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Abstract: According to literature and despite their commercial success, state-of-the-art 

two-stage non-iterative geographic object-based image analysis (GEOBIA) systems and 

three-stage iterative geographic object-oriented image analysis (GEOOIA) systems, where 

GEOOIA  GEOBIA, remain affected by a lack of productivity, general consensus and 

research. To outperform the Quality Indexes of Operativeness (OQIs) of existing 

GEOBIA/GEOOIA systems in compliance with the Quality Assurance Framework for 

Earth Observation (QA4EO) guidelines, this methodological work is split into two parts. 

Based on an original multi-disciplinary Strengths, Weaknesses, Opportunities and Threats 

(SWOT) analysis of the GEOBIA/GEOOIA approaches, the first part of this 

work promotes a shift of learning paradigm in the pre-attentive vision first stage of a 

remote sensing (RS) image understanding system (RS-IUS), from sub-symbolic statistical 

model-based (inductive) image segmentation to symbolic physical model-based 

(deductive) image preliminary classification capable of accomplishing image sub-symbolic 

segmentation and image symbolic pre-classification simultaneously. In the present second 

part of this work, a novel hybrid (combined deductive and inductive) RS-IUS architecture 

featuring a symbolic deductive pre-attentive vision first stage is proposed and discussed in 

terms of: (a) computational theory (system design), (b) information/knowledge representation, 

(c) algorithm design and (d) implementation. As proof-of-concept of symbolic physical 
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model-based pre-attentive vision first stage, the spectral knowledge-based, operational, 

near real-time, multi-sensor, multi-resolution, application-independent Satellite Image 

Automatic Mapper™ (SIAM™) is selected from existing literature. To the best of these 

authors’ knowledge, this is the first time a symbolic syntactic inference system, like SIAM™, 

is made available to the RS community for operational use in a RS-IUS pre-attentive vision 

first stage, to accomplish multi-scale image segmentation and multi-granularity image  

pre-classification simultaneously, automatically and in near real-time. 

Keywords: categorical variable, computer vision; continuous variable; decision-tree 

classifier; deductive learning from rules; Geographic Object-Based Image Analysis 

(GEOBIA); Geographic Object-Oriented Image Analysis (GEOOIA); image classification; 

inductive learning from either labeled or unlabeled data; inference; machine learning; 

physical model; prior knowledge; radiometric calibration; remote sensing; Satellite Image 

Automatic Mapper™ (SIAM™); syntactic inference system; statistical model; Strengths 

Weakness Opportunities and Threats (SWOT) analysis of a project 

 

Acronyms and Abbreviations 

AI:  Artificial Intelligence  

ATCOR: Atmospheric / Topographic Correction  

B:  (visible) Blue  

CEOS:  Committee on Earth Observation Satellites 

CV:  Computer Vision 

DN:  Digital Number 

EO:  Earth Observation 

FIEOS:  fourth-generation Future Intelligent Earth Observation Satellites 

G:   (visible) Green  

GEO:   Group on Earth Observations 

GEOBIA:  Geographic Object-Based Image Analysis 

GEOOIA:  Geographic Object-Observation Image Analysis 

GEOSS:  Global EO System of Systems 

GIS:   Geographic Information System 

GIScience:  Geographic Information Science 

GMES:  Global Monitoring for the Environment and Security 

IR:   Infra-Red 

LAI:   Leaf Area Index 

LC:   Land Cover 

LCLUC:  Land Cover and Land Use Change program 

MAL:   Machine Learning 

MAT:   Machine Teaching 

MIR:   Medium-IR 
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MXLKL:  Maximum Likelihood  

MS:   Multi-Spectral 

NASA:  National Aeronautics and Space Administration 

OO:   Object-Oriented 

OQI:   Quality Index of Operativeness 

QA:   Quality Assurance 

QA4EO:  Quality Accuracy Framework for Earth Observation 

QI:   Quality Index 

R:   (Visible) Red  

RS:   Remote Sensing 

RS-IUS:  Remote Sensing Image Understanding System 

SIAM™:  Satellite Image Automatic Mapper™ 

SURF:  Surface Reflectance 

SVM:   Support Vector Machine 

SWOT:  Strengths, Weaknesses, Opportunities and Threats analysis 

TIR:   Thermal IR 

TM:   Trademark 

TOA:   Top-Of-Atmosphere  

TOARF:  TOA Reflectance 

TOC:   Topographic Correction 

USGS:  US Geological Survey 

VHR:   Very High Resolution 

WELD:  Web-Enabled Landsat Data set project 

WGCV:  Working Group on Calibration and Validation 

1. Introduction 

This methodological work aims at one traditional, albeit visionary goal of the remote sensing (RS) 

community: the development of operational (good-to-go, press-and-go, turnkey) satellite-based 

information/knowledge processing systems (which include satellite-based measurement systems as a 

special case), capable of automating the quantitative analysis of large-scale spaceborne multi-source 

multi-resolution image databases ([1]; p. 451), in compliance with the methodological guidelines of the 

Quality Assurance Framework for Earth Observation (QA4EO) delivered by the Working Group on 

Calibration and Validation (WGCV) of the Committee on Earth Observation Satellites (CEOS), the 

space arm of the Group on Earth Observations (GEO) [2]. 

For publication purposes this theoretical contribution is split into two papers. The first paper [3] 

provides an original multi-disciplinary Strengths, Weaknesses, Opportunities and Threats (SWOT) 

analysis of state-of-the-art two-stage non-iterative geographic (2-D) object-based image analysis 

(GEOBIA) systems [4–9] (refer to Section 6 in [3]) and three-stage iterative geographic (2-D)  

object-oriented image analysis (GEOOIA) systems [4], where GEOBIA is a special case of GEOOIA, 

i.e., GEOOIA  GEOBIA (refer to Section 7 in [3]). In this SWOT analysis, a set of quantifiable 

metrological/statistically-based quality indexes (QIs) of operativeness (OQIs), suitable for the 
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assessment and comparison of RS image understanding systems (RS-IUSs), like GEOBIA and 

GEOOIA, is proposed to be community-agreed. The proposed set of OQIs includes: degree of 

automation, accuracy, efficiency, robustness to changes in the input data set, robustness to changes in 

the input parameters, scalability, timeliness and costs, refer to Section 2 in [3]. To outperform OQIs 

featured by the GEOBIA/GEOOIA systems, in compliance with the GEO-CEOS QA4EO guidelines 

and with constraints stemming from human vision, the first part of this work promotes a shift of 

learning paradigm in the pre-attentive vision first stage of a remote sensing (RS) image understanding 

system (RS-IUS), from sub-symbolic statistical model-based image segmentation to symbolic physical 

model-based image preliminary classification (pre-classification). Hence, a symbolic deductive  

pre-attentive vision first stage accomplishes image sub-symbolic segmentation and image symbolic 

pre-classification simultaneously. In fact, it is well known that the generation of a segmentation map 

from a binary mask or multi-level image (e.g., a thematic map) is a well-posed segmentation problem 

(i.e., the problem solution exists and is unique), typically solved by a computationally efficient 

 two-pass connected-component image labeling algorithm [10]. In practice, a unique (sub-symbolic) 

segmentation map can be generated from a (symbolic) thematic map, but the contrary does not hold, 

i.e., various thematic maps can generate the same segmentation map. 

About the terminology adopted in this work (refer to Section 3 in [3]), it is worth mentioning that, in 

compliance with philosophical hermeneutics [11,12], it makes a clear distinction among concepts like: 

 (Numerical, sensory) ‘data’ (observables, true facts). 

 (Sub-symbolic, quantitative, unequivocal) ‘information-as-thing’ according to the Shannon theory 

of communication [13]. 

 (Symbolic, qualitative, equivocal) ‘information-as-(an intepretation)process’, i.e., information as 

interpreted data. 

 ‘Knowledge’. In the words of philosophical hermeneutics, “there is no knowledge without both an 

object of knowledge and a knowing subject. The claim that there is absolute knowledge, or 

knowledge in itself, above and beyond concrete knowing subjects, is fantastic” [11,12]. 

In this work (refer to Section 3 in [3]): 

o Terms sub-symbolic, sensory, numerical, non-semantic, quantitative, objective, unequivocal are 

considered synonyms. 

o Terms symbolic, semantic, cognitive, categorical, ordinal, nominal, qualitative, subjective, 

equivocal are considered synonyms. 

o Synonyms of (sub-symbolic or symbolic) deductive inference are: (sub-symbolic or symbolic) 

deductive learning, top-down inference, coarse-to-fine inference, driven-by-knowledge inference, 

learning-by-rules, physical model, prior knowledge-based decision system, rule-based system, 

expert system, syntactic inference, syntactic pattern recognition. 

o Synonyms of (sub-symbolic or symbolic) inductive inference are: (sub-symbolic or symbolic) 

inductive learning, bottom-up inference, fine-to-coarse inference, driven-without-knowledge 

(knowledge-free) inference, learning-from-examples, statistical model. 

Hence, expressions like sub-symbolic/symbolic inductive/deductive/hybrid (combined deductive and 

inductive) inference are adopted in the rest of this paper, depending on whether the inference system 
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deals with, respectively, sub-symbolic continuous/discrete variables or (symbolic and discrete) 

categorical variables, refer to Section 3 in [3]. 

Stemming from conclusions of its first part (refer to Section 9 in [3]), the present second part of this 

methodological work investigates a novel hybrid (combined deductive and inductive) RS-IUS 

architecture featuring a symbolic deductive pre-attentive vision first stage. This original RS-IUS 

analysis is conducted at the four levels of understanding of an information processing system, namely 

(refer to Section 1 in [3]): (a) computational theory (system design), (b) information/knowledge 

representation, (c) algorithm design and (d) implementation. It is important to mention that, according 

to existing literature, “the linchpin of success (of an information processing system) is addressing the 

(computational) theory rather than algorithms or implementation” ([10]; p. 376) (which is in line with 

holism—the whole is greater than the sum of its parts) [14].  

As proof-of-concept of symbolic physical model-based pre-attentive vision first stage, the spectral 

knowledge-based, operational, near real-time, multi-sensor, multi-resolution, application-independent 

(general-purpose) Satellite Image Automatic Mapper™ (SIAM™) is selected from existing 

literature [15–24]. SIAM™ is termed “fully automatic” because it requires neither user-defined 

parameters nor training data samples to run. It is termed “operational” because, according to existing 

literature, all of its OQIs score high in real-world applications, including RS image classification at 

large (e.g., continental) spatial scale and fine semantic granularity (refer to Section 2 in [3]). As output 

SIAM™ automatically generates RS image segmentation maps at multiple spatial scales together with 

RS image pre-classification maps at multiple semantic granularities. 

In the RS literature, expert systems have been (almost) exclusively proposed in the attentive vision 

second-stage classification [25–34]. The sole exceptions these authors are aware of regard the physical 

model-based spectral decision-tree classifier (SPECL), implemented as a by-product in the 

Atmospheric/Topographic Correction (ATCOR-2/3/4) commercial software toolbox [35,36] for the 

estimation of biophysical variables from RS optical imagery [37,38] (for more details about SPECL, 

refer to Section 2 below). It means that, to the best of these authors’ knowledge, this is the first time a 

symbolic syntactic inference system, like SIAM™, is made available to the RS community for 

operational use in a RS-IUS pre-attentive vision first stage, to accomplish multi-scale image 

segmentation and multi-granularity image pre-classification simultaneously, automatically and in 

near real-time. 

The rest of this paper is organized as follows. Section 2 reviews the conclusions of the first part of 

this work about weaknesses of the GEOBIA/GEOOIA systems and existing alternative solutions [3]. 

Recently presented in literature [15–23], a novel hybrid RS-IUS architecture and instantiation 

employing the operational automatic near-real-time SIAM™ decision-tree preliminary classifier as its 

symbolic deductive pre-attentive vision first stage is introduced in Section 3. Section 4 selects from 

literature an application of the proposed hybrid RS-IUS implementation to provide a practical example 

of its degree of novelty [21]. Section 5, which is the core of this work, investigates the degree of 

novelty of the proposed hybrid RS-IUS architecture and instantiation at the four levels of 

understanding of an information processing system (refer to this section above) [14,21]. New 

interdisciplinary research and market opportunities opened up by the proposed hybrid RS-IUS 

implementation are discussed in Section 6. Conclusions are reported in Section 7. 
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2. Problem Recognition and Opportunity Identification 

To better deal with different applications, users and target classes, i.e., to increase its OQIs (refer to 

Section 2 in [3]), a traditional two-stage non-iterative GEOBIA architecture (refer to Section 6 in [3]) 

should rather be considered cyclic (iterative) [32]. To reach this objective, a three-stage iterative 

GEOOIA architecture, where GEOBIA is a special case of GEOOIA, i.e., GEOOIA  GEOBIA, was 

recently proposed to the RS community and implemented in a popular RS-IUS commercial software 

product [5–9] (refer to Section 7 in [3]). 

According to existing literature and despite its commercial success, the GEOBIA/GEOOIA systems 

remain affected by a lack of productivity, general consensus and research [4,33,34] (refer to Section 2 

in [3]). To explain these lacks, the SWOT analysis of the GEOBIA/GEOOIA paradigm conducted in 

the first part of this methodological work has reached the following conclusions (see Section 9 in [3]). 

(1) Popular GEOBIA and GEOOIA commercial software products, like those listed in Table 1 of [3], 

do not comply with the QA4EO requirements, where radiometric calibration of RS imagery is 

considered a pre-requisite to ensure the harmonization and interoperability of multi-source multi-

temporal observational data and derived products. By definition, radiometric calibration is the 

transformation of dimensionless digital numbers (DNs) into a community-agreed physical unit of 

radiometric measure. The relaxation of the requirement of radiometric consistency of multi-source, 

multi-temporal and multi-spectral (MS) imagery brings, as an inevitable consequence, that these  

RS-IUS commercial software products are based on (inherently ill-posed) statistical rather than 

physical models. In the MAL and RS literature it is acknowledged that, due to their inherent  

ill-posedness, inductive inference systems: (i) are intrinsically semi-automatic and site-specific and 

(ii) require prior knowledge in addition to data to become better conditioned for numerical treatment 

(refer to Section 4.2 in [3]). In practice, to become better posed for numerical treatment, any 

statistical system requires ignition of deductive inference which makes the resulting inference 

system hybrid.  

(2) In the CV literature, according to Marr “vision goes symbolic almost immediately, right at the level 

of zero-crossing (pre-attentive primal sketch) ... without loss of information” ([14]; p. 343). If this 

conjecture holds true, then the symbolic hybrid human vision system comprises a symbolic hybrid 

pre-attentive vision sub-system subjected to the following constraints (refer to Section 5 in [3]). 

(I) Symbolic pre-attentive vision is general-purpose (application-independent), parallel and rapid 

(efficient). It generates as output a (symbolic) preliminary classification (pre-classification) 

map of the input image. Hence, the symbolic pre-attentive vision first stage accomplishes 

image feature extraction (image segmentation) and image pre-classification simultaneously.  

(II) Symbolic pre-attentive semantic labels belong to a discrete and finite set of semi-concepts 

whose degree of semantic information must be superior to zero and equal or inferior to that of 

concepts detected by the attentive vision second phase. 

(III) The inverse mapping of the pre-classification map back to the input image domain generates 

a piecewise constant approximation of the input image equivalent to an edge-preserving 

smoothing filter where image details featuring high spatial-frequency components are well 

preserved. 
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To be considered inspired to human vision, an artificial vision system should be implemented as a 

symbolic hybrid inference system comprising a symbolic hybrid pre-attentive vision sub-system 

capable of complying with the aforementioned requirements (I) to (III). On the contrary, both 

GEOBIA and GEOOIA are not biologically plausible, which is in contrast with their original goal 

of attempting to replicate human vision (refer to Section 6.1 in [3]). In particular: 

 in place of a symbolic pre-attentive vision first stage capable of accomplishing the 

aforementioned requirements (I) to (III), both GEOBIA and GEOOIA adopt the same  

sub-symbolic (inherently ill-posed) statistical approach. 

 At the attentive vision second stage, both GEOBIA and GEOOIA may or may not employ 

symbolic syntactic inference. If they do not, they are fully statistical systems.   

To recapitulate, when compared to human vision GEOBIA and GEOOIA systems lack deductive 

inference mechanisms starting at their pre-attentive vision first stage. 

To outperform existing GEOBIA and GEOOIA systems, the goal of the present second part of this 

methodological work (refer to Section 1) can be reformulated as follows: provide, at the four levels of 

understanding of an information processing system, a critical analysis of a novel hybrid RS-IUS design 

and implementation, selected from existing literature [15–23], where the spectral knowledge-based, 

operational, automatic, near real-time SIAM™ preliminary classifier is adopted as its symbolic, 

deductive pre-attentive vision first stage, to comply with: 

(A) the QA4EO guidelines (refer to Section 2 in [3]),  

(B) the symbolic pre-attentive vision sub-system constraints (I) to (III) listed in this section above 

(refer to Section 5 in [3]), 

(C) the requirements specification for an RS-IUS to be considered operational. In particular, all OQIs 

featured by an operational RS-IUS must score “high” (i.e., be superior to community-agreed 

reference standards) in real-world applications, including RS image classification at large (e.g., 

continental, global) spatial scale and fine semantic granularity (refer to Section 2 in [3]). 

It is important to mention that, to the best of these authors’ knowledge, only one alternative to the 

deductive, operational, automatic SIAM™ preliminary classifier can be found in the RS-IUS 

commercial software products listed in Table 1 of [3]. This exception is represented by the spectral 

knowledge-based decision-tree classifier (SPECL), implemented as a by-product in the Atmospheric 

Correction (ATCOR-2/3/4) commercial software toolbox [35,37,38]. Although they belong to the 

same family of operational, pixel-based, syntactic inference systems, SIAM™ and SPECL are totally 

different in terms of both algorithm design and implementation. For example: 

 The SPECL class grammars consist of one single spectral rule per spectral category (surface 

type) [37], while the SIAM™ class grammars consist of logical combinations of so-called spectral 

rules with spectral fuzzy sets [17], where: (i) a so-called spectral rule defines a buffer zone of 

spectral tolerance, irrespective of the absolute intensity of spectral bands, by means of relational 

operators (<, >, ≤, ≥) between spectral bands, (ii) spectral fuzzy sets (e.g., low, medium, high) are 

extracted from spectral variables, namely, spectral bands or spectral indexes, and (iii) one class 

grammar is a combination of logical operators (AND, OR, NOT) with one or more spectral buffer 

zones and spectral fuzzy sets. 
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 The hierarchical (sorted) list of class grammars detected by SPECL includes: (1) snow/ice, (2) cloud, 

(3) bright bare soil/sand/soil/cloud, (4) dark bare soil, (5) average vegetation, (6) bright vegetation, 

(7) dark vegetation, (8) yellow vegetation, (9) mix of vegetation/soil, (10) asphalt/dark sand, 

(11) sand/bare soil/cloud, (12) bright sand/soil/cloud, (13) dry vegetation/soil, (14) sparse 

vegetation/soil, (15) turbid water, (16) clear water, (17) clear water over sand, (18) shadow, 

(19) not classified. The list of class grammars (structural knowledge, refer to Section 4.1 in [3]) 

and their order of presentation (procedural knowledge, refer to Section 4.1 in [3]) is completely 

different from SPECL to SIAM™, e.g., refer to [17]. In terms of semantic granularity SPECL is 

quite coarser (simpler) than SIAM™. The latter generates as output three standard preliminary 

classification maps at fine, intermediate and coarse semantic granularities, where a symbolic 

parent-child relationship is enforced (refer to Section 5.4 below). Depending on the spectral 

resolution of the input image, SIAM™ detects up to 95 spectral categories at fine semantic 

granularity (see Table 1 below). 

For more details about the SIAM™ input data requirements and data-derived product specifications, 

refer to Section 5.4 below.  

3. Proposed Hybrid RS-IUS Architecture Employing a Symbolic Deductive Context-Insensitive 

Pre-Attentive Vision First Stage 

Accounting for the customary distinction between a model and the algorithm used to identify 

it [14,39], an original hybrid RS-IUS architecture (model, scheme, design) was identified by one of the 

present authors starting from several RS-IUS implementations proposed by Shackelford and Davis in 

recent years [28–30], see Figure 1. In terms of induction (from true facts to generalizations) and 

deduction (from generalizations to true facts) rules of inference (refer to Section 4 in [3]), the proposed 

novel class of hybrid RS-IUSs can be summarized as follows (see Figure 2). 

A MS image enhancement phase (identified as Stage 0 (zero)), including: (a) a RS image 

radiometric calibration of DNs into top-of-atmosphere (TOA) reflectance (TOARF) or surface 

reflectance (SURF) values, where SURF is a special case of TOARF in very clear sky conditions, 

i.e., TOARF  SURF, considered mandatory in compliance with the QA4EO guidelines, and (b) an 

optional battery of stratified (driven-by-knowledge, symbolic mask-conditioned) image 

enhancement algorithms, e.g., stratified topographic correction [20],  

+ (in series with)  

Symbolic, physical model-based, application-independent, context-insensitive (per-pixel)  

pre-attentive vision first stage (preliminary classification, identified as Stage 1), provided with a 

feedback loop to feed the pre-attentive vision Stage 1 (categorical) output back to the pre-

processing Stage 0 input for stratified MS image enhancement,  

+ (in series with)  

Attentive vision second phase (identified as stage 2) comprising a hierarchical battery of stratified 

application-, sensor- and class-specific, context-sensitive, statistical model-based and/or physical 

model-based algorithms for feature extraction and one-class classification. 
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Figure 1. Data flow diagram (DFD) [40], showing processing blocks as rectangles and data 

derived products as circles, of the Shackelford and Davis stratified hierarchical fuzzy 

classification approach for high-resolution MS images of urban areas [28]. 

 

It means that the proposed hybrid RS-IUS architecture is a three-stage, stratified, hierarchical, 

hybrid, feedback RS-IUS employing a symbolic, deductive, context-insensitive pre-attentive vision 

first stage. The three stages are described below [15–23] (see Figure 2).  

1. An RS image enhancement (pre-processing) block, identified as Stage 0 (zero) to account for its 

preliminary contribution to RS data classification, considered as the core of the proposed RS-IUS 

design. By definition, a data enhancement algorithm is input with numerical (sensory) data to 

generate as output numerical data of enhanced quality, e.g., geometric and/or radiometric quality. 

By definition, a data classification system is input with sub-symbolic numerical data, e.g., an RS 

image, to provide as output a semantic labeling of the input dataset, e.g., a classification (2-D) map. 

The proposed image enhancement Stage 0 consists of two parts, the first one compulsory and the 

second part optional as described below. 

 A RS image radiometric calibration considered mandatory to accomplish the transformation of 

dimensionless DNs into a community-agreed physical unit of radiometric measure, in compliance 

with: (a) the QA4EO guidelines, where calibration and validation (Cal/Val) activities are 

considered critical to a GEO data quality assurance (QA) strategy and thus to data usability [2] 

(refer to Section 2 in [3]), (b) common knowledge in the RS community, where “the prerequisite 

for physically based, quantitative analysis of airborne and satellite sensor measurements in the 

optical domain is their calibration to spectral radiance” ([41], p. 29) and (c) the thesis that 

radiometric calibration is a necessary not sufficient condition for automatic interpretation of 

input EO imagery [15–23]. In particular, the radiometric calibration at Stage 0 is required to 
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transform DNs into TOARF or SURF values, with TOARF  SURF, the latter being an ideal case 

of the former in very clear sky conditions [42]. The requirement for RS data to be calibrated into 

TOARF or SURF values means that solving the inherently difficult-to-solve (ill-posed) 

atmospheric correction problem is considered optional, rather than compulsory. It is noteworthy 

that, among popular RS-IUS commercial software products listed in Table 1 of [3], only the 

physical model-based ATCOR-2/3/4 (where the syntactic pixel-based SPECL preliminary 

classifier alternative to SIAM™ is implemented as a by-product, refer to Section 2) considers 

radiometric calibration mandatory [35,37]. It means that the other RS-IUS commercial software 

products, including popular GEOBIA/GEOOIA systems (refer to Section 2), are based on 

inherently ill-posed, semi-automatic and site-specific statistical models, refer to Section 4.2 in [3]. 

 A feedback loop feeds the symbolic deductive pre-attentive vision Stage 1 (categorical) output 

back to the pre-processing Stage 0 input for stratified (driven-by-knowledge, symbolic  

mask-conditioned) RS image enhancement. Thus, depending on the Stage 1 output, the hybrid 

(numerical and categorical) input of Stage 0 is adjusted so as to reach a system steady-state. 

This means that the proposed hybrid RS-IUS is a feedback system. The principle of 

stratification is popular in statistics (e.g., refer to the well-known stratified random sampling 

design [43]). Its advantage is that “stratification will always achieve greater precision provided 

that the strata have been chosen so that members of the same stratum are as similar as possible 

in respect of the characteristic of interest” [44]. In other words, (inherently ill-posed) statistical 

models become better posed (conditioned, constrained) by incorporating the “stratified” or 

“layered” approach, which is typical of decision-trees [45], to accomplish driven-by-knowledge 

regularization (simplification) of the solution space. In general, “to reduce the effect of multiple 

solutions, regularization is required, which involves the introduction of additional constraints or 

the introduction of some a priori information about the expected estimates of the statistical 

variables” [37]. In common practice the statistical principle of stratification is equivalent to the 

well-known divide-and-conquer (dividi et impera) problem-solving approach [45–47]. The 

same stratification principle is exploited at the second stage of the RS-IUS instantiations 

presented by Shackelford and Davis in RS literature [28–30], see Figure 1. The “stratified” 

approach is also employed in the GEOOIA scheme (see Figure 4 in [3]) at the attentive vision 

second phase, where driven-by-knowledge class-specific image-object-based classification and 

segmentation algorithms can be iterated. For example, in the Definiens GEOOIA commercial 

software products, the stratification principle is called “class filter”, such that image objects will 

be part of the search domain, called “image object domain”, if they are classified with one of the 

classes selected in the class filter [5–8]. On the contrary, any “layered” approach is absent from 

the traditional two-stage non-iterative GEOBIA design shown in Figure 2 in [3], which is the 

reason why it is outperformed by the GEOOIA scheme [4]. A possible disadvantage of 

stratification is that identification of appropriate strata may be difficult [44]. To recapitulate, in 

agreement with a well-known divide-and-conquer problem-solving approach, Stage 0 is eligible 

for combining as input sub-symbolic sensory (numerical) data with semantic information to 

accomplish any of the following driven-by-knowledge RS image enhancement tasks.  

 Stratified RS image topographic correction (TOC). It is well known in existing literature 

that TOC is an ill-posed circular dilemma (chicken-and-egg problem): while image 
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classification benefits from preliminary TOC, the latter requires a priori knowledge of 

surface roughness which is land cover class specific. To overcome the TOC inherent  

ill-posedness, “more research regarding the use of better stratification methods” was 

strongly encouraged [48,49] and accomplished in practice via SIAM™ [20].  

 Stratified RS image co-registration between a geo-referenced master image and an input 

image, where a preliminary classification map is input to a stratified image feature 

extraction and a stratified image feature matching phase where semantic and iconic image 

features are combined according to a convergence-of-evidence approach [50]. 

 Stratified image mosaicking, e.g., refer to [19]. 

 Stratified bidirectional reflectance distribution function (BRDF) effect correction, e.g., 

refer to [35,36,38]. 

2. A symbolic, syntactic, application-independent, per-pixel (non-contextual) pre-attentive vision first 

stage, identified as Stage 1 (refer to Section 5 in [3]) [14]. Since it is pixel-based, this preliminary 

classification (pre-classification) first stage investigates spectral information exclusively, i.e., chromatic 

and achromatic (brightness) information that is the sole non-contextual level of information in a (2-D) 

image (unlike, say, texture, shape, spatial relationships between image-objects, etc.). For example, if a 

pixel’s color value is red (i.e., if a pixel’s color value is [255, 0, 0] in a standard Red-Green-Blue 

color space), that color value depends not at all on the color values of neighboring pixels (although 

the way that pixel is perceived by a human observer may change with its context). To the best of 

these authors’ knowledge, in existing RS literature there are three examples of symbolic per-pixel 

pre-attentive vision first stage implementations, including one statistical and two syntactic models.  

 In their original works Shackelford and Davis implemented the non-contextual preliminary 

classification first stage as a pixel-based, statistical, parametric, plug-in (non-adaptive to input 

data) maximum-likelihood (MXLKL) classifier [28–30]. Unfortunately, OQIs (refer to 

Section 2 in [3]) featured by an MXLKL classifier are well known to score low, in particular: 

(i) the MXLKL (Gaussian) parameters must be plugged-in (set) by a human operator based on  

class-specific (Gaussian) parameter estimation from a reference data distribution, thus 

timeliness together with costs can be high due to the collection of reference samples and (ii) 

MXLKL is typically affected by salt-and-pepper classification noise effects, which means its 

accuracy, robustness to changes in the input data set and scalability tend to be low (refer to 

Section 2 in [3]) [28–30].  

 To improve the OQIs featured by a pre-attentive vision first-stage MXLKL classifier adopted 

by Shackelford and Davis, the syntactic, operational, automatic, near-real-time, multi-sensor,  

multi-resolution, application-independent, pixel-based SIAM™ preliminary classifier has been 

proposed at the symbolic pre-attentive vision first stage of an hybrid RS-IUS in recent years  

[15–23] (for more details about SIAM™, refer to Section 5 below).  

 The sole syntactic per-pixel MS image preliminary classifier alternative to SIAM™ found in 

commercial software toolboxes is SPECL, considered as a by-product in the ATCOR-2/3/4 

[35,37], refer to Section 2. 

It has been said that, according to the Marr conjecture [14], a symbolic pre-attentive human vision 

first stage accomplishes image sub-symbolic segmentation and image symbolic pre-classification 
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simultaneously (refer to Section 5 in [3]). In the case of a RS-IUS symbolic per-pixel pre-attentive 

vision first stage, its output products, namely, semi-symbolic and sub-symbolic image-objects 

(refer to Section 1), are similar to those of a traditional two-stage non-iterative GEOBIA system, 

namely, sub-symbolic and symbolic image-objects. Their difference is twofold: (i) they are 

generated in reverse order (in GEOBIA, sub-symbolic image-object detection comes before 

symbolic image-object labeling) and (ii) the semantic level of information of semi-concepts is 

never superior to that of concepts because the latter comprise the former as a special case, i.e., the 

relation concepts  semi-concepts always holds (refer to Section 5 in [3]).  

3. An attentive vision second stage battery of stratified, hierarchical, context-sensitive, application- and 

sensor-dependent modules for class-specific feature extraction and one-class classification, 

identified as stage 2. This attentive vision second-stage stratified classification: (i) provides a 

possible instantiation of a focus-of-visual-attention mechanism to mimic that adopted by attentive 

vision in mammals (refer to Section 5 in [3]), which increases the overall degree of biological 

plausibility of the proposed hybrid RS-IUS, and (ii) allows second-stage inductive data learning 

algorithms, if any, to be better posed (conditioned) by symbolic prior knowledge (namely, 

semantic strata) stemming from the preliminary classification first stage (refer to Section 4.2 

in [3]). Context-dependent image information to be investigated at the attentive vision second stage 

on a stratified class-, sensor- and application-specific basis exclusively, encompasses: 

 texture [51],  

 morphology [52],  

 shape attributes of image-objects [25],  

 inter-object non-spatial relations (e.g., subset-of, part-of) [25–30], 

 inter-object spatial topological relations (e.g., adjacency, inclusion, etc.) [25–30], 

 inter-object spatial non-topological relations (e.g., distance, angle) [25–27], 

 inter-object temporal relations [25–27].  

An instantiation of the proposed hybrid RS-IUS architecture is shown in Figure 2, where the 

operational, automatic, near-real-time SIAM™ preliminary classifier is adopted as its symbolic 

deductive, pixel-based pre-attentive vision first stage [15–23]. In this example, where a high spatial 

resolution (<10 m) spaceborne image is selected as input, man-made objects in the 3-D imaged-scene 

(e.g., roads, buildings, impervious surfaces, agricultural fields, etc.) are expected to be visible in the (2-D) 

image. A panchromatic (PAN) image, generated as a linear combination of the input MS bands [31], is 

employed as input by the SIAM™ pre-attentive vision first stage and, if required, by the attentive 

vision second stage. For example, in line with the works by Shackelford and Davis [28–30], the image 

local areas overlapping with the SIAM™ spectral category ‘vegetation’ are classified by the attentive 

vision second stage into the LC classes ‘forest’ and ‘grassland’ by means of a stratified class-specific 

texture detector run on the PAN image, which reduces computation time. In addition, Figure 2 shows 

that an inductive piecewise-constant image segmentation algorithm (provided with no texture model) 

is run at the attentive vision second stage exclusively and selectively, to become better posed, upon the 

image local areas overlapping with the SIAM™ spectral category ‘bare soil or built-up’, where  

image-objects belonging to the target LC classes ‘roads’, ‘buildings’, and ‘impervious surfaces’ can be 
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identified by peculiar combinations of geometric properties (e.g., compactness, rectangularity, 

elongatedness, number of vertices, etc.) and spatial relationships [25,30,31]. 

Figure 2. Data flow diagram (DFD) [40], showing processing blocks as rectangles and data 

derived products as circles, of the novel hybrid three-stage stratified (driven-by-knowledge, 

symbolic mask-conditioned) hierarchical RS-IUS architecture consisting of [15–23]: 

(i) Stage 0 (zero, in dark and light blue) is a RS image pre-processing (image enhancement) 

block comprising: (a) a compulsory radiometric calibration module (in dark blue) and (b) an 

optional battery (in light blue) of driven-by-knowledge image enhancement algorithms, e.g., 

stratified topographic correction [20], image mosaicking, image co-registration, etc.; 

(ii) Stage 1 (in green) is an application-independent, context-insensitive (per-pixel), spectral 

knowledge-based preliminary classifier (e.g., implemented as SIAM™ [15–23]); it provides 

the RS image pre-processing Stage 0 with a feedback loop to accomplish stratified RS image 

enhancement; (iii) stage 2 (in red) is a battery of stratified, context-sensitive, application-, 

sensor- and class-specific feature extractors and one-class classification modules. In this 

figure, as input, a multi-spectral (MS) image featuring a fine spatial resolution  10 m is 

adopted together with its panchromatic (PAN) image brightness, so that man-made structures 

(e.g., roads, buildings) are expected to be visible, which affects the composition of the 

second-stage battery of stratified class-specific classifiers.  
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Table 1. Previously shown in [23]. SIAM™ system of systems: list of spaceborne imaging 

sensors eligible for use. 

 Legend. Y: Yes, N: No, C: Complete, I: Incomplete (radiometric calibration offset parameters are set to zero), (E)TM: (Enhanced) Thematic 

Mapper, B: Blue, G: Green, R: Red, NIR: Near Infra-Red, MIR: Medium IR, TIR: Thermal IR, SR: Spatial Resolution, Pan: Panchromatic. 

Blue columns: visible channels typical of water and haze. Green column: NIR band typical of vegetation. Brown columns: MIR channels 

characteristics of bare soils. Red column: TIR channel. 

 

SIAM™ 

system of 

systems 

 B –

(E)TM1, 

0.45-0.52 

(m) 

G –

(E)TM2, 

0.52-0.60 

(m) 

R –

(E)TM3, 

0.63-0.69 

(m) 

NIR –

(E)TM4, 

0.76-0.90 

(m) 

MIR1 –

(E)TM5, 

1.55-1.75 

(m) 

MIR2 –

(E)TM7, 

2.08-2.35 

(m) 

TIR –

(E)TM6, 

10.4-12.5 

(m) 

SR  

(m) 

Rad. 

Cal. 

Y/N, 

C/I 

Pan 

SR 

(m) 

Notes 

L-

SIAM™ 

(46 Sp. 

Cat.) 

Landsat-4/-

5 TM 

       30 Y-C  Refer to 

Table I in 

[18]. 

Landsat-7 

ETM+ 

       30 Y-C 15 Same as 

above. 

MODIS         250, 

500, 

1000 

Y-C  Same as 

above. 

ASTER         15-30 Y-C  Same as 

above. 

CBERS-2B         N   

APEX        1.8 Y  Airborne 

hyperspectra

l, 285 bands 

S-SIAM™ 

(32 Sp. 

Cat.) 

SPOT-4 

HRVIR  

       20 Y-I 10 Refer to 

Table II in 

[18]. 

SPOT-5 

HRG 

       10 Y-I 2.5 - 

5 

Same as 

above. 

SPOT-4/-5 

VMI 

       1100 Y-I  Same as 

above. 

IRS-1C/-1D 

LISS-III 

       23.5 Y-I   

IRS-P6 

LISS-III 

       23.5 Y-I   

IRS-P6 

AWiFS 

       56 Y-I   

AV-

SIAM™ 

(39 Sp. 

Cat.) 

NOAA 

AVHRR 

       1100 Y  Refer to 

Table II in 

[18]. 

MSG        3000 Y  Same as 

above. 

AA-

SIAM™ 

(39 Sp. 

Cat.) 

ENVISAT 

AATSR 

       1000 Y  Same as 

above. 

ERS-2 

ATSR-2 

       1000 Y   
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Table 1. Cont. 

Q-

SIAM™ 

(25 Sp. 

Cat.) 

IKONOS-2        4 Y 1  

QuickBird-2        2.4 Y 0.61  

GeoEye-1        1.64 Y 0.41  

OrbView-3        4 N 1  

RapidEye-1 

to -5 

       6.5 Y-I   

ALOS 

AVNIR-2 

       10 Y   

KOMPSAT

-2 

       4 N 1  

TopSat        5 N 2.5  

FORMOSA

T-2 

       8 Y 2  

ENVISAT 

MERIS 

       300 Y  Super-

spectral, 15 

bands 

Leica 

ADS40/80 

       0.25 Y 0.25 Airborne, 4 

bands + 

PAN 

D-

SIAM™ 

(25 Sp. 

Cat.) 

Landsat-1/-

2/-3/-4/-5 

MSS 

       79 Y   

IRS-P6 

LISS-IV 

       5.8 Y-I   

SPOT-1/-2/-

3 HRV 

       20 Y-I 10  

DMC        22-32 N   

To recapitulate, the main conceptual differences between the four aforementioned RS-IUS 

architectures and implementations, namely, GEOBIA (see Figure 2 in [3]), GEOOIA (see Figure 4 

in [3]), Shackelford and Davis (see Figure 1) and the novel hybrid RS-IUS (see Figure 2), are 

summarized below. 

 Both the two-stage non-iterative GEOBIA scheme (see Figure 2 in [3]) and the three-stage iterative 

GEOOIA design (see Figure 4 in [3]) adopt a sub-symbolic statistical model-based pre-attentive 

vision first stage (refer to Section 8.2 in [3] and Section 5.2 in this paper). Neither GEOBIA nor 

GEOOIA consider RS image radiometric calibration as compulsory, which disagrees with the 

QA4EO guidelines.  

 Both the Shackelford and Davis RS-IUS design, shown in Figure 1, and the proposed hybrid  

RS-IUS architecture, instantiated in Figure 2, employ a symbolic pre-attentive vision first 

stage [14] (refer to Section 5 in [3]). Hence, these two RS-IUS schemes are both alternative to the 

GEOBIA and GEOOIA architectures. However, their symbolic pre-attentive vision first stage 

differs in terms of both algorithm design and implementation. 
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o The Shackelford and Davis pre-attentive vision first stage consists of a symbolic statistical 

model. It is implemented as a plug-in, parametric, pixel-based MXLKL classifier [28–30], 

which requires no radiometric calibration pre-processing Stage 0, in disagreement with the 

QA4EO guidelines, and whose OQIs are well known to score low [46,53]. 

o The proposed hybrid RS-IUS pre-attentive vision first stage consists of a symbolic syntactic 

model. It is implemented as an operational, automatic, near-real-time, per-pixel SIAM™ 

preliminary classifier, which requires a radiometric calibration pre-processing Stage 0 (see 

Figure 2), in compliance with the QA4EO guidelines, and whose OQIs are claimed to score 

high by existing literature [15–23], refer to Section 5 below.  

4. Application Example of the Proposed Hybrid RS-IUS Implementation: Stratified Multi-Scale 

Texture Detection in the Preliminary Classification Map  

The following application example is selected from existing literature to highlight the peculiar 

functional properties of the proposed hybrid RS-IUS architecture employing the operational automatic 

SIAM™ as its symbolic physical model-based pre-attentive vision first stage (refer to Figure 2). 

In compliance with the Marr constraint (III) listed in Section 2, a SIAM™ preliminary classification 

map is expected to represent an abstract of the reality [54]. This means that SIAM™ is expected to 

aggregate (simplify) the pictorial information of an input MS image, such as texture, image-contours, 

etc., without loss of genuine, but small image details (i.e., without loss of high spatial-frequency image 

components). Based on a qualitative assessment, this appears to be the case, e.g., see Figures 3–5. 

Figure 3. (a) Zoomed image extracted from a QuickBird-2 image of Campania, Italy 

(acquisition date: 2004-13-06, 09:58 GMT), depicted in false colors (R: band CH3, G: band 

CH4, B: band CH1), 2.44 m resolution, calibrated into TOARF values, pan-sharpened at 

0.61m resolution. (b) Preliminary classification map automatically generated by Q-SIAM™ 

from the image shown in (a). Output spectral categories are depicted in pseudo colors. Map 

legend: refer to Table 3. The image texture information is well preserved in the preliminary 

classification map, e.g., the mapped forest area is high-texture while the mapped grassland 

is low-texture. 

  

(a)        (b) 
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Figure 4. (a) Subset of a 7-band Landsat-like image generated from a MODIS image, 

radiometrically calibrated into TOARF values, acquired on 5 January 2007 (depicted in false 

colors, with Red channel: MODIS band 6 (Medium Infra-Red, MIR), Green channel: MODIS 

band 2 (Near-IR, NIR), Blue channel: MODIS band 3 (visible Blue)). The image subset covers 

an area of approximately 500 km  500 km in Northern Italy. Spatial resolution: 500 m.  

(b) Output map, consisting of 95 spectral categories, generated by L-SIAM™ from the 

radiometrically calibrated  MODIS image shown in (a). Output spectral categories are depicted 

in pseudo colors. Map legend shown in Table 2. (c) Piecewise constant approximation of (a) 

based on segments extracted from the preliminary classification map shown in (b), such that 

each segment is replaced with its mean reflectance value in the radiometrically calibrated input 

image. It is noteworthy that small, but genuine image details appear well preserved, i.e.,  

L-SIAM™ performs simultaneously as a preliminary classifier in the symbolic space and an 

edge-preserving smoothing filter in the sensory data domain. 

   

(a)      (b)      (c) 

Figure 5. (a) Transect extracted from the MODIS Band 2 (NIR) of Figure 4(a). (b) Transect 

extracted from the L-SIAM™ preliminary classification map featuring 95 spectral 

categories, indexed from 1 to 95, and shown in Figure 4(b). (c) Transect extracted from 

Band 2 (NIR) of the piecewise constant approximation of the 7-band MODIS input image 

shown in Figure 4(c). In comparison with the original transect shown in (a), small but 

genuine image details appear well preserved. In practice, L-SIAM™ performs 

simultaneously as a preliminary classifier in the symbolic space and an edge-preserving 

smoothing filter in the sensory data domain. 

   

(a)      (b)      (c) 
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If SIAM™ performs a thematic mapping of an input VHR image without loss of pictorial 

information, then the proposed hybrid RS-IUS attentive vision second stage (see Figure 2) can be 

implemented as a stratified texture detector whose input is the SIAM™ preliminary classification map 

in place of the traditional input image, either MS (chromatic) or PAN (pan-chromatic). In [21], to 

distinguish between low-texture ‘annual crop or herbaceous rangeland’ (AC/HR) from high-texture 

‘forest or woodland’ (F/W) in very high resolution (VHR, <5 m) spaceborne imagery [21], an attentive 

vision second-stage stratified multi-scale texture detector is accomplished as follows. 

1. Selection from the first-stage SIAM™ preliminary classification map of a target (F/W or AC/HR) 

class-specific semantic stratum (binary mask, focus of visual attention, refer to Section 5 in [3]), 

capable of capturing (mapping) the colors of the target class-specific texture foregrounds and 

backgrounds. For example, the binary mask considered as a candidate area for the presence of 

classes (F/W or AC/HC) is selected as the logical-OR combination of the SIAM™ spectral 

categories ‘strong vegetation’ or ‘average vegetation’ or ‘dark vegetation’ or ‘shadow vegetation’, 

etc. (refer to Section 5.2 below). 

2. A stratified two-scale (7 m, 15 m in size) texture detector is run upon the SIAM™ preliminary 

classification map. A simple single-scale texture feature is estimated as the number of different 

spectral categories (NSC) whose occurrence is >0 in the local histogram collected from a semantic 

mask-conditioned moving window. Finally, a simple decision-tree separates low-texture AC/HR 

from high-texture F/W based on the multi-scale NSC values (e.g., if NSC_15m < 4 then AC/HC 

else if NSC_15m > 4 then F/W). The occurrence of specific spectral categories, e.g., ‘strong 

vegetation’, is checked in ambiguous texture cases (e.g., if NSC_15m == 4 AND ‘strong 

vegetation’ occurs in the local histogram then AC/HR). This simple attentive vision second-stage 

rule-set tested in 350 ground truth samples collected for each class F/W and AC/HR in ten VHR 

images collected across Europe provides omission and commission error between 4% and 6% in a 

computation time which is negligible. 

When compared with RS-IUS academic or commercial solutions, the aforementioned attentive 

vision second-stage automatic, LC class-specific, stratified texture detection in the preliminary 

classification map appears quite unique. In literature, dozens of traditional texture detection approaches 

separate vegetation types based on a non-stratified (unconditional, driven-without-knowledge, image-

wide) texture analysis in the MS or PAN image domain with varying degrees of success (e.g., [55,56]). 

With regard to GEOBIA (see Figure 2 in [3]) and GEOOIA systems (see Figure 4 in [3]), texture 

analysis is performed: (1) within sub-symbolic discrete 2-D objects generated at the pre-attentive 

vision first stage and (2) in the sensory image domain, either MS or PAN. As another example, the 

Shackelford and Davis RS-IUS, shown in Figure 1, computes second-stage texture: (I) within local 

areas selected as class-specific symbolic strata (image masks) generated from an input MS image and 

(II) in the sensory PAN image domain, which reduces computation time in comparison with the MS 

image domain [28–30]. None of these texture detection approaches is akin to that proposed in [21]. 
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5. Degrees of Novelty of the Proposed Hybrid RS-IUS Architecture and Operational 

Implementation Employing SIAM™ as Its Symbolic Deductive Context-Insensitive  

Pre-Attentive Vision First Stage 

This section objective is to verify whether the proposed hybrid RS-IUS architecture and its 

operational implementation, where SIAM™ is adopted as symbolic, deductive, context-insensitive  

pre-attentive vision first stage (refer to Section 3), meet the RS-IUS requirements specification (A) to 

(C) listed in Section 2. 

In place of the SWOT analysis applied to the GEOBIA/GEOOIA paradigm [33,34] (refer to Section 

8 in [3]), the proposed hybrid RS-IUS is investigated at the four levels of understanding of an 

information processing system, namely [14,21] (see Section 1 in [3]): (i) computational theory (system 

architecture, system design), (ii) information/knowledge representation, (iii) algorithm design and 

(iv) implementation.  

About the level of analysis of system implementation, this non-experimental study must rely on 

existing literature to collect experimental evidence [15–23]. 

In practice, this section revises and extends previous investigations on the same subject proposed in 

related papers [18,21]. 

5.1. Computational Theory (System Architecture) 

If the linchpin of success of a CV system or RS-IUS in tackling the inherently ill-posed vision 

problem (refer to Section 5 in [3]) is addressing computational theory rather than algorithms or 

implementation [10,14] (refer to Section 1 in [3]), then a deep understanding of the architectural 

differences between alternative RS-IUS schemes is of fundamental importance. 

In this work, four alternative RS-IUS architectures have been considered for comparison purposes: 

GEOBIA (see Figure 2 in [3]), GEOOIA (see Figure 4 in [3]), Shackelford and Davis’ (see Figure 1) 

and the proposed hybrid RS-IUS design (see Figure 2). Among these four RS-IUS architectures, the 

latter is the only one to adopt a symbolic, syntactic, pixel-based pre-attentive vision first stage (refer to 

Section 3). 

In this section, the proposed hybrid RS-IUS architecture is investigated irrespective of the 

implementation of its pre-attentive vision first stage (e.g., SIAM™ or SPECL, refer to Section 3). 

Pointers to the RS-IUS requirements specification (A) to (C) listed in Section 2 are made explicit 

wherever possible. 

(i) RS-IUS requirements specification (A) and (C), OQI: ease of use. In compliance with the QA4EO 

guidelines, the proposed hybrid RS-IUS requires radiometric calibration of DNs into TOARF or 

SURF values, with TOARF  SURF. Hence, it considers the inherently ill-posed (difficult-to-solve) 

atmospheric correction an optional rather than compulsory pre-processing step (refer to Section 3), 

which increases its ease of use. Among the existing RS-IUS commercial software products listed 

in Table 1 of [3], the physical model-based ATCOR-2/3/4 is the sole to require the radiometric 

calibration of the input MS imagery (refer to Section 3). 

(ii) RS-IUS pre-attentive vision sub-system requirements specification (B)-(I) to (III). To develop a 

new generation of operational hybrid RS-IUSs whose pre-attentive and attentive vision stages are 
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both symbolic and hybrid (refer to Section 2), a machine teaching (MAT)-by-rules paradigm, also 

called knowledge engineering in artificial intelligence (AI) and “fusion of horizons” in 

philosophical hermeneutics, must be adopted for the ignition of deductive inference capabilities. 

Unfortunately, syntactic pattern recognition requires significant human interaction, but once a 

physical model-based syntactic inference system is tuned and proved to be transferable, the effort 

pays off (refer to Section 4.1 in [3]).  

(iii) RS-IUS requirements specification (C), OQI: computation efficiency. A syntactic inference 

system driven from prior physical knowledge is static, i.e., it is one-pass (non-iterative, non-adaptive 

to input data). In addition, the proposed symbolic syntactic pre-attentive vision first stage is  

pixel-based. Hence, it is eligible for being computationally efficient, its computation complexity 

increasing linearly with the number of pixels, the number of MS bands and the cardinality of the 

class taxonomy adopted by the pre-classification map products.  

(iv) RS-IUS  pre-attentive vision sub-system requirements specification (B)-(I), RS-IUS requirements 

specification (C), OQI: computation efficiency. It is well known that the generation of a 

segmentation map from a binary or multi-level image (e.g., a classification map) is a well-posed 

problem (in the Hadamard sense, i.e., it admits a solution and this solution is unique, refer to 

Section 4.2 in [3]) which can be solved efficiently by a two-pass connected-component image 

labeling algorithm ([10]; p. 197). Hence, a syntactic pixel-based preliminary classifier can 

accomplish image symbolic pre-classification and image sub-symbolic segmentation in sequence 

and efficiently.  

(v) RS-IUS requirements specification (C), OQI: degree of automation. A syntactic image 

preliminary classifier is prior knowledge-based and non-adaptive to input data, thus it tends to 

have few system-free parameters to be user-defined, possibly none (like SIAM™ and SPECL, 

which are both “fully automatic”, refer to Section 5.4 below). Hence, its degree of automation 

(ease of use) tends to be high. 

(vi) RS-IUS requirements specification (C), OQIs: mapping accuracy; robustness to changes in the 

input data set. Since it is pixel-based, the proposed symbolic syntactic pre-attentive vision first 

stage is not affected by the uncertainty principle according to which, for any contextual 

(neighborhood) property, we cannot simultaneously measure that property while obtaining 

accurate localization [57,58], refer to Section 8.2 in [3]. On the other hand, traditional pixel-based 

statistical classifiers (e.g., MXLKL, support vector machines (SVMs), etc.) are typically affected 

by a salt-and-pepper classification noise effect [46,53]. This is not the case of existing per-pixel 

physical model-based preliminary classifiers, like SIAM™ (or SPECL), whose robustness to 

changes in the input data set is claimed to be high by existing literature [15–23] (this is possible 

because, to score high in accuracy and robustness, these preliminary classifiers score “low” in 

informative content of their output spectral categories, refer to Section 5.4 below). 

(vii) RS-IUS requirements specification (C), OQIs: degree of automation; mapping accuracy; 

computation efficiency; robustness to changes in the input data set. The proposed hybrid RS-IUS 

scheme (see Figure 2) adopts (inherently ill-posed) statistical models in the attentive vision 

second stage if and only if they incorporate the “stratified” or “layered” approach, typical of  

decision-trees [45], to become better posed for numerical treatment. A possible disadvantage of 

stratification is that identification of appropriate strata may be difficult [44] (refer to Section 3). 
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This is not the case with existing per-pixel physical model-based preliminary classifiers, like 

SIAM™ (or SPECL), whose output spectral categories (symbolic strata, symbolic masks) are 

detected automatically (where automation does not come on the expenses of accuracy or 

robustness to changes in the input data set, but on the expenses of the informative content of the 

output spectral categories, refer to Section 5.4 below). To summarize, in RS common practice, 

exploitation of a pixel-based, symbolic, syntactic pre-attentive vision first stage allows the 

attentive vision second-stage classification to benefit from driven-by-knowledge regularization of 

the multiple solution space while avoiding the typical disadvantage of stratification (where 

identification of informative strata may be difficult). 

(viii) RS-IUS requirements specification (C), OQIs: mapping accuracy; robustness to changes in the 

input data set. In the proposed hybrid RS-IUS scheme (see Figure 2), a feedback loop feeds the 

symbolic deductive pre-attentive vision Stage 1 (categorical) output back to the pre-processing 

Stage 0 input for stratified RS image enhancement (e.g., stratified RS image TOC [20], etc., refer 

to Section 3).  

(ix) RS-IUS requirements specification (A). Availability of symbolic information right at the output of 

the pre-attentive vision first stage allows the introduction of OQIs suitable for parameterizing 

categorical variables (e.g., preliminary classification map accuracy in range [0, 1]  1,) in addition 

to traditional OQIs suitable for parameterizing sub-symbolic variables (e.g., image sub-symbolic 

segmentation map accuracy in range [0, 1]  2), in compliance with the international QA4EO 

guidelines [2] (refer to Section 2 in [3]). Examples of novel OQIs suitable for the parameterization 

of pre-attentive vision first-stage categorical variables can be found in [20] and [22]. 

(x) RS-IUS requirements specification (C), OQIs: ease of use; mapping accuracy; efficiency; 

robustness to changes in the input data set. The proposed symbolic pre-attentive vision first stage 

generates as output symbolic information primitives featuring three spatial types (according to the 

nomenclature proposed by the Open Geospatial Consortium, OGC [59]): symbolic pixels belong 

to symbolic polygons which belong to symbolic multi-part polygons, also called symbolic strata. 

In any symbolic map these three symbolic spatial types co-exist, i.e., they are not alternative. 

Thus, they can be made simultaneously available to the attentive vision second phase as viable 

inputs to choose from on a target LC class-specific basis (see Figure 2). For example, the Shackelford 

and Davis RS-IUS adopts as input to the attentive vision second stage a combination of symbolic 

pixels and symbolic polygons, depending on the target LC class [28–30] (see Figure 1), The 

following considerations hold. 

 Humans are naturally familiar with symbolic reasoning. Availability of semantic information 

right at the output of the symbolic pre-attentive vision first stage makes the proposed hybrid 

RS-IUS more powerful (in terms of symbolic reasoning) and more intuitive to use than 

traditional two-stage non-iterative GEOBIA systems (see Section 6 in [3]) and three-stage 

iterative GEOOIA systems (see Section 7 in [3]) whose pre-attentive vision first stage is  

sub-symbolic. 

 Generated as output by the symbolic pre-attentive vision first stage, symbolic pixels, symbolic 

polygons and symbolic multi-part polygons co-exist as viable inputs to the attentive vision 

second stage. This would end the ill-fated antagonism between unlabeled sub-symbolic pixels 

versus labeled sub-symbolic image-objects which are used as alternative inputs to different 
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attentive vision second-stage implementations, namely, traditional pixel-based classifiers, either 

inductive (e.g., artificial neural network, SVM, MXLKL, adaptive decision-tree [45,46,53]) or 

deductive (symbolic syntactic rule set, expert system [45,46,53]), or GEOBIA/GEOOIA 

classifiers, either inductive or deductive [47,60–63], , refer to Table 1 in [3]. 

5.2. Information/Knowledge Representation 

According to Wang, “if knowledge representation is poor, even sophisticated algorithms can 

produce inferior outputs. On the contrary, improvement in representation might achieve twice the 

benefit with half the effort” [64]. This subsection investigates to what degree this fundamental 

statement is taken into account by the symbolic syntactic SIAM™ pre-attentive vision first stage 

adopted by the novel hybrid RS-IUS proposed in Section 3. Pointers to the RS-IUS requirements 

specification (A) to (C) listed in Section 2 are made explicit wherever possible. 

(i) RS-IUS requirements specification (A). SIAM™ (like SPECL) is a physical model-based 

preliminary classifier that requires input sensory data be provided with a community-agreed 

physical radiometric unit of measure, namely, TOARF or SURF values, in compliance with the 

QA4EO guidelines, refer to Section 3. 

(ii) RS-IUS pre-attentive vision sub-system requirements specification (B)-(I) and (II). SIAM™ (like 

SPECL) is application domain-independent, i.e., it is a unifying preliminary classification first stage. 

This holds true because, as output, SIAM™ (like SPECL) provides (semi-)symbolic image-objects 

(namely, symbolic pixels in symbolic polygons in symbolic multi-part polygons, refer to 

Section 5.1) whose symbolic labels belong to a discrete and finite set of spectral-based semi-

concepts, also called symbolic spectral categories, e.g., ‘vegetation’, ‘either water or shadow’, 

‘either bare soil or built-up’, etc. The semantic content of spectral-based semi-concepts is 

superior to zero and not superior (i.e., equal or inferior) to that of target (4-D) LC classes-through-

time (concepts, e.g., ‘deciduous forest’) to be detected by the attentive vision second stage (refer 

to Section 5 in [3]). Symbolic spectral categories are equivalent to semantic conjectures based 

exclusively on non-contextual spectral properties, either chromatic or achromatic (since color is 

the sole pixel-based, context-insensitive level of information in an image, refer to Section 3) [18]. 

Each spectral category is also equivalent to one LC class-set comprising either one or more LC 

classes [18,29]. In particular, a spectral category (e.g., ‘cloud’) is one-to-one related with a single 

LC class if this class is separable from the rest of the world in a hyper-dimensional spectral space. 

A spectral category (e.g., ‘either water or shadow’) is related to more than one LC class if these 

LC classes feature a statistically relevant spectral overlap in a hyper-dimensional spectral space. 

Thus, by definition [18], different spectral categories do not overlap in the SIAM™ measurement 

space consisting of spectral bands together with spectral indexes [15–23]. In other words, spectral 

categories must be mutually exclusive by definition. As a consequence, spectral categories are 

eligible for splitting into their component LC classes in a context-sensitive attentive vision second 

stage, where additional sources of contextual evidence (e.g., texture, morphology, per-object 

geometric properties, inter-object spatial relations, etc.) are taken into consideration, see Figure 2. 

For example, the spectral-based semi-concept ‘vegetation’ identifies an image candidate area 

(semantic mask, semantic stratum or focus of visual attention, refer to Section 5 in [3]) where 
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image-objects belonging to a target LC class, say, ‘deciduous forest’, may be located, refer to 

Section 3. In SIAM™ there are six parent spectral categories (also called super-categories) or 

parent spectral-end-members. They are presented hereafter according to their order of detection 

(for comparison with the SPECL sorted set of class grammars, refer to Section 2):  

(I) ‘clouds’,  

(II) ‘either snow or ice’,  

(III) ‘either water or shadow’,  

(IV) ‘vegetation’, equivalent to ‘either woody vegetation or cropland or grassland or (shrub 

and brush) rangeland’,  

(V) ‘either bare soil or built-up’ and 

(VI) ‘outliers’ (for further comments about the presence of class ‘unknowns’ in compliance 

with the Congalton requirements of a classification scheme [65], refer to this text below). 

Intuitively, the symbolic meaning of the six parent spectral categories is inferred from the 

following list of natural colors (whose wavelengths range from the visible to the medium infra-red 

(MIR) portion of the electromagnetic spectrum) found in the (4-D) real world-through-time: (1) 

white of type 1 (featuring high reflectance in MIR), (2) white of type 2 (featuring low reflectance 

in MIR), (3) blue, (4) green, (5) brown or gray, (6) others.  

(iii) RS-IUS pre-attentive vision sub-system requirements specification (B)-(II). Since the semantic 

content of spectral-based semi-concepts is (refer to this section above)  superior to zero and equal 

or inferior to the semantic content of concepts (4-D object-models-through-time [25], LC classes-

through-time, e.g., ‘needle-leaf forest’) belonging to a (4-D) world model (refer to Section 5 in 

[3]), then spectral-based semi-concepts are eligible for filling in the well-known information gap 

between sub-symbolic (2-D) image features (image-objects or, vice versa, image-contours) and 

symbolic concepts in the (3-D) imaged-scene, refer to Section 5 in [3,14,18,25,33]. 

(iv) Due to the presence of the class ‘outliers’ (refer to this section above), SIAM™ provides a 

mutually exclusive and totally exhaustive mapping of the input MS image into a discrete and 

finite set of spectral categories. This is in line with the Congalton requirements of a classification 

scheme [65]; although, the definition of a rejection rate is a well-known objective of any RS 

image classification system, e.g., refer to [66], in RS common practice image classifiers are often 

applied without any outlier detection strategy. 

(v) Unlike the crisp SIAM™, the fuzzy SIAM™ is capable of modeling component cover classes of 

mixed pixels (class mixture) [22]. This means that the information/knowledge representation of 

the fuzzy SIAM™ is superior to that of its crisp counterpart. 

5.3. Algorithm Design 

An algorithm design is the bridge between analysis and implementation. In practice, structured 

software system design is considered “everything but code” [40]. This subsection investigates the 

algorithm design of the symbolic syntactic SIAM™ pre-attentive vision first stage adopted by the 

novel hybrid RS-IUS proposed in Section 3. Pointers to the RS-IUS requirements specification (A) to 

(C) listed in Section 2 are made explicit wherever possible. 
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(i) RS-IUS requirements specification (C), OQIs: mapping accuracy; robustness to changes in the 

input data set; scalability to cope with changes in input data specifications and user requirements. 

Due to its internal design and implementation strategies [17], the physical model-based SIAM™ 

preliminary classifier inherits advantages of traditional static (non-adaptive to input data) 

syntactic classifiers, developed by symbolic AI [67], while overcoming their well-known 

limitations, refer to Section 4.1 in [3]. In particular: 

 SIAM™ is more intuitive to debug than statistical models, refer to Section 4.1 in [3].  

 SIAM™ pursues convergence-of-evidence and information redundancy [25]. This design 

strategy makes SIAM™: 

 scalable, to cope with changes in input data specifications and user requirements, refer 

to Section 5.4 below, and  

 robust to changes in the input MS image acquired across time, space and sensors, e.g., 

SIAM™ is capable of mapping RS imagery acquired by all existing and future planned 

spaceborne optical imaging sensors provided with calibration metadata files, in 

agreement with the QA4EO guidelines and the visionary goal of a Global Earth 

Observation System of Systems (GEOSS) (refer to Section 1 in [3]) [68,69]. This 

achievement is made possible because SIAM™ is implemented as an integrated system 

of six sub-systems, refer to Table 1 and Section 5.4 below [17,18]. 

Unfortunately, it is time-consuming for human experts to learn physical laws of the (4-D) world-

through-time and tune physical models, comprising both structural and procedural knowledge 

(refer to Section 4.1 in [3]), based on human intuition, domain expertise and evidence from data 

observations ([54]; p. 2). The physical model-based SIAM™ preliminary classifier makes no 

exception to this rule. For example, the development of the SIAM™ software code dates back to 

the year 2002 [70]. 

(ii) RS-IUS requirements specification (C), OQI: scalability to cope with changes in input data 

specifications and user requirements. Unlike the crisp SIAM™ implementation, the fuzzy 

SIAM™ version adopts an internal horizontal (flat) modular structure independent of hierarchy, 

which means that the latter requires no procedural knowledge and, therefore, benefits of a 

maintainability/ scalability/ reusability superior to that of the former [22]. 

(iii) RS-IUS requirements specification (C), OQIs: mapping accuracy; scalability to cope with 

changes in input data specifications and user requirements. In [17], to reduce the number of the 

physical model-based system free-parameters to be set by the human system developer based on 

his intuition, expertise and evidence from data observations, SIAM™ adopts crisp (hard), rather 

fuzzy (soft) membership functions to pursue an irregular, but complete grid partitioning of the 

measurement space (see Figures 2–6 in [17]). In [17], Table 3 provides the hard thresholds 

employed to generate the crisp SIAM™ membership functions. In [22], these crisp decision rules 

are fuzzified in line with the principles of fuzzy logic [71,72]. 

5.4. Implementation 

This subsection investigates the implementation of the symbolic syntactic SIAM™ pre-attentive 

vision first stage adopted by the novel hybrid RS-IUS proposed in Section 3. The SIAM™ 



Remote Sens. 2012, 4 2792 

 

implementation phase consists of computer programming exclusively (since no specific hardware is 

required). In practice, what was produced during structured system design (refer to Section 5.3) is now 

turned into software code [40]. Hence, the objective of this subsection is to verify whether the SIAM™ 

computer program executable meets the RS-IUS requirements specification (A) to (C) listed in Section 2. 

To the best of these authors’ knowledge, SIAM™ and SPECL are the only two pixel-based 

syntactic preliminary classifiers available among the RS-IUS software toolboxes listed in Table 1 

of [3] (refer to Section 2). It means that implementation, in combination with information/knowledge 

representation (refer to Section 5.2) and algorithm design (refer to Section 5.3), make SIAM™ 

different from SPECL and capable of accomplishing high-value OQIs (refer to Section 2 in [3]) in 

compliance with the RS-IUS requirements specification proposed in Section 2. 

About the SIAM™ implementation, the following considerations hold, where pointers to the  

RS-IUS requirements specification (A) to (C) listed in Section 2 are made explicit wherever possible.  

(i) RS-IUS requirements specification (C), OQI: degree of automation. To run, SIAM™ requires 

neither user-defined parameters nor reference samples, hence it is termed “fully automatic” [73] 

(refer to Section 1). This definition implies that the SIAM™ degree of automation cannot be 

surpassed by any alternative approach. It is noteworthy that the proposed definition of automatic 

system is more restrictive than those commonly adopted in the RS literature where so-called 

automatic inductive data learning classifiers, e.g., artificial neural networks, do not satisfy either 

one or both of the two requirements listed above [73–76]. In general, it is assumed that automation 

can come on the expenses of accuracy, efficiency or robustness (refer to Section 2 in [3]). This is 

not the case of SIAM™, which is considered operational because all of its OQIs score high 

according to existing literature [15–23] (refer to Section 1). In the case of SIAM™ (and SPECL, 

refer to Section 2), automation comes on the expenses of the informative content of the output 

spectral categories, which is superior to zero, but equal or inferior to that of target LC classes to 

be detected by the attentive vision second stage (refer to Section 5 in [3]). 

(ii) RS-IUS requirements specification (C), OQI: scalability, to cope with changes in input data 

specifications and user requirements. To employ as input a radiometrically calibrated MS image 

acquired by almost any of the ongoing or future planned satellite optical missions, SIAM™ is 

implemented as an integrated system of systems, in line with the visionary goal of a GEOSS 

[68,69] (refer to Section 1 in [3]). In particular, SIAM™ comprises a “master” 7-band Landsat-like 

SIAM™ (L-SIAM™) together with five down-scaled ( “slave”, derived) versions of L-SIAM™ 

whose input is a MS image featuring a spectral resolution that overlaps with, but is inferior to, 

Landsat’s. It is important to observe that the high-degree of scalability of L-SIAM™ is made 

possible by the high-degree of redundancy of its class grammars implemented in compliance with a 

convergence-of-evidence approach (refer to Section 5.3). To summarize, SIAM™ combines the 

following six sub-systems (refer to Table 1) [15–23].  

I. A “master” 7-band L-SIAM™ capable of detecting 95/47/18 mutually exclusive and totally 

exhaustive spectral categories at fine/ intermediate/ coarse semantic granularity (see Figure 6), 

where symbolic parent-child relationships can be leveraged to improve the RS image 

interpretation process (see Figure 7). The legend of the preliminary classification map 
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generated by L-SIAM™ at fine semantic granularity and consisting of 95 spectral categories 

is shown in Table 2. 

Figure 6. Previously shown in [23]. (a) Joint NASA and USGS Web-Enabled Landsat 

Data (WELD) Project (http://landsat.usgs.gov/WELD.php) [79], providing seamless 

consistent mosaics of fused Landsat-7 Enhanced TM Plus (ETM+) and MODIS data 

radiometrically calibrated into top-of-atmosphere reflectance (TOARF) values. Weekly, 

monthly, seasonal and annual composites are freely available to the user community. Each 

consists of 663 fixed location tiles. Spatial resolution: 30 m. Area coverage: Continental 

USA and Alaska. Period coverage: 7-year. (b) and (c) Preliminary classification map of 

Alaska and continental USA automatically generated by L-SIAM™ from the 2006 annual 

WELD mosaic. L-SIAM™ was run overnight on a standard desktop computer. To the best 

of these authors’ knowledge, this is the first example of such a high-level product 

automatically generated at both the NASA and USGS. Map legend: refer to Table 2. 

 

(a)       (b) 

 

(c) 
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Figure 7. Adapted from K. Navulur (2007). SIAM™ implementation at three different 

granularity levels of classification (fine, intermediate and coarse): symbolic 2-D object-

based parent-child relationships across spatial scales. Legend of the SIAM™ symbols. V: 

Vegetation, AV: Average Vegetation, SV: Strong Vegetation, NIR: Near Infra-Red, 

AVHNIR: AV with High NIR, AVLNIR: AV with Low NIR. For example, starting from 

the fine granularity classification level, the OR-combination of the “children” spectral 

categories AVLNIR, AV with Medium NIR (AVMNIR) (not shown) and AVHNIR 

generates the “parent” spectral category AV at the intermediate semantic granularity level. 

Starting from the intermediate granularity classification level, the OR-combination of the 

“children” spectral categories SV, AV and Dark Vegetation (DV) (not shown) generates 

the “parent” spectral category V at the coarse semantic granularity level, etc. It is 

noteworthy that the SIAM™ symbolic 2-D object-based parent-child multi-scale 

relationships are detected automatically and provided with semantic labels, unlike the 

parent-child relationships detected by traditional semi-automatic sub-symbolic multi-scale 

image segmentation algorithms (e.g., Definien’s). In practice, SIAM™ accomplishes 

image sub-symbolic segmentation and image symbolic pre-classification simultaneously 

(refer to Section 3).  

 

II. A four-band Satellite Pour l’Observation de la Terre (SPOT)-like SIAM™ (S-SIAM™), 

which detects 68/40/15 mutually exclusive and totally exhaustive spectral categories at 

fine/intermediate/coarse semantic granularity (see Figure 8). 

III. A four-band National Oceanic and Atmospheric Administration (NOAA) Advanced Very 

High Resolution Radiometer (AVHRR)-like SIAM™ (AV-SIAM™), which detects 

82/42/16 mutually exclusive and totally exhaustive spectral categories at 

fine/intermediate/coarse semantic granularity (see Figure 9). 
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Table 2. Previously shown in [23]. Preliminary classification map legend adopted by  

L-SIAM™ at fine semantic granularity consisting of 95 spectral categories (refer to Table 1). 

Pseudo-colors of the spectral categories are grouped on the basis of their spectral end 

member (e.g., ‘bare soil or built-up’) or parent spectral category (e.g., “high” leaf area 

index (LAI) vegetation types). The pseudo-color of a spectral category is chosen so as to 

mimic natural colors of pixels belonging to that spectral category. This legend gives a clue 

about the semantic “parent-child” relationship supported by L-SIAM™ at different semantic 

granularity levels (refer to Figure 7 below). For example, a line-specific OR-combination 

of the 95 “child” spectral categories detected at the fine semantic granularity level across 

the 12 lines of Table 2 would provide 12 “parent” spectral categories at a coarser level of 

semantic granularity. Since it deals with symbolic reasoning, then this semantic aggregation 

is inherently subjective (equivocal, arbitrary, fuzzy) in nature, refer to Section 3 in [3]. 

 

Figure 8. Previously shown in [23]. (a) 4-band GMES-IMAGE 2006 Coverage 1 mosaic, 

consisting of approximately two thousand 4-band IRS-P6 LISS-III, SPOT-4, and SPOT-5 

images, mostly acquired during the year 2006, depicted in false colors: Red: Band 4 (Short 

Wave InfraRed, SWIR), Green: Band 3 (Near IR, NIR), Blue: Band 1 (Visible Green). 

Down-scaled spatial resolution: 25 m. (b) Preliminary classification map automatically 

generated by S-SIAM™ from the mosaic shown in (a). To the best of these authors’ 

knowledge, this is the first example of such a high-level product automatically generated at 

the European Commission-Joint Research Center (EC-JRC). Output spectral categories are 

depicted in pseudo colors. Map legend: similar to Table 2. 

 

"High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)

"Medium" LAI vegetation types (LAI values decreasing left to right)

Shrub or herbaceous rangeland

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 

Bare soil or built-up

Deep water, shallow water, turbid water or shadow

Thick cloud and thin cloud over vegetation, or water, or bare soil

Thick smoke plume and thin smoke plume over vegetation, or water, or bare soil

Snow and shadow snow

Shadow

Flame

Unknowns

(a) 
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Figure 8. Cont. 

 

Figure 9. (a) NOAA AVHRR (Sat. 17) image acquired on 2005-08-09 covering Turkey, 

the Balkans and part of Italy (R: band 3a, G: band 2, B: band 1), radiometrically calibrated 

into TOARF values. The image is in the original, highly non-linear swath projection with 

spatial resolution at nadir of 1.1 km. (b) Preliminary classification map automatically 

generated by AV-SIAM™ from the image shown in (a). Output spectral categories are 

depicted in pseudo colors. Map legend: similar to Table 2. 

  

(a)         (b) 

IV. A five-band ENVISAT Advanced Along-Track Scanning Radiometer (AATSR)-like 

SIAM™ (AA-SIAM™), which detects 82/42/16 mutually exclusive and totally exhaustive 

spectral categories at fine/ intermediate/ coarse semantic granularity (see Figure 10). 

(b) 
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V. A four-band QuickBird-like SIAM™ (Q-SIAM™), which detects 52/28/12 mutually 

exclusive and totally exhaustive spectral categories at fine/intermediate/coarse semantic 

granularity (see Figure 11). The legend of the preliminary classification map generated by 

Q-SIAM™ at fine semantic granularity and consisting of 52 spectral categories is shown 

in Table 3. In Figure 12 a zoom of Figure 11 is shown together with two of the 

output products, such as a segment contour map and a binary semantic mask (e.g., 

a binary vegetation mask), automatically generated by SIAM™ from its preliminary 

classification maps. 

VI. A three-band Disaster Monitoring Constellation (DMC)-like SIAM™ (D-SIAM™), 

which detects 52/28/12 mutually exclusive and totally exhaustive spectral categories at 

fine/intermediate/coarse semantic granularity (see Figure 13). 

Figure 10. Previously shown in [18]. (a) ENVISAT AATSR  image acquired on 2003-01-05, 

covering part of the Caucasus and the Black sea (R: band 7, G: band 6, B: band 4), 

radiometrically calibrated into TOARF values, spatial resolution: 1 km. (b) Preliminary 

classification map automatically generated by AA-SIAM™ from the image shown in (a). 

Output spectral categories are depicted in pseudo colors. Map legend: similar to Table 2. 

 

 

(a) 

(b) 
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Figure 11. Previously shown in [27]. (a) WorldView-2 T1 image, 2 m spatial resolution, 

acquisition date 2010-08-04, at 13:32 GMT, radiometrically calibrated into TOARF values, 

depicted in false colors (R: 5, G: 7, B: 2). A linear contrast stretch is automatically applied 

by the adopted image processing commercial software toolbox, which alters the spectral 

content of the image for visualization purposes (e.g., in this case greenness is augmented). 

An expert photointerpreter must be aware of this spectral distortion affecting the depicted 

image. (b) Q-SIAM™ preliminary map of the WorldView-2 image shown in (a). Output 

spectral categories are depicted in pseudo colors. Map legend: refer to Table 3. 

 

(a) 
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Figure 11. Cont. 

 

(b) 
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Figure 12. (a). Zoom of the WV-2 image, 2 m spatial resolution, acquisition date 2010-08-

04, radiometrically calibrated into TOARF values and shown in Figure 11(a), depicted in 

false colors (R: 5, G: 7, B: 2). (b) Zoom of the Q-SIAM™ preliminary map, shown in 

Figure 11(b), corresponding to the WV-2 sub-image shown in (a). Map legend: refer to 

Table 3. (c) Segment contours depicted as a 4-adjacency cross-aura measure generated 

from the Q-SIAM™ preliminary map shown in (b). Cross-aura values range in {0, 4}. 

(d). Binary vegetation mask generated from the Q-SIAM™ preliminary map shown in 

Figure (b). This is an example of semantic stratum equivalent to a symbolic multi-part 

polygon defined accordingly to the OGC standards. 

 

(a)        (b) 

 

(c)        (d) 
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Table 3. Previously shown in [23]. Preliminary classification map legend adopted by  

Q-SIAM™ at fine semantic granularity consisting of 52 spectral categories (refer to Table 1). 

Pseudo-colors of the spectral categories are grouped on the basis of their spectral end 

member (e.g., ‘bare soil or built-up’) or parent spectral category (e.g., “high” leaf area index 

(LAI) vegetation types). The pseudo-color of a spectral category is chosen so as to mimic 

natural colors of pixels belonging to that spectral category. This legend gives a clue about the 

semantic “parent-child” relationship supported by Q-SIAM™ at different semantic 

granularity levels (refer to Figure 7 below). For example, a line-specific OR-combination of 

the 52 “child” spectral categories detected at the fine semantic granularity level across the 

9 lines of Table 3 would provide 9 “parent” spectral categories at a coarser level of semantic 

granularity. Since it deals with symbolic reasoning, then this semantic aggregation is 

inherently subjective (equivocal, arbitrary, fuzzy) in nature, refer to Section 3 in [3]. 

 

Figure 13. Previously shown in [18]. (a) SPOT-2 HRV (High Resolution Visible) scene of 

Senegal (acquisition date: 2006-03-01), depicted in false colors (R: band 3, G: band 2, B: 

band 1), radiometrically calibrated into TOARF values, spatial resolution: 20 m. (b) Preliminary 

classification map automatically generated by D-SIAM™ from the image shown in (a). 

Output spectral categories are depicted in pseudo colors. Map legend: refer to Table 3. 

 

(a)        (b) 

 "High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)

"Medium" LAI vegetation types (LAI values decreasing left to right)

Shrub or herbaceous rangeland

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 

Bare soil or built-up

Deep water or turbid water or shadow

Smoke plume over water, over vegetation or over bare soil

Snow or cloud or bright bare soil or bright built-up

Unknowns
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Table 4. SIAM™ system of systems. Summary of input bands and output spectral 

categories reported in Table 1. (*) Employed in sensor-independent bi-temporal land cover 

change detection.  

SIAM™ 

Input Bands 

(B: Blue, G: Green, R: Red,  

NIR: Near Infra-Red,  

MIR: Medium IR,  

TIR: Thermal IR) 

Preliminary Classification Map Output Products:  

Number of Output Spectral Categories. 

Fine 

Semantic 

Granularity 

Intermediate 

Semantic 

Granularity 

Coarse 

Semantic 

Granularity 

Inter-Sensor 

Semantic 

Granularity (*) 

L-SIAM™ 
7 – B, G, R, NIR, MIR1, 

MIR2, TIR 
95 47 18 

33 

S-SIAM™ 4 – G, R, NIR, MIR1 68 40 15 

AV-SIAM™ 4 – R, NIR, MIR1, TIR 82 42 16 

AA-SIAM™ 5 – G, R, NIR, MIR1, TIR 82 42 16 

Q-SIAM™ 4 – B, G, R, NIR 52 28 12 

D-SIAM™ 3 – G, R, NIR 52 28 12 

The output spectral categories detected by the six SIAM™ sub-systems at fine, intermediate and 

coarse semantic granularities, described in Table 1 are summarized in Table 4. It is noteworthy that 

since its 2006 release presented in [17], L-SIAM™ has increased its number of output spectral 

categories from 46 to 95 (see Table 4). This shows that, in line with theory [32,54], there is a slow 

“learning curve” in the development and fine-tuning of the SIAM™ physical model (refer to 

Section 4.1 in [3]).  

(iii) In [17], enough information is provided for the crisp L-SIAM™ implementation to be reproduced. 

The down-scaled S-SIAM™, AV-SIAM™ and Q-SIAM™ versions generated from L-SIAM™ 

(refer to Table 1) are described in [18]. In [22], the crisp-to-fuzzy SIAM™ transformation is 

explained in detail. 

(iv) RS-IUS requirements specification (C), OQIs: mapping accuracy; robustness to changes in the 

input data set. Unlike traditional pixel-based statistical classifiers (e.g., plug-in MXLKL, SVMs, 

etc.), which are typically affected by a salt-and-pepper classification noise effect [46,53], the  

pixel-based syntactic SIAM™ preliminary classifier is, according to existing literature, effective 

(accurate) and robust to changes in the input data set acquired across time, space and sensors at 

local, regional and continental spatial scale [15–23,77,78]. For example, in a test area of 

approximately 2,000 km
2
 located in central Italy, a vegetation/nonvegetation (V/NV) binary map 

generated by SIAM™ from a Landsat-7 ETM+ scene provided an overall accuracy of 98.2% ± 

0.0% in comparison with a reference data set of 500 random samples validated with 1 m resolution 

orthophotos [17]. At the University of Maryland, the validation of the SIAM™ preliminary map 

generated from the 2006 Web-Enabled Landsat Data (WELD) project mosaic at the US scale [79] 

(e.g., see Figures 6 and 14(b)) has been recently accomplished in comparison with the reference 

National Land Cover Dataset (NLCD) 2006 provided by the US Environmental Protection Agency 

(EPA) [80], see Figure 14(d) [77,81]. An additional quantitative assessment of SIAM™ at regional 

scale can be found in [78]. Finally, a comparison between the syntactic SIAM™ and the  

ATCOR-2/3/4 SPECL preliminary classifier (refer to Section 2) is currently on-going based on a 
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test data set consisting of both spaceborne and airborne images radiometrically calibrated into 

TOARF or SURF values [82]. 

(v) RS-IUS pre-attentive vision sub-system requirements specification (B)-(III), RS-IUS requirements 

specification (C), OQI: mapping accuracy. An intuitive proof of the SIAM™ mapping accuracy 

stems from the assessment of the SIAM™ capability of providing a lossy (almost lossless) 

compression of a sensory image onto a discrete and finite set of semi-concepts. This means that when 

an input image is reconstructed from the SIAM™ preliminary classification map, then the piecewise 

constant approximation of the input image must preserve small, but genuine image details (refer to 

Section 5 in [3]). For example, a piecewise constant approximation of the input MS image, called  

2-D object-based mean image, is generated by replacing each symbolic polygon detected in the 

SIAM™ preliminary classification map with its mean radiometric value extracted from the input 

image. Results, shown in Figures 4 and 5, reveal that SIAM™ is a MS image preliminary classifier 

provided with an edge-preserving smoothing capability [18–20] (refer to Section 5 in [3]). 

(vi) RS-IUS requirements specification (C), OQI: efficiency, namely, computation time and memory 

occupation. In 2010, to increase its computational efficiency and decrease its dynamic and central 

memory requirements, the integrated SIAM™ system of systems was submitted to a source-to-

source code transformation from the Interactive Data Language (IDL) to the C programming 

language. In September 2010, the University of Maryland, College Park, Maryland, filed the 

Invention Disclosure No. IS-2010-103 entitled: Satellite Image Automatic Mapper™ (SIAM™) 

(patent pending, © Andrea Baraldi and University of Maryland). In 2012, a parallel implementation 

of the SIAM™ code has been released. On a standard laptop computer provided with an Intel Core 

i7 processor @ 2.67 GHz the SIAM™ implementation in the C programming language requires 

less than three minutes to map a 7-band Landsat scene of approximately 8,000  7,000 pixels in size 

at the three standard levels of semantic granularity (fine, intermediate and coarse). The SIAM™ 

computational complexity increases linearly with the number of pixels, bands and output spectral 

categories. The parallel implementation of the SIAM™ reduces computation time by 15% to 40%, 

depending on the image size. The well-posed two-pass connected-component image labeling 

algorithm [10] takes approximately three more minutes to generate three sub-symbolic 

segmentation maps and contour maps from the three SIAM™ standard preliminary classification 

maps (at fine, intermediate and coarse semantic granularity, see Table 4. In comparison with the 

crisp SIAM™ implementation, the fuzzy SIAM™ is affected by a computation time increased by 

30% in a single-process single-thread implementation [22]. This computation overload reduces to 

15% in a single-process multi-thread implementation. Hence, both the crisp and the fuzzy SIAM™ 

implementations can be considered near-real-time. In fact, without considering stereo acquisitions 

in satellite sensors such as GeoEye-1 and WorldView-2, a time interval between two consecutive 

spaceborne image acquisitions may be as short as 15 min in a geostationary spaceborne platform 

such as the Meteosat Second Generation (MSG) [83].  

(vii) RS-IUS requirements specification (C), OQIs: all (refer to Section 2 in [3]). Table 5 shows that, 

based on existing literature [15–23], the OQIs (to be maximized) featured by the syntactic automatic 

SIAM™ preliminary classifier are superior to those of existing commercial RS-IUS software 

products that employ a sub-symbolic statistical model-based pre-attentive vision first stage, refer to 

Table 1 in [3]. This means that SIAM™ can be termed operational (refer to Section 2 in [3]). 
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Table 5. Previously shown in [23]. OQIs of SIAM™ in comparison with those of  

state-of-the-art RS-IUSs. Legend of fuzzy sets: Very Low (VL), Low (L), Medium (M), High 

(H) and Very High (VH). Legend of color highlights: Red: L, VL; Blue: M; Green: H, VH. 

Quality Indicators of Operativeness (OQIs) Existing RS-IUS Software Products SIAM™ Software Product 

Degree of automation: (a) number, physical meaning and 

range of variation of user-defined parameters, (b)collection of 

the required training data set, if any. 

VL, L VH (fully automatic, it cannot be surpassed) 

Effectiveness : (a) semantic accuracy and (b) spatial 

accuracy. 

M, H, VH VH 

Semantic information level. Land cover class (e.g., deciduous forest) Spectral semi-concept (e.g., vegetation) 

Efficiency: (a) computation time and (b) memory occupation. VL, L in training (hours per images) VH (5 m to 30 s per Landsat image in a laptop) 

Robustness to changes in the input image. VL (site-specific) VH 

Robustness to changes in input parameters. VL VH (it cannot be surpassed) 

Scalability to changes in the sensor’s specifications or 

user’s needs. 

VL VH (it works with any existing spaceborne 

sensor) 

Timeliness (from data acquisition to high-level product 

generation, increases with manpower and computing power). 

VH (e.g., the collection of reference 

samples is a difficult and expensive 

task) 

VL, i.e., timeliness is reduced to almost zero 

Costs (increasing  with manpower and computing power). VL, L, high costs in manpower and also 

computing power 

VH, i.e., costs in manpower and computing 

power are reduced to almost zero 

(viii) The operational automatic near real-time SIAM™ preliminary classifier is not useful exclusively 

for categorical variable estimation from MS imagery, but also for MS image pre-processing 

(enhancement), e.g., stratified topographic correction [20], stratified image mosaic enhancement 

[17], stratified image pair co-registration [50], etc. (refer to Section 5.1). 

(ix) A symbolic syntactic pre-attentive vision first stage, like SIAM™ (or SPECL), is preliminary to 

the exploitation of inherently ill-posed, semi-automatic and site-specific statistical models (refer to 

Section 4.2 in [3]), to be run exclusively at the attentive vision second stage on a stratified basis to 

become better posed for numerical treatment, refer to Section 3. This is tantamount to saying that 

the syntactic SIAM™ preliminary classifier is by no means alternative, but complementary in 

nature to any (inherently ill-posed) inductive data learning system, either symbolic or sub-symbolic 

(refer to Section 4.2 in [3]). For example, the automatic SIAM™ preliminary classifier is 

alternative to the Definiens semi-automatic multi-scale image segmentation algorithm proposed by 

Baatz et al. [5–9] if and only if the latter is employed as sub-symbolic pre-attentive vision first 

stage in a GEOBIA/GEOOIA approach. On the contrary, the stratified use of the Definiens image 

segmentation algorithm in series with the SIAM™ preliminary classifier is perfectly reasonable 

according to the hybrid RS-IUS architecture proposed in Figure 2. As another example of 

complementarity of the symbolic syntactic pre-attentive vision first stage with statistical models, 

consider the case of supervised data learning classifiers traditionally adopted in the attentive vision 

second stage (e.g., MXLKL, nearest neighbor, neural networks, SVMs, adaptive decision-trees, 

etc.) [6,33,34,53,54,67,84–90]. The output thematic maps of the former, consisting of spectral-

based semi-concepts (e.g., ‘vegetation’), should never be compared with thematic maps of the 

latter, consisting of concepts (namely, LC classes-through-time, e.g., ‘deciduous forest’), unless the 

taxonomy of the former coincides as a special case with the taxonomy of the latter, since the 

relation concepts  semi-concepts always holds (refer to Section 5 in [3]). 
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(x) The symbolic, syntactic, pixel-based SIAM™ pre-attentive vision first stage generates as output, 

automatically and in near real-time, first, multi-granularity image pre-classification maps and, 

second, multi-scale image segmentation maps (refer to Section 1). The SIAM™ output products, 

namely, multi-granularity semi-symbolic and multi-scale sub-symbolic image-objects, are similar 

to those of a traditional two-stage non-iterative GEOBIA system, namely, multi-scale sub-symbolic 

and symbolic image-objects. Their difference is twofold: (i) they are generated in reverse order (in 

GEOBIA, sub-symbolic image-object detection comes before symbolic image-object labeling), (ii) 

the semantic level of information of semi-concepts is never superior to that of concepts because the 

relation concepts  semi-concepts always holds (refer to Section 5 in [3]) and (iii) semi-concepts 

are provided at multiple granularities while concepts belong to a target LC class taxonomy, which 

must be unique. 

Figure 14. (a) WELD Tile h07v02, 2007 yearly composite, depicted in true colors (R: 

band ETM3, G: band ETM2, B: band ETM1), 30 m resolution, radiometrically calibrated 

into TOARF values. (b) Preliminary output map, generated from (a) by L-SIAM™, 

depicted in pseudo colors. Map legend: refer to Table 2. (c) Attentive vision second stage 

context-sensitive classification in series with the context-insensitive SIAM™ pre-attentive 

vision first stage, see (b), generated from (a). This 2nd-stage map consists of 11 vegetated 

land cover classes (in black: non-vegetated pixels), depicted in pseudo-colors, including: 

cropland or grassland, broad-leaf forest, needle-leaf forest, mixed forest and shrubland. 

Inputs to the attentive vision second-stage classification are: SIAM™ spectral categories, 

brightness (PAN image) and multi-scale wavelet-based PAN image decomposition. Map 

legend: shown below. (d) Reference dataset: US Environmental Protection Agency (EPA) 

National Land Cover Dataset (NLCD) 2006. Map legend: shown below. 

 

(a)        (b) 
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Figure 14. Cont. 

 

(c)        (d) 

 

(xi) It is worth mentioning that recent developments in the attentive vision second stage in series with 

the syntactic SIAM™ preliminary classification (refer to Section 3) encompass driven-by-knowledge, 

class-specific, multi-scale texture detection in the PAN image by means of a multi-scale,  

multi-orientation wavelet filter bank with mirror padding to remove boundary effects due to 

stratification [51]. For example, Figure 14(a) shows a 30 m resolution MS Landsat-7 ETM+ image 

tile of the 2006 WELD mosaic [79] where the PAN image local areas overlapping with the 

SIAM™ spectral category (symbolic stratum) ‘vegetation’, see Figure 14(b), are classified into 

several vegetated LC classes (e.g., “broad-leaf forest”, “needle-leaf forest”, “grassland”, 

“rangeland”, etc.) by the attentive vision second stage employing: (i) a stratified multi-scale texture 

feature extraction from the 30 m resolution PAN image generated from the MS Landsat image and 

(ii) a decision rule-set whose inputs comprise: (a) continuous variables, namely, the stratified 

multi-scale texture features and (b) categorical variables, namely, the child spectral categories 

forming the parent-category ‘vegetation’ in the SIAM™ preliminary classification map (also refer 

to Figure 7). For validation purposes, the attentive vision second stage LC map, shown in 

Figure 14(c), is compared with the NLCD 2006 reference map shown in Figure 14(d) [77,80]. 

6. New Inter-Disciplinary Research and Market Opportunities 

According to [22], OQIs (refer to Section 2 in [3]) featured by the fuzzy and crisp SIAM™ 

implementations are different, but both SIAM™ versions are suitable for development of operational 

automatic near-real-time satellite-based information/knowledge processing systems. This would open 

up new inter-disciplinary research and market opportunities such as those listed below [18,22].  

1. The proposed hybrid RS-IUS employing SIAM™ as its symbolic, deductive, pixel-based  

pre-attentive vision first stage (see Figure 2) should be integrated with a graphic user interface 

Forest
Croplands, Pasture, Grasslands
Shrubland
Unclassified vegetation
Non-vegetation classes

Water
Evergreen Forest
Shrub
Grassland
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(GUI) into a complete desktop RS-IUS software product. It would consist of: (i) an automatic, 

unifying (e.g., application- and sensor-independent) and standardized (e.g., based on RS data 

calibrated into physical radiometric units of measure) SIAM™ pre-attentive vision first stage and 

(ii) an automatic, but incremental (e.g., user-, application-, class- and sensor-dependent) battery of 

attentive vision second-stage feature extractors and one-class classification modules. Based on an 

original combination of physical knowledge-based syntactic inference with stratified statistical data 

analysis capabilities, this novel hybrid RS-IUS software product would make spaceborne MS image 

understanding automatic, more intuitive to understand (since the RS-IUS is physical model-based 

and goes symbolic right at the output of the pre-attentive vision first stage, refer to Section 5 in 

[3]), accurate and robust to changes in the input data set. In line with the QA4EO guidelines [2], 

the new hybrid RS-IUS software product would contain metrological/statistically-based OQIs 

provided with a degree of uncertainty in measurement, in addition to a novel set of OQIs suitable 

for the accuracy assessment of preliminary classification maps, to achieve a seamless quantitative 

intercomparison with alternative pertinent results [15–23].  

2. Integration of internet-based satellite mapping on demand with virtual earth geo-browsers such as 

the hugely popular Google Earth, NASA’s World Wind and Microsoft Virtual Earth, see Figure 15. 

3. Automatic transformation of sub-symbolic raster RS imagery into symbolic vector geospatial 

information in a Geographic Information System (GIS)-ready format, see Figure 16. In other 

words, SIAM™ provides seamless integration of RS imagery with Geographic Information 

science (GIScience). 

4. Development of operational satellite-based information processing systems of systems, such as 

those envisaged under the ongoing international research programs GEOSS, Global Monitoring 

for the Environment and Security (GMES) [91], WELD [79] and Land Cover Land Use Change 

(LCLUC) [77] (refer to Section 1 in [3]). 

5. Development of semantic querying systems of large-scale multi-source RS image databases, 

where SIAM™ can be exploited as an automatic source of reference classification maps. This 

would represent a dramatic improvement over non-semantic query modes currently available in 

image database retrieval systems based on text-driven query strategies and query by either an 

image, object or multi-object example [92,93]. 

6. Development of so-called fourth generation future intelligent earth observation satellites 

(FIEOSs, [94]) where the operational automatic near-real time RS-IUS software proposed herein 

can be mounted on board. The same consideration holds for ground receiving stations which could 

be provided with an operational automatic “intelligent” data processing chain. 

7. Dissemination of advanced EO expertise, science and technology in developing countries and 

emerging countries. EO researchers and institutions should perceive operational automatic 

EO image understanding technologies like SIAM™ as a novel technical opportunity to pursue 

ethical goals. 
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Figure 15. Preliminary classification map, depicted in pseudo colors, generated by  

L-SIAM™ from a Landsat-7 ETM+ image of the Venice lagoon, Italy, radiometrically 

calibrated into TOARF values, spatial resolution: 30 m. The L-SIAM™ map is transformed 

into the kml data format and loaded as a thematic layer in a commercial 3-D earth viewer 

(e.g., Google Earth). 

 

Figure 16. Automatic transformation of sub-symbolic raster RS imagery into symbolic 

vector geospatial information available in a Geographic Information System (GIS)-ready 

format through SIAM™. 
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7. Conclusions and Summary 

Split into two papers for publication purposes, this methodological work provides the remote 

sensing (RS), computer vision (CV), artificial intelligence (AI) and machine learning (MAL) 

communities with several multi-disciplinary conclusions of practical interest for developing 

operational RS image understanding systems (RS-IUSs) eligible for use in real-world applications, 

including RS image understanding at large (e.g., global) spatial scale and fine semantic granularity, in 

accordance with the Group on Earth Observations (GEO)-Committee on Earth Observation Satellites 

(CEOS) Quality Assurance Framework for Earth Observation (QA4EO) guidelines.  

The degree of novelty of the proposed conclusions can be considered relevant because: 

 they encompass the four levels of understanding of an RS-IUS considered as an information 

processing system, namely: (a) computational theory (system architecture), (b) information/ 

knowledge representation, (c) algorithm design and (d) implementation (refer to Section 1 in [3]); 

 they are complementary to conclusions proposed by a large portion of existing literature where RS 

data mapping solutions are tested in toy problems at small (e.g., local) spatial scale and/or coarse 

semantic granularity. Unfortunately, scalability of these latter approaches to real-world RS 

applications at large (e.g., global) spatial scale and fine semantic granularity appears questionable 

or remains unknown (refer to Section 1 in [3]). 

This section provides a useful summary of the multi-disciplinary conclusions of both parts of this 

theoretical work together with links to the text. 

According to existing literature and despite their commercial success, state-of-the-art two-stage 

non-iterative geographic (2-D) object-based image analysis (GEOBIA) systems [30–34] and  

three-stage iterative geographic (2-D) object-oriented image analysis (GEOOIA) systems [30], where 

GEOBIA is a special case of GEOOIA, i.e., GEOOIA  GEOBIA, remain affected by a lack of 

productivity, general consensus and research [4,33,34], (refer to Section 2 in [3]). To explain these 

lacks, the Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis of the GEOBIA/ 

GEOOIA systems conducted in the first part of this methodological approach has reached the 

following conclusions (refer to Section 9 in [3]). 

1. Popular GEOBIA and GEOOIA commercial software products, like those listed in Table 1 of [3], 

do not comply with the QA4EO requirements, where radiometric calibration of RS imagery is 

considered a pre-requisite (refer to Section 2 in [3]). As a consequence, these RS-IUS commercial 

software products are based on statistical rather than physical models. In the MAL and RS 

literature it is well known that, due to their inherent ill-posedness, inductive inference systems are 

intrinsically semi-automatic and site-specific and require prior knowledge in addition to sensory 

data to become better posed (conditioned) for numerical treatment (refer to Section 4.2 in [3]). 

2. Both GEOBIA and GEOOIA systems are not biologically plausible, which is in contrast with their 

original goal of attempting to replicate human vision (refer to Section 6.1 in [3]). A human vision 

system is a symbolic hybrid inference system where symbolic deductive inference is ignited in 

both the pre-attentive vision first stage (in compliance with a quote from Marr [14]) and the 

attentive vision second stage to deal with the well-know information gap and the intrinsic 

insufficiency of image features (refer to Section 5 in [3]). If vision goes symbolic at the pre-

attentive vision first stage, then symbolic pre-attentive vision accomplishes image sub-symbolic 
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segmentation (image feature extraction) and image symbolic pre-classification simultaneously 

(refer to Section 5 in [3]). On the contrary, both GEOBIA and GEOOIA systems: 

 Employ the same sub-symbolic pre-attentive vision first stage implemented as a sub-symbolic 

(inherently ill-posed) statistical approach, 

 May or may not employ symbolic syntactic inference at the attentive vision second stage. If 

they do not, they are fully statistical systems. 

To recapitulate, when compared to human vision GEOBIA and GEOOIA systems lack deductive 

inference mechanisms starting at their pre-attentive vision first stage. 

To outperform existing GEOBIA and GEOOIA systems, the present second part of this 

methodological work provides, at the four levels of understanding of an information processing system 

(refer to Section 1 in [3]), a critical analysis of a novel hybrid RS-IUS design and implementation, 

selected from existing literature [15–23], where the operational, automatic, near real-time Satellite 

Image Automatic Mapper™ (SIAM™) is adopted as its symbolic, syntactic, pixel-based pre-attentive 

vision first stage, to comply with: 

(A) the QA4EO guidelines (refer to Section 2 in [3]).  

(B) The symbolic pre-attentive vision sub-system constraints driven from human vision (refer to 

Section 5 in [3]). In the CV literature, according to Marr “vision goes symbolic almost 

immediately, right at the level of zero-crossing (pre-attentive primal sketch) ... without loss of 

information” [14] (p. 343). If this conjecture holds true, then the symbolic hybrid (combined 

deductive and inductive) human vision system comprises a symbolic hybrid pre-attentive vision 

sub-system subjected to the following constraints (refer to Section 5 in [3]). 

(I) Symbolic pre-attentive vision is general-purpose (application-independent), parallel and rapid 

(efficient). It generates as output a (symbolic) preliminary classification (pre-classification) 

map of the input image. Hence, the symbolic pre-attentive vision first stage accomplishes 

image feature extraction (image segmentation) and image pre-classification simultaneously.  

(II) Symbolic pre-attentive semantic labels belong to a discrete and finite set of semi-concepts 

whose degree of semantic information must be superior to zero and equal or inferior to that of 

concepts detected by the attentive vision second phase. 

(III) The inverse mapping of the pre-classification map back to the input image domain generates a 

piecewise constant approximation of the input image equivalent to an edge-preserving 

smoothing filter where image details featuring high spatial-frequency components are well 

preserved. 

(C) The requirements specification for an RS-IUS to be considered operational. In particular, all Quality 

Indexes of Operativeness (OQIs) featured by an operational RS-IUS (e.g., degree of automation, 

accuracy, efficiency, robustness to changes in the input data set, robustness to changes in input 

parameters, scalability and timeliness) must score “high” (i.e., be superior to community-agreed 

reference standards) in real-world applications, including RS image classification at large (e.g., 

continental, global) spatial scale and fine semantic granularity (refer to Section 2 in [3]). 

Based on theoretical considerations in combination with experimental evidence collected from 

existing literature [15–23], this methodological work concludes that, as proof-of-concept of symbolic, 
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syntactic, pixel-based pre-attentive vision first stage, SIAM™ meets the aforementioned RS-IUS 

requirements specification (A) to (C).  

To the best of these authors’ knowledge, this is the first time a symbolic syntactic inference system, 

like SIAM™, is made available to the RS community for operational use in a RS-IUS pre-attentive 

vision first stage, to accomplish multi-scale image segmentation and multi-granularity image  

pre-classification simultaneously, automatically and in near real-time. 
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