 
model constants were then calibrated for each scatter class and waveband. To test the hypothesis that 
minimizing BRDF effects would dampen intra- and inter-flight line reflectance artifacts in the species 
predictions, only spectral data (no LiDAR) were used to train and compare SVM models with and 
without BRDF-corrected input. 
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2.7. SVM Model Testing, Calibration, and Validation 

We chose support vector machines (SVM) as the classification method for our analysis due to their 
superior performance in comparison with other classification methods (e.g., maximum likelihood, 
neural networks) [11,38]. SVM is a non-parametric classifier which has gained popularity in the 
machine learning and remote sensing communities [39] due to its ability to efficiently handle large 
input space and its relative insensitivity to the Hughes phenomenon [12]. This method divides classes 
in hyperspace using hyperplanes fit to the training dataset. Because classes are rarely linearly separable 
in the original feature space, the data are transformed into a kernel feature space of higher 
dimensionality. We used the radial basis function (RBF) kernel due to its good performance compared 
to other kernel functions [11] and the low number of parameters which must be fit. The equation for 
the RBF kernel is as follows: , 2  (4)

where ,  is the distance between points  and  in feature space, and  is the kernel width 
parameter which controls the tradeoff between over- and under-fitting. A second parameter, C, must 
also be optimized which controls the tradeoff between complexity of decision rule and frequency of 
training error [40]. These parameters are fit through an exhaustive grid search; the fitted values of the 
parameters are those which produce the best cross-validated classification accuracy. All SVM 
calculations were performed using the “e1071” package [41] of the R statistical software [42]. 

Five SVM models were tested, two single-level SVM models and three stacked (two-level) SVM 
models, in order to separately quantify effects from including height and aggregating species 
predictions at the crown level. Stacked generalization [43], or “stacking”, is a method of classification 
wherein the output of one classification is used as the input for a second classification. Here we present 
a modified stacked classification method, in which we aggregate the results of a hyperspectral-based, 
pixel-level species classification with LiDAR-derived, crown-level structural information (maximum 
height and projected area).  

Each model was run 100 times and the overall accuracy of crown predictions was estimated each 
time by five-fold crown-level cross-validation. In the validation procedure, one fifth of the crowns 
were removed from the training data to make the test crowns, the model was trained using the 
remaining four fifths of the crowns, and predictions were made for the test crowns. This is repeated 
five times such that all crowns were predicted using 80% of the crowns. The overall accuracy is the 
percentage of crowns correctly classified. 

Single-level SVM models:  

(1) S: An SVM was performed on image pixels using spectral data only. Each pixel was assigned 
a probability of belonging to each of the classes. Crown identities were predicted by averaging 
class probabilities over all pixels in a crown and taking the class with the highest probability 
(n = 14,998 pixels and 72 spectral bands as input variables). 

(2) S + H: An SVM was performed on image pixels using spectral and LiDAR height data. This is 
the same as Model 1, but with the additional variable of pixel height. Crown identities were 
predicted in the same way as in Model 1. 



Remote Sens. 2012, 4 3471 
 

 

Stacked SVM models: 

(3) S: An SVM was first performed on image pixels using only spectral data, as in Model 1. The 
average probabilities of all pixels in a crown were then used as the input variables to a second 
SVM (n = 729 crowns and 15 class probabilities as input variables to the second SVM).  

(4) S + MH: The same procedure as in Model 3, with the additional variable of maximum crown 
height added to the crown-level SVM. 

(5) S + MH + A (final model): The same procedure as in Model 4 with the additional variable of 
crown area in the crown-level SVM. Crown area was defined as the number of pixels 
belonging to a tree crown, before filtering based on NDVI and mean NIR reflectance. 

In constructing this set of models, we were interested in a few key issues. First, we sought a way to 
integrate information contained in the multiple pixels belonging to a single crown. Preliminary 
analysis showed that using the mean spectra over all pixels in a crown as input into a crown-level 
SVM had poor performance (approximately 54% overall accuracy)—much worse than predicting the 
pixels individually and then averaging the results for each crown. We also found that using the 
averaged class probabilities of a pixel-level SVM as input into a crown-level SVM performed well as a 
way of combining data at the crown-level. We therefore included Model 3 in the set for comparison 
with Model 1. Second, we wanted to determine the best way to incorporate the LiDAR height data. We 
included height data in two different models: as a pixel-level and a crown-level variable (Model 2 and 
Model 4, respectively). At the crown level, we chose maximum height over average height because it 
less dependent on canopy shape, and preliminary analysis showed less variance in maximum height 
than mean height among our species. Lastly, we compared these models with the “final model”  
(Model 5), which incorporated pixel-level information from the spectral data as well as the crown-level 
variables of maximum height and crown area. 

3. Results  

3.1. SVM Classification of Woody Plant Species 

We found that using spectral data in a stacked SVM (Model 3) yielded higher accuracy than when 
crowns were predicted using the pixel-level results from a single SVM (Model 1); see Figure 3. This 
indicates that no accuracy is lost when combining pixel-level information at the crown-level in this 
way; in fact, accuracy increased significantly (P < 0.001, paired t-test). The LiDAR height data were 
found to increase model accuracy whether used as a pixel-level or a crown-level variable. However, 
the gain in accuracy compared to an equivalent model using spectral data only was greater when 
adding maximum crown height as a crown-level variable (a 3.3% increase in accuracy from Model 3 to 
Model 4) than when adding pixel height to the pixel-level SVM (a 1.4% increase in accuracy from 
Model 1 to Model 2). The full model (Model 5) had the highest average overall accuracy (76.7%, 15 
species classes) of all the models, which incorporated spectral data, maximum crown height, and 
crown area. It performed significantly better than the next best model (Model 4) (P < 0.001, paired  
t-test), which did not include crown area. Comparison of the producer and user accuracies for each 
species is shown in Figure 4. 
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Figure 3. Overall prediction accuracies for each of the five models. S = spectral data,  
H = pixel height, MH = crown maximum height, A = crown area. Model 1 = S (pixel-level), 
Model 2 = S + H, Model 3 = S (crown-level), Model 4 = S + MH, Model 5 = S + MH + A.  

 

Figure 4. (a) Prediction accuracies by species for final SVM model (post-BRDF, spectral 
(b) Natural abundance of each species, as a fraction of total number of tree crowns across 
124 plots. 
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3.2. Spatial Performance of Automated Crown Segmentation and Species Predictions 

The tree crown polygons derived from the automated crown segmentation of the LiDAR data were 
found to be well registered to the corresponding crowns in the hyperspectral data (Figure 5). The 
LiDAR data better resolved small trees and delineated overlapping crowns than the hyperspectral data. 
Although the smallest detectable crown in the LiDAR data was 2.2 m in diameter (two pixels wide), 
small differences in registration between the hyperspectral and LiDAR data often resulted in an 
insufficient number of samples located in crowns of this size. The threshold of at least three 
hyperspectral samples mitigated this issue but also resulted in some crowns larger than 2 m in diameter 
not being predicted. This can be seen by comparing Figure 5(b,c), where some of the smaller crowns 
with low sample sizes are predicted as “other”. Conversely, many samples passed the NDVI and NIR 
filters for vegetation and appeared pink in the false-color infrared in Figure 5(b), yet they were (correctly) 
not classified since their maximum height was below the 1.5 m threshold and thus they were not segmented 
as a tree crown from the LiDAR data.  

Figure 5. Example of species prediction method showing (a) automatically segmented tree 
crowns (yellow outlines) derived from LiDAR canopy height (in grayscale) (b) false-color 
infrared image of BRDF-corrected hyperspectral data (c) species predictions at the crown 
level using final SVM model.  
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3.3. Spectral Performance of BRDF Correction 

Variation in vegetation reflectance was observed to have a substantial BRDF component, with NIR 
reflectance of a given target tree varying by as much as 40% (relative change) between minimum and 
maximum VZA of −19° to 23° (Figure 6). VIS reflectance exhibited slightly higher sensitivity to 
BRDF effects, increasing by up to 50% over the same VZA range. After applying the BRDF model to 
adjust reflectance to nadir view angle (VZA = 0°) and 40° solar zenith angle, the difference in 
reflectance between minimum and maximum VZA dropped to less than 5% in both the VIS and NIR 
regions. The BRDF model also attenuated a cross-track artifact at the 940 nm water absorption feature, 
introduced during the atmospheric correction step.  

Figure 6. Effect of view zenith angle on reflectance. Spectra shown are for an example tree 
(a) before and (b) after applying the BRDF model for four viewing geometries (legend 
indicates view zenith angle; solar zenith angle and relative azimuth angle were 
approximately constant). 

(a) (b) 

3.4. Effects of BRDF Correction on Species Prediction  

The cross-track brightness gradients discernible in the original hyperspectral color infrared image 
(Figure 7(a)) were almost entirely absent in the BRDF-corrected data (Figure 7(b)) for any bands above 
450 nm (low signal-to-noise ratios prevented the eight bands below 450 nm from being used). Effects of 
BRDF on species prediction were evident when the predicted probability map of each species using the 
uncorrected hyperspectral data (Figure 7(c,e,g)) was compared to maps using the same model trained 
on BRDF-corrected spectra and then applied to the corrected spectra (Figure 7(d,f,h)). Of the twelve 
species classes in this test, ten had flight line artifacts detectable in the probability maps derived from 
the uncorrected spectral data (examples shown in Figure 7(c,e,g)). 
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Figure 7. Effect of BRDF correction on species prediction probabilities. The test area 
spanned 16 flight lines and is the same across all panes. (a) False-color infrared of 
hyperspectral data before BRDF correction and (b) after BRDF correction. (c–h) 
Probability maps for several example species. Species with lower mean probabilities (e.g., 
D.mes, C.her) exhibited the largest reduction in flight line artifacts post-BRDF correction, 
whereas species with higher probabilities (e.g., C.api) typically had few or no artifacts 
before or after BRDF correction. These test maps were generated using SVM Model 1 
(hyperspectral data only) to avoid confounding interpretation with additional LiDAR input. 

 

Prior to BRDF correction the probability of a given species covaried with the across-track 
brightness gradients of each flight line of the original image. Two of the species with artifacts were not 
abundant in this spatial subset and had a very low mean probability (i.e., low signal to noise ratio), yet 
the remaining eight species, including common species with high mean probabilities, exhibited 
twofold or more variation in probabilities across-track. With BRDF correction all twelve species 
classes had reduced variation, with eight species absent of flight line artifacts entirely (including three 
examples shown in Figure 7(d,f,g)). Four species classes still had artifacts but were less severe than 
prior to BRDF correction, including A.tor, C.imb, E.div, and “other”.  
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4. Discussion 

Mapping species at large scales using imaging spectroscopy requires a classifier with good 
generalization that can also handle the large dimensionality of this spectral data type [40,44]. The 
SVM is widely considered to meet these requirements in that it is reasonably resistant to over-fitting 
when given a large number of input variables [12]. The results reported here further demonstrate the 
robustness of the SVM approach with a high final overall accuracy (76%) despite the large 
dimensionality of the dataset and the low LAI of savanna trees. We note that preliminary testing 
indicated that the single largest increase in accuracy (from 65% to 71% for hyperspectral only) was 
due to increasing the training/validation sample size from 290 to 729 crowns. This suggests the SVM 
classifier remained sensitive to the Hughes effect, and we cannot rule out that further increasing the 
target sample size above 25 samples/species might increase overall accuracy.  

More broadly, we found the SVM classifier well suited as a second-level aggregator of crown 
maximum height and species probabilities, which improved accuracy between major size classes (e.g., 
shrub, dwarf tree, large tree). A second SVM allowed inclusion of tree maximum height rather than 
pixel-level height, providing an increase in accuracy from 73.8% to 76.5%, notable given that no 
additional inputs were required. However, given the additional cost and complexity of having both 
LiDAR and hyperspectral data for a given study area, we note the relative improvement over 
hyperspectral data alone was relatively minor (from 73.0% to 76.5%). Hyperspectral data enable 
species detection even in small, low LAI savanna trees because reflectance spectra capture the 
underlying differences in leaf chemistry and structure between species. Species classification with 
LiDAR alone is not feasible since many species have similar height ranges. Yet preliminary analysis 
showed crown segmentation using the LiDAR data was qualitatively more reliable, than spectral-based 
segmentation, particularly for small trees, and the final species maps presented here relied on  
LiDAR-based crown segmentation. LiDAR data also play an important secondary role in airborne 
taxonomic mapping by accurately measuring the 3-D location of each hyperspectral sample, which 
aids georectification and mosaicking of multiple flight lines of hyperspectral data. The precise viewing 
and illumination angles used during the BRDF correction of the hyperspectral data were also derived 
from LiDAR data, although this could be done without LiDAR.  

Airborne imaging spectroscopy studies vary in their approach to addressing BRDF  
effects [26–29,45,46], although they are often corrected using an empirical model (e.g., the modified 
Walthall model [46]). However, empirical models often perform poorly in the radiometrically 
heterogeneous nature of savannas (e.g., soil, grass, shrubs, trees). Another common practice is to not 
apply BRDF correction at all but to analyze individual flight lines rather than a mosaic, which prevents 
revealing the contrast along flight line boundaries but actually exacerbates BRDF effects by leaving 
flight line edges exposed. We found that prior to BRDF correction, the NIR reflectance varied by 
~40% as a function of view zenith angle, but after correction NIR varied by less than 5% between the 
minimum and maximum observed SVA (Figure 6).  

Comparison of the total accuracies for all species before and after BRDF correction (using spectral 
data only to prevent confounding effects from LiDAR) indicated nearly equivalent overall predictive 
performance (71.0% and 70.3%, respectively). Yet this general metric is not reflective of the increased 
accuracy of many individual species due to dilution from three species classes: two of the most 
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abundant species (C.api and A.nig) accounted for over 20% of the sample size, yet they did not have 
flight line artifacts prior to BRDF correction and thus had no accuracy improvement from BRDF 
correction. Given that the “other” species class is an amalgamation of many species, its accuracy had a 
negligible improvement from BRDF correction, as expected, yet accounted for 27% of the sample size 
with no change in overall accuracy. Due to these three classes, roughly half of the BRDF test sample 
size did not initially have flight line artifacts, which diluted the contribution of improved predictions of 
individual species to the overall prediction accuracy. For these reasons we conclude the post-BRDF 
visual patterns observed in the species probability maps suggests the BRDF correction is more broadly 
beneficial during large-scale prediction than that reflected by the modest increase in overall accuracy. 

5. Conclusions 

We focused on the challenges facing ecosystem-scale species mapping using a combination of 
LiDAR and imaging spectrometer data. By automatically segmenting crowns and then applying a 
stacked SVM model, we addressed the issue of incorporating variables best expressed at different 
scales (e.g., pixel vs. crown) and from different sensors. The varying anisotropic properties found in 
savanna landscapes is recognized and modeled using a semi-empirical BRDF model, adapted from the 
MODIS BRDF model for application to high resolution airborne hyperspectral data. Our results 
demonstrate the high prediction accuracy that can be achieved using a SVM classifier, and that 
application of a BRDF model to airborne spectral data can greatly reduce flight line artifacts, despite 
the spectral heterogeneity of savanna landscape. We find that confronting these three  
challenges—anisotropy, integration of multi-scale information, and crown segmentation—enables 
species mapping at ecosystem scales, a critical starting point for monitoring biodiversity and 
ecosystem function. 
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