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Abstract: The interferometric coherence parameter γ estimates the degree of correlation 
between two Synthetic Aperture Radar (SAR) images and can be influenced by vegetation 
structure. Here, we investigate the use of repeat-pass interferometric coherence γ to map 
stand age, an important parameter for the study of carbon stocks and forest regeneration. In 
August 2009 NASA’s L-band airborne sensor UAVSAR (Uninhabited Aerial Vehicle 
Synthetic Aperture Radar) acquired zero-baseline data over Quebec with temporal 
separation ranging between 45 min and 9 days. Our analysis focuses on a 66 km2 managed 
boreal forest and addresses three questions: (i) Can coherence from L-band systems be 
used to model forest age? (ii) Are models sensitive to weather events and temporal 
baseline? and (iii) How is model accuracy impacted by the spatial scale of analysis? Linear 
regression models with 2-day baseline showed the best results and indicated an inverse 
relationship between γ and stand age. Model accuracy improved at 5 ha scale (R2 = 0.75, 
RMSE = 5.3) as compared to 1 ha (R2 = 0.67, RMSE = 5.8). Our results indicate that 
coherence measurements from L-band repeat-pass systems can estimate forest age 
accurately and with no saturation. However, empirical model relationships and their 
accuracy are sensitive to weather events, temporal baseline, and spatial scale of analysis. 
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1. Introduction 

1.1. Motivation 

Land use change, in particular carbon uptake from forest regrowth, remains a significant source of 
uncertainty in the terrestrial carbon budget [1–3] and the contribution of boreal biomes, based on forest 
inventories, is on the order of 15–25% [3]. Canada ranks second in gross forest cover loss [4] owing to 
forest fires and insect outbreaks. It has been estimated that Canada’s biomass C sink in managed 
forests has been reduced by half between 1990–2000 and 2000–2007 [3]. However, such estimates are 
poorly constrained because of the uncertainty in quantifying fine-scale disturbance and subsequent 
regrowth, underscoring the need for remote sensing data [5].  

In the absence of repeat observation of forest biomass through time, stand age maps can be 
employed to study forest regeneration. For example, forest age estimates have been used in 
combination with lidar and field plots to generate yield curves that predict post-disturbance carbon 
accumulation [6,7]. Stand age can be estimated from dense Landsat time series that reveal the most 
recent date of forest disturbance [8]. A complementary approach, presented here, is to build empirical 
models that exploit the relationship between forest structure and age at a given point in time. 

Forest age has been modeled from Synthetic Aperture Radar (SAR) backscatter texture [9], but in 
many cases researchers can only resolve recently disturbed and old growth stands [10,11] and 
confidence intervals increase with stand age [12]. Backscatter temporal variation has also been used to 
model stand age [13,14], but this approach requires multiple acquisitions.  

Techniques from Interferometric SAR (InSAR) can also provide information on forest structural 
parameters by combining information from two acquisitions. The interferometric coherence γ [15] is a 
parameter that measures the similarity between two images and can be estimated from two  
co-registered SAR images as: 

 (1)

where S1 and S2 are single look complex (SLC) images acquired at times t1 and t2, the star (*) denotes 
complex conjugation, and angular brackets indicate averaging over a finite number of signal 
measurements (i.e., taking a sample of pixels).  

The coherence parameter γ was originally used to provide a confidence interval for the 
interferometric phase [16]. Forest stands lead to a decrease in phase coherence (referred to as 
“decorrelation”), which in turn reduces accuracy of land deformation and terrain elevation retrievals 
from interferometry. An important implication here is that interferometric coherence is influenced by 
the distribution of vegetation material and can be exploited to gain insights about forest structure. The 
objective of this study is to assess a method based on repeat-pass Interferometric Synthetic Aperture 
Radar (InSAR) coherence to map stand age in a managed forest in Quebec. In the following, we 
describe the impact of forest structure on coherence and the L-band airborne dataset being used here to 
derive coherence estimates.  
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1.2. Modeling Forest Structure from InSAR Coherence Maps 

In repeat-pass systems there is a time delay between the two acquisitions, in which case 
interferometric coherence can be attributed to four main components [17]:  

γ = γNγGγZγT (2)

where γN is the correlation due to thermal noise, γG is the geometric or baseline correlation, γZ is the 
volume correlation, and γT is temporal correlation. Volume decorrelation γZ can be modeled as a 
function of canopy height and penetration depth [18]. The impact of temporal decorrelation (γT) is 
significant over forest stands due to movement of scatterers between acquisitions or changes in their 
dielectric properties. Thus, temporal decorrelation is expected to be strongly dependent on weather 
events such as wind, precipitation, and snow melt.  

Several studies have modeled forest structure from repeat-pass coherence data acquired by the  
C-band European Remote Sensing satellites (ERS-1/2). Temporal decorrelation has been generally 
treated as model error [19,20]. A few authors, however, have assessed the structural information 
present in temporal decorrelation. Askne et al. [18] assumed wind-induced decorrelation related to 
canopy height, whereas Castel et al. [21] demonstrated the impact of wind on temporal decorrelation 
was more important in tall, mature forest stands. More recent work with airborne L-band data shows 
the relationship between temporal decorrelation and land cover [22] as well as canopy height [23,24]. 
Given these observations and the fact forest structure changes with age, it is conceivable that 
interferometric coherence could be used to map forest age. The present work covers existing 
knowledge gaps regarding our ability to map forest age with L-band coherence data. Specifically, our 
analyses address three questions: (i) Can coherence from L-band systems be used to model forest age? 
(ii) Are models sensitive to weather events and temporal baseline? and (iii) How is model accuracy 
impacted by the spatial scale of analysis?  

1.3. Remote Sensing Data 

We use repeat-pass L-band InSAR data acquired by NASA’s airborne sensor UAVSAR 
(Uninhabited Aerial Vehicle Synthetic Aperture Radar) [25]. In 2009, UAVSAR acquired repeat-pass 
data over the Laurentides Wildlife Reserve in the Quebec province [26]. The spatial separation 
between pairs of flight lines (spatial baseline) was nominally zero, and the temporal separation 
(temporal baseline) ranged between 45 min and 9 days. Our analyses are restricted to Montmorency 
Forest, a 66 km2 managed boreal forest with stands ranging between 2–42 years. Given UAVSAR 
observation parameters and zero nominal baseline, the impacts of γG, γZ, and γN are negligible and 
decorrelation is mainly due its temporal component γT [24]. This experiment has thus allowed us to 
focus on and exploit the impacts of temporal decorrelation on forest age mapping. We additionally 
used lidar data from the Laser Vegetation Imaging Sensor (LVIS) [27] to characterize forest structure 
across age classes. LVIS flew over the Laurentides Reserve in August 2009 and acquired two tracks 
with 2.8 km swath. Canopy profiles from LVIS waveforms are strongly influenced by forest 
successional stage [28]. In this paper, we do not attempt to optimize the use of LVIS data to obtain 
stand age. Instead, the LVIS waveform quantile metrics serve to characterize basic structural differences 
across forest age classes that may impact InSAR coherence, which is the main focus of this paper.  
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2. Methods 

2.1. Study Site  

Our study area is Montmorency Forest, located 80 km north of Quebec City and adjacent to the 
Laurentides Wildlife Reserve (Figure 1). The forest is part of a post-glacial ecosystem with elevation 
ranging between 500 and 1,000 m. Montmorency lies at the Northern limit of the temperate seasonal forest 
biome [29]. The average daily temperature is 9.8 °C in May–October and −9.2 °C in November–April [30]. 
Forest composition however is typical of the boreal mixed wood zone [31,32]. Owing to infrequent fire 
disturbances the forest dynamics are largely controlled by periodic epidemics of spruce budworm and 
windthrow [33]. As a result the tree community is dominated by Balsam fir (Abies Balsamea), but also 
includes White spruce (Picea Glauca), Black spruce (Picea Mariana), and Paper birch (Betula 
Paryrifera) [34].  

Figure 1. Study site in Quebec, Canada. (A) Overview of study site in Montmorency 
Forest. UAVSAR coherence is shown with temporal baselines of 45 min (B), 2 days (C),  
7 days (D), and 9 days (E).  

 

Since 1964, Université Laval manages Montmorency Forest to ensure that the size/frequency of 
cuts is compatible with the historical disturbances for this site [34]. The resulting landscape is a mosaic 
of forest successional stages, with even-aged patches ranging between 0.5 and 100 ha and 
approximately equal contribution of early growth (0–20 years), late secondary (20–40 years), and late 
successional (>40 years) patches. Most of the forest regrowth follows natural regeneration [34]. Water 
accumulation on the soil surface is high in Montmorency due to its dense cover with >50 species of 
mosses and lichens [35].  
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2.2. UAVSAR Correlation and Backscatter 

UAVSAR acquired data over the Laurentides Wildlife Reserve (Figure 1) during the leaf-on period 
in August 2009. We processed 5 pairs of co-registered images with zero nominal spatial baseline and 
temporal baselines ranging between 45 min and 9 days (Table 1). Interferometric coherence was 
computed from the slant-range SLC images using Equation (1) and a sample size of 10 × 5 pixels in 
range and azimuth direction, respectively. Results were geocoded to produce ground range images 
with 5 m resolution.  

Table 1. List of zero baseline UAVSAR coherence pairs. The star (*) represents the 
polarization channel. Both HH and HV pairs were evaluated.  

Acquisition Day (2009) UAVSAR Pair Temporal Baseline
7 August Laurnt_18801_09056_007_090807_L090*_CX_01.grd 

45 min 
7 August Laurnt_18801_09056_005_090807_L090*_CX_01.grd 

14 August Laurnt_18801_09061_007_090814_L090*_CX_01.grd 
45 min 

14 August Laurnt_18801_09061_005_090814_L090*_CX_01.grd 
5 August Laurnt_18801_09054_007_090805_L090*_CX_01.grd 

2 days 
7 August Laurnt_18801_09056_007_090807_L090*_CX_01.grd 
7 August Laurnt_18801_09056_005_090807_L090*_CX_01.grd 

7 days 
14 August Laurnt_18801_09061_007_090814_L090*_CX_01.grd 
5 August Laurnt_18801_09054_007_090805_L090*_CX_01.grd 

9 days 
14 August Laurnt_18801_09061_007_090814_L090*_CX_01.grd 

Coherence images can be downloaded from the Laurentides Super Site (http://lidarradar.jpl.nasa.gov/ 
sites/laurentides.html). 

In order to compare UAVSAR coherence measurements with more widely used backscatter data, 
we also processed the SLC images acquired on 5August and7 August (Table 1) to generate terrain 
calibrated and radiometrically normalized backscatter images (γ°) for channels HH, HV, and VV.  

2.3. Weather Data 

We expect temporal changes to be encompassed by movement of large branches and variation in 
vegetation and soil moisture following weather events. For this reason we report rainfall and wind 
speed measurements for a weather station in Montmorency (available through Canada’s National 
Climate Data and Information Archive, http://www.climate.weatheroffice.gc.ca). We also set one 
weather station and five rain gauges along Highway 175, at a distance between 18–60 km from 
Montmorency Forest. Rain gauges were checked and emptied in the mornings between 3 August and 
14 August. 

Our field site received substantial rainfall on 4, 7, 9, and 10 August (Figure 2) and the UAVSAR 
images acquired during the 7 August flight were most likely impacted by wet vegetation and wind. Our 
weather stations indicate that most of the rainfall took place in the morning of 7 August, before the 
UAVSAR flight at 16:15.  
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statistics were weighted to account for the proportion (%) of each pixel overlapping with its 
corresponding patch. The extracted values were then used as part of a linear regression to model patch 
age as a function of radar measurements. We report results for both ordinary least squares regression 
and robust regression [40]. 

3. Results  

Mean patch age was 15 ± 10 years (Figure 3). Montmorency Forest was almost entirely covered by 
the UAVSAR track but only partially covered by the LVIS track (Figure 1), therefore models including 
LVIS metrics include fewer samples. For the UAVSAR track, we found 84 patches with >5 ha overlap 
and 228 patches with >1 ha overlap. In the case of the LVIS track, these numbers drop to 70 (>5 ha) 
and 149 (>1 ha). We selected patches using the 1 ha and 5 ha area thresholds to model patch age from 
radar and lidar metrics at 5 ha (Table 2) and 1 ha (Table 3).  

Figure 3. Variation in stand age in managed patches at Montmorency Forest. Shown here 
are only patches with >1 ha overlap with the UAVSAR swath.  

 

Table 2. Modeling forest patch age from active remote sensing data. Regression equations 
are of the form Age (years) = a + b × X where X is the predictor variable. Statistically 
significant models are shown in bold. OLS = ordinary least squares; WLS = weighed least 
squares. Minimum overlap with UAVSAR/LVIS swath is 5 ha.  

Predictor Variable R2 RMSE (years) a b P 
LVIS RH50 0.40 8.5 9.1 5.8 <0.01 
LVIS RH75 0.29 9.2 0.8 3.9 <0.01 

LVIS RH100 0.05 10.7 4.1 1.3 0.04 
LVIS RH50/RH100 0.51 7.6 5.1 100.4 <0.01 

UAVSAR Gamma naught HH 0.20 9.5 44.1 4.1 <0.01 
UAVSAR Gamma naught HV 0.37 8.4 85.7 5.1 <0.01 
UAVSAR Gamma naught VV 0.06 10.3 41.5 2.9 0.02 

UAVSAR coh HH 45 min 0.03 10.4 126.3 −115.5 0.058 
UAVSAR coh HH 2 days OLS 0.75 5.3 95.3 −109.2 <0.01 
UAVSAR coh HH 2 days WLS 0.79 19.8 93.7 −104.4 <0.01 
UAVSAR coh HH 7 days OLS 0.34 8.6 78.7 −97.1 <0.01 
UAVSAR coh HH 7 days WLS 0.59 27.9 94.0 −115.1 <0.01 

UAVSAR coh HH 9 days <0.01 10.6 −4.1 25.2 0.33 
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Table 3. Modeling forest patch age from active remote sensing data. Regression equations 
are of the form Age (years) = a + b × X where X is the predictor variable. Statistically 
significant models are shown in bold. OLS = ordinary least squares; WLS = weighed least 
squares. Minimum overlap with UAVSAR/LVIS swath is 1 ha.  

Predictor Variable R2 RMSE (years) a b P 
LVIS RH50 0.07 10.2 13.4 2.2 <0.01 
LVIS RH75 0.01 10.6 14.0 0.7 0.10 

LVIS RH100 <0.01 10.6 20.1 −0.2 0.46 
LVIS RH50/RH100 0.20 9.0 44.4 4.3 <0.01 

UAVSAR Gamma naught HH 0.20 9.1 42.6 4.0 <0.01 
UAVSAR Gamma naught HV 0.30 8.5 72.5 4.2 <0.01 
UAVSAR Gamma naught VV 0.10 9.7 42.0 3.1 <0.01 

UAVSAR coh HH 45 min 0.01 10.1 69.0 −55.8 0.05 
UAVSAR coh HH 2 days OLS 0.67 5.8 85.7 −98.1 <0.01 
UAVSAR coh HH 2 days WLS 0.72 23.1 91.0 −103.0 <0.01 
UAVSAR coh HH 7 days OLS 0.32 8.3 71.5 −87.8 <0.01 
UAVSAR coh HH 7 days WLS 0.52 30.4 89.1 −110.0 <0.01 

UAVSAR coh HH 9 days 0.01 10.1 −4.3 25.0 0.07 

Stand age showed a significant correlation with all lidar-derived structural metrics except for top 
canopy height (RH100). The best fit was obtained with 5 ha models (Figure 4(A); Tables 2 and 3). We 
have computed the within-patch standard deviation in RH100 values, and results show significantly 
more variability in young patches (Figure 4(B)). We also detected a significant linear correlation 
between stand age and calibrated UAVSAR backscatter at channels HH and HV (Figure 5), and 
observed no saturation of the SAR signal with stand age. The best result was again found for the 5 ha 
scale (Tables 2 and 3). Overall, despite the partial overlap with forest patches, LVIS metrics showed 
better relationship with stand age (best R2 = 0.51; Table 2) as compared to UAVSAR backscatter (best 
R2 = 0.37; Table 2).  

UAVSAR coherence decreased with stand age for both 2-day and 7-day UAVSAR pairs (Figure 6). 
The best fit of the Ordinary Least Squares (OLS) model used the 2-day pair and improved at the 5 ha 
scale (R2 = 0.75; RMSE = 5.3 years; Table 2) as compared to 1 ha (R2 = 0.67; RMSE = 8.6 years; 
Table 3). In contrast, the 45-min and 9-day temporal baselines exhibited a narrow dynamic range of 
coherence values and no variation across age classes was observed (Figure 6). Both 45-min pairs 
(Table 1) performed poorly as predictors of stand age so we only show results for the August 7th pair, 
which had the largest dynamic range of all pairs (Figure 6). Regarding significant models, we found 
that models with HH coherence pairs had a better fit as compared to HV coherence pairs, with a 
difference in R2 of about 0.2 (not shown), so all results on Tables 2 and 3 are for the HH channel. 

The amount of decorrelation varied greatly with temporal baseline. A more marked difference in 
decorrelation of the InSAR signal was observed in young forest stands as the temporal baseline 
increased from 2 to 7 days (Figure 7). To examine this issue, we performed a Weighed Least Squares 
(WLS) model that weighed each data point by its corresponding age, thereby putting an emphasis on 
old growth forests. This was performed for all coherence pairs. The main outcome was an increase in 
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the model fit for the 7-day pair (R2 = 0.52 at 1 ha; R2 = 0.59 at 5 ha) at the expense of a ~20-year 
increase in the overall model RMSE (Tables 2 and 3). 

Figure 4. (A) Forest patch age modeled as a function of LVIS waveform metrics. Overlap 
with LVIS swath is >5 ha. Line fits are added to significant models (see Table 2 for model 
parameters). (B) Within-patch standard deviation in LVIS-derived canopy height (RH100), 
showing that mature (>20 years) stands are more homogeneous than young stands. 

 
(A) 

 
(B) 

Figure 5. Forest patch age modeled as a function of UAVSAR calibrated backscatter. 
Gridded 5 m resolution γ° values were averaged for each patch. Overlap with UAVSAR 
swath is >5 ha. Line fits are added to significant models (Table 2). 
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Figure 6. Forest patch age modeled as a function of UAVSAR interferometric coherence. 
Values were calculated with zero spatial baseline and HH polarization. Minimum overlap 
with UAVSAR swath is 5 ha (top row) and 1 ha (bottom row). Line fits are added to 
significant models (see Tables 3 and 4 for model parameters). OLS = ordinary least 
squares, WLS = weighed least squares. Note the broader dynamic range for the 2-day pair.  

 

Figure 7. Differences in UAVSAR HH coherence between 2-day interval and 7-day 
temporal baselines. Note there is no temporal overlap between the two pairs (Table 2). The 
difference shows a marked decrease in coherence for young (<15 years) forest stands. This 
can explain the reduced model fit for the 7-day pair (Figure 6). 
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4. Discussion 

We found a linear decrease in UAVSAR interferometric coherence with patch age in Quebec. The 
best predictions were obtained using the HH channel and averaging coherence data at 5 ha scale (Table 3). 
In the case of backscatter, we observed a linear increase with stand age and no saturation as previously 
found with aboveground biomass in other boreal sites [41,42]. However, stand age showed a tighter 
relationship with InSAR coherence, as has been previously found for C-band studies [20]. In the 
absence of ground measurements it is not yet possible to ascertain which structural components are 
changing with respect with forest structure. But based on lidar metrics (Figure 4(A)) it is reasonable to 
infer that mature patches are associated with taller canopies. The lidar-derived canopy height metric 
RH100 shows considerable within-patch variation (Figure 4(B)). A stronger correlation with age is 
observed with RH75 (Table 2), a metric generally associated with basal area-weighted height [37].  

Our results agree with past studies that have described a relationship between temporal 
decorrelation and forest height [23]. In addition, coherence maps from C-band ERS-1/2 including both 
volume and temporal decorrelation show a relationship with aboveground biomass [21,43] and stem 
volume [39,44]. Since our experiment employs a zero spatial baseline we can better examine the 
impacts of temporal decorrelation, in particular the interaction between weather events and forest 
structure on model fits.  

The dynamic range of coherence was small for the 45-min and the 9-days baselines (Figure 6) and 
failed to generate any spatial patterns (Figure 1). Two 45-min pairs were analyzed in our study.  
On 7 August, both images were acquired under wet conditions, on 14August both images were 
acquired under dry conditions (Figure 2), and both images from the 9-days pair were acquired under 
dry conditions. We recorded a rainfall event on 7 August but this event is not likely to influence the  
9-days pair as it occurred after the first acquisition and one week before the second acquisition. Thus 
the changes in moisture conditions between acquisitions can be as important in determining temporal 
decorrelation as the temporal baseline itself. At the same time, we observed wind gusts of up to  
40 km/h during acquisitions (Figure 2), but these events were not helpful in resolving forest age at  
45-min and 9-days intervals. 

Coherence maps using the two intermediate baselines (2 and 7 days) showed variation across forest 
age classes and produced significant models (Tables 2 and 3). Mature forest patches showed lower 
coherence in the 2-day pair, suggesting a role for the movement of large branches in old growth 
forests. Indeed, studies with C-band ERS-1/2 over pine stands show that wind exposure decorrelates 
the signal over mature patches, but not young patches [21]. It is likely that the top components of tall 
fir trees are less flexible and more likely to move with wind. At 7 days, we observed the opposite 
pattern: the UAVSAR signal over young forests showed low coherence values (Figure 7) causing a 
reduction in the model fit (Figure 6). Our weather stations recorded a rainfall event on 7 August. This 
suggests a role of soil moisture leading to changes in the soil dielectric properties between 
acquisitions, thereby contributing to signal decorrelation. Rainfall events are more likely to impact the 
coherence in young patches with more ground exposure.  
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