
Supplementary Materials 

S1. Preliminary Analysis 

We conducted a series of preliminary analyses before developing a predictive model of species 

richness that only used 1.0-ha scale data. We parameterized the preliminary models with lidar and field 

data from four spatial scales: 0.01-ha, 0.04-ha, 0.25-ha, and 1.0-ha (Figure S1). The preliminary 

analysis involved three main steps: (1) fitting species richness models to the five possible predictor 

variables (MCH, SDCH, mean slope, mean elevation, mean curvature); (2) using generalized least 

squares models with or without exponential correlation structure and nugget effect to model spatially 

autocorrelated residuals when present [1–4]; and (3) testing for spatially autocorrelated residuals using 

Moran’s I [5]. 

We began with a set of four candidate models: null (intercept-only), topography (mean elevation, 

mean slope, and mean curvature), structure (mean canopy height, standard deviation of canopy height), 

and a “full” model with the terms from both the topography and structure models. We fit the models 

using both non-spatial and spatial GLS at each spatial scale separately. Spatial GLS extends OLS by 

including a covariance matrix for covariance of residuals between locations. In all but simulation 

situations [2], the covariance structure is unknown, so it is approximated by iteratively fitting the 

coefficients to the predictors and a variogram model to the residuals. The non-spatial GLS models 

were equivalent to OLS models. Briefly, the formula for GLS is: 

       (1) 

where           , σ
2
 is the variance, and Σ is the covariance matrix, and N is an i.i.d. normally 

distributed random variate with mean zero and variance of    . For comparison, the formula for OLS is: 

       (2) 

where           , σ
2
 is the variance, and I is the identity matrix. The non-spatial GLS model 

effectively simplified to an OLS model. It can be mathematically proven [3,4] that OLS provides 

unbiased estimates of GLS coefficients, but confidence intervals will be incorrect for OLS models 

when there is residual spatial autocorrelation. Our results across spatial scales follow from this fact, 

there was little difference between non-spatial and spatial GLS coefficient estimates, though spatial 

GLS models in general had wider 95% confidence intervals for coefficient estimates (Table S1). We 

detected spatial autocorrelation in non-spatial full model residuals at all spatial scales except 1.0-ha 

(Table S2). We evaluated the residual spatial autocorrelation for both non-spatial and spatial GLS 

models using Moran’s I statistic. We observed that the spatial models were sufficient to control for 

residual spatial autocorrelation in all models at all spatial scales except 0.01-ha, where all but the full 

model still had residual autocorrelation after fitting an exponential correlation structure. We performed 

model averaging [6,7] based on small sample size Akaike’s Information Criteria (AICc) to derive model 

average coefficients, standard errors, and confidence limits for the coefficient estimates (Table S3). 
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Figure S1. Species Richness in the Barro Colorado Island 50-ha Forest Dynamics Plot, Panama: (a) 0.01-ha; (b) 0.04-ha; (c) 0.25-ha; and (d) 1.0-ha. 
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Table S1. Coefficient Estimates for species richness models. Significant terms are shown in black and non-significant terms are shown in grey. 

 

Parameter 

Non-Spatial  Spatial 

 
Estimate SE 

95% CI  
Estimate SE 

95% CI 

 Upper Lower  Upper Lower 

0.01-ha 

SDCH 0.18 0.03 0.24 0.11  0.07 0.03 0.13 0.007 

MCH −0.08 0.01 −0.06 −0.10  −0.05 0.01 −0.02 −0.08 

Elevation −0.038 0.01 −0.02 −0.06  −0.04 0.02 0.004 −0.08 

Slope 0.22 0.02 0.26 0.18  0.13 0.04 0.20 0.06 

Curvature 0.28 0.07 0.41 0.15  0.20 0.06 0.31 0.08 

Intercept 27.4 1.7 30.8 24.1  28.0 3.7 35.2 20.7 

0.04-ha 

SDCH 0.600 0.11 0.82 0.38  0.40 0.11 0.61 0.19 

MCH −0.302 0.04 −0.23 −0.38  −0.25 0.04 −0.17 −0.33 

Elevation −0.0051 0.03 0.01 −0.11  −0.054 0.06 0.07 −0.17 

Slope 0.66 0.07 0.80 0.52  0.503 0.10 0.70 0.31 

Curvature 0.847 0.39 1.62 0.07  0.76 0.35 1.46 0.07 

Intercept 58.1 5.4 68.7 44.4  59.3 9.9 78.8 39.9 

0.25-ha 

SDCH 2.32 0.466 3.24 1.41  1.68 0.45 2.56 0.79 

MCH −0.941 0.154 −0.64 −1.24  −0.95 0.16 −0.64 −1.25 

Elevation −0.097 0.094 0.09 −0.28  −0.065 0.157 0.24 −0.37 

Slope 1.022 0.232 1.48 0.58  0.991 0.278 1.53 0.45 

Curvature −0.785 2.74 4.58 −6.15  1.34 2.56 6.36 −3.68 

Intercept 127.7 16.6 160.3 95.1  127.8 25.8 178.3 77.3 

1.0-ha 

SDCH 2.77 1.15 5.02 0.53  2.75 1.14 4.99 0.51 

MCH −1.072 0.408 −0.27 −1.87  −1.09 0.412 −0.29 −1.90 

Elevation −0.313 0.519 0.05 −0.68  −0.277 0.203 0.12 −0.67 

Slope 0.418 0.519 1.43 −0.60  0.566 0.534 1.61 −0.48 

Curvature −32.7 11.16 −10.8 −54.6  −30.9 11.3 −8.78 −53.0 

Intercept 218.6 33.9 285.0 152.3  212.0 36.7 283.8 140.1 
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Table S2. Results of Moran’s I test for residual spatial autocorrelation in non-spatial and spatial GLS models of species richness 

parameterized with BCI 50 ha plot census data. 

Scale Model 
Variogram 

 Moran’s I 

 Non-Spatial  Spatial 

Range Nugget  Observed Expected SD p-value  Observed Expected SD p-value 

0.01-ha 

Null 12.2 0.231  0.0242 −0.0002 0.0004 <0.0001  0.0009 −0.0002 0.0004 0.0038 

Topography 11.2 0.207  0.0177 −0.0002 0.0004 <0.0001  0.0004 −0.0002 0.0004 0.0860 

Structure 12.1 0.244  0.0237 −0.0002 0.0004 <0.0001  0.0010 −0.0002 0.0004 0.0014 

Full 10.8 0.212  0.0158 −0.0002 0.0004 <0.0001  0.0005 −0.0002 0.0004 0.0663 

0.04-ha 

Null 23.6 0.193  0.0408 −0.0008 0.0013 <0.0001  0.0011 −0.0008 0.0013 0.1443 

Topography 17.7 0.034  0.0342 −0.0008 0.0013 <0.0001  0.0018 −0.0008 0.0013 0.0494 

Structure 31.0 0.372  0.0400 −0.0008 0.0013 <0.0001  0.0005 −0.0008 0.0013 0.3286 

Full 19.9 0.221  0.0281 −0.0008 0.0013 <0.0001  0.0010 −0.0008 0.0013 0.1632 

0.25-ha 

Null 62.5 0.180  0.0498 −0.0050 0.0063 <0.0001  −0.0028 −0.0050 0.0063 0.7255 

Topography 76.8 0.359  0.0496 −0.0050 0.0063 <0.0001  −0.0040 −0.0050 0.0063 0.8732 

Structure 75.9 0.295  0.0453 −0.0050 0.0063 <0.0001  −0.0033 −0.0050 0.0063 0.7827 

Full 81.6 0.460  0.0382 −0.0050 0.0063 <0.0001  −0.0045 −0.0050 0.0063 0.9315 

1.0-ha 

Null 80.5 0.248  0.0212 −0.0204 0.0189 0.0276  −0.0209 −0.0204 0.0189 0.9791 

Topography 5.6 0.121  −0.0048 −0.0204 0.0189 0.4114  −0.0048 −0.0204 0.0189 0.4114 

Structure 71.4 0.128  −0.0242 −0.0204 0.0189 0.0190  −0.0199 −0.0204 0.0189 0.9783 

Full 83.8 0.756  0.0067 −0.0204 0.0189 0.1551  −0.0077 −0.0204 0.0189 0.5051 
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Table S3. Multimodel Inference Table for species richness GLS models. AICc is small sample size Akaike’s Information Criterion. Models are 

ranked based on AICc. Δi is the difference in AICc from the rank 1 model and wi is the model probability given the data and set of candidate models. 

 Non-Spatial  Spatial 

Rank Model No. Parameters Log Likelihood AICc Δi wi  Model No. Parameters Log Likelihood AICc Δi wi 

1 Full 7 −15,396.1 30,806.2 0.00 1.00  Full 9 −14,930.3 29,878.6 0.00 1.00 

2 Topography 5 −15,456.7 30,923.3 117.1 0.00  Topography 7 −14,942.7 29,899.4 20.8 0.00 

3 Structure 4 −15,488.0 30,984.1 177.9 0.00  Structure 6 −14,945.3 29,902.6 24.0 0.00 

4 Null 2 −15,540.3 31,084.6 278.4 0.00  Null 4 −14,956.8 29,921.5 42.9 0.00 

1 Full 7 −4,377.3 8,768.6 0.00 1.00  Full 9 −4,281.4 8,581.0 0.00 1.00 

2 Topography 5 −4,430.2 8,870.4 101.7 0.00  Structure 7 −4,295.7 8,603.4 22.4 0.00 

3 Structure 4 −4,435.6 8,879.2 110.5 0.00  Topography 6 −4,311.9 8,637.9 56.9 0.00 

4 Null 2 −4,477.6 8,959.2 190.6 0.00  Null 4 −4,326.3 8,660.7 79.7 0.00 

1 Full 7 −716.6 1447.8 0.00 1.00  Full 9 −703.1 1,425.2 0.0 0.98 

2 Structure 4 −731.3 1470.9 23.1 0.00  Structure 7 −710.3 1,433.0 7.8 0.02 

3 Topography 5 −742.9 1496.0 48.2 0.00  Topography 6 −725.4 1,465.3 40.11 0.00 

4 Null 2 −753.0 1510.0 62.2 0.00  Null 4 −730.5 1,469.2 43.98 0.00 

1 Full 7 −170.2 357.1 0.00 0.97  Full 9 −170.0 362.5 0.00 0.96 

2 Topography 5 −176.6 364.6 7.5 0.02  Topography 7 −176.6 369.9 7.4 0.02 

3 Structure 4 −180.3 369.5 12.4 0.00  Structure 6 −178.2 370.3 7.9 0.02 

4 Null 2 −186.4 377.1 20.0 0.00  Null 4 −184.2 377.3 14.9 0.00 

Table S4. The proportion of explained variance in the non-spatial and spatial GLS models of species richness parameterized with BCI 50 ha 

plot census data. 

Scale 
R

2
 

Non-Spatial Spatial 

0.01-ha 0.06 0.05 

0.04-ha 0.15 0.14 

0.25-ha 0.31 0.28 

1.0-ha 0.49 0.49 
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We evaluated the proportion of explained variance in the full model as an upper boundary for the 

proportion of explained variance given the variables and type of model (spatial or non-spatial), at each 

spatial scale, by the proportion of predictive variance over the total variance. This is equivalent to the 

coefficient of determination (R
2
) in OLS, but for GLS there is no analytical formula for determining 

significance of R
2
. We evaluated the proportion of explained variance at each spatial scale to identify 

the scale at which the association of species richness to the lidar variables was strongest. Based on the 

preliminary analysis it was clear that species richness is associated with canopy height and terrain 

structure variables at all spatial scales, but most strongly at the coarsest scale, 1.0-ha (Table S4). The 

proportion of explained variance increased from fine (0.01-ha) to coarse (1.0-ha) spatial scale. 

S2. Leave-One-Out Cross-Validation 

The algorithm for leave-one-out cross-validation [8] is: (1) divide the data into training and testing set. 

Let N be the number of unique observations. The training set is N-1 and the testing set is 1 datum; (2) Fit 

the model to the training set and use the test datum to predict the response variable; (3) evaluate the 

difference between the observed and predicted response variable; (4) repeat for all N unique test datum. 
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