Next Article in Journal
Application of Semi-Automated Filter to Improve Waveform Lidar Sub-Canopy Elevation Model
Next Article in Special Issue
Development of a UAV-LiDAR System with Application to Forest Inventory
Previous Article in Journal
Tsunami Arrival Detection with High Frequency (HF) Radar
Previous Article in Special Issue
An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds
Article

Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing

School of Geography and Environmental Studies, University of Tasmania, Private Bag 76, Hobart, TAS 7001, Australia
*
Author to whom correspondence should be addressed.
Remote Sens. 2012, 4(5), 1462-1493; https://0-doi-org.brum.beds.ac.uk/10.3390/rs4051462
Received: 28 March 2012 / Revised: 20 April 2012 / Accepted: 4 May 2012 / Published: 18 May 2012
(This article belongs to the Special Issue Unmanned Aerial Vehicles (UAVs) based Remote Sensing)
Unmanned aerial vehicles (UAVs) represent a quickly evolving technology, broadening the availability of remote sensing tools to small-scale research groups across a variety of scientific fields. Development of UAV platforms requires broad technical skills covering platform development, data post-processing, and image analysis. UAV development is constrained by a need to balance technological accessibility, flexibility in application and quality in image data. In this study, the quality of UAV imagery acquired by a miniature 6-band multispectral imaging sensor was improved through the application of practical image-based sensor correction techniques. Three major components of sensor correction were focused upon: noise reduction, sensor-based modification of incoming radiance, and lens distortion. Sensor noise was reduced through the use of dark offset imagery. Sensor modifications through the effects of filter transmission rates, the relative monochromatic efficiency of the sensor and the effects of vignetting were removed through a combination of spatially/spectrally dependent correction factors. Lens distortion was reduced through the implementation of the Brown–Conrady model. Data post-processing serves dual roles in data quality improvement, and the identification of platform limitations and sensor idiosyncrasies. The proposed corrections improve the quality of the raw multispectral imagery, facilitating subsequent quantitative image analysis. View Full-Text
Keywords: UAV; sensor correction; radiometric correction UAV; sensor correction; radiometric correction
Show Figures

Graphical abstract

MDPI and ACS Style

Kelcey, J.; Lucieer, A. Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sens. 2012, 4, 1462-1493. https://0-doi-org.brum.beds.ac.uk/10.3390/rs4051462

AMA Style

Kelcey J, Lucieer A. Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sensing. 2012; 4(5):1462-1493. https://0-doi-org.brum.beds.ac.uk/10.3390/rs4051462

Chicago/Turabian Style

Kelcey, Joshua, and Arko Lucieer. 2012. "Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing" Remote Sensing 4, no. 5: 1462-1493. https://0-doi-org.brum.beds.ac.uk/10.3390/rs4051462

Find Other Styles

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop