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Abstract: Leaf Area Index (LAI) is an important input variable for forest ecosystem 

modeling as it is a factor in predicting productivity and biomass, two key aspects of forest 

health. Current in situ methods of determining LAI are sometimes destructive and generally 

very time consuming. Other LAI derivation methods, mainly satellite-based in nature, do not 

provide sufficient spatial resolution or the precision required by forest managers for tactical 

planning. This paper focuses on estimating LAI from: (i) height and density metrics derived 

from Light Detection and Ranging (LiDAR); (ii) spectral vegetation indices (SVIs), in 

particular the Normalized Difference Vegetation Index (NDVI); and (iii) a combination of 

these methods. For the Hearst Forest of Northern Ontario, in situ measurements of LAI were 

derived from digital hemispherical photographs (DHPs) while remote sensing variables were 

derived from low density LiDAR (i.e., 1 m−2) and high spatial resolution WorldView-2 data 

(2 m). Multiple Linear Regression (MLR) models were generated using these variables. 

Results from these analyses demonstrate: (i) moderate explanatory power (i.e., R2 = 0.53) for 

LiDAR height and density metrics that have proven to be related to canopy structure; (ii) no 

relationship when using SVIs; and (iii) no significant improvement of LiDAR models when 

combining them with SVI variables. The results suggest that LiDAR models in boreal forest 

environments provide satisfactory estimations of LAI, even with narrow ranges of LAI for 

model calibration. Models derived from low point density LiDAR in a mixedwood boreal 

environment seem to offer a reliable method of estimating LAI at high spatial resolution for 

decision makers in the forestry community. This method can be easily incorporated into 

simultaneous modeling efforts for forest inventory variables using LiDAR. 
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1. Introduction 

The Boreal Forest of Canada covers over 300 million hectares, stretching more than 1,000 km from 

the Atlantic to Pacific coasts [1]. Ontario alone is covered by more than 71 million hectares of forest, 

resulting in almost two-thirds of the land base being forested, over half of which is in the Boreal  

region [2]. As one of the dominant features of this country’s landscape, the careful monitoring, 

management and protection of the Boreal Forest is crucial for sustaining balance in this biome. 

However, the vast extent requires cooperation between federal, provincial and territorial governments, 

commercial foresters and conservationists in order to “...manage Crown forests to meet social, 

economic and environmental needs of present and future generations” [3]. 

In order to monitor vegetation health and sustainability at strategic (i.e., future planning) and 

tactical (i.e., short term) scales it is important to properly select vegetation metrics that are robust and 

easy to measure. The State of the Forest Report [2] lists, among other things, primary productivity as a 

key indicator of forest sustainability. Net primary productivity (NPP), the rate at which an ecosystem 

accumulates biomass, is a good long term gauge of ecosystem health due to its reliance on a 

combination of basic ecosystem drivers: water, nutrient availability and sunlight [4]. Tracking NPP 

over time can provide managers with a relative estimate of forest health and long-term growth. 

When focusing on the need to monitor forest health for commercial or conservation applications, 

we are interested in assessing and monitoring primary productivity or biomass over large areas. Leaf 

Area Index (LAI), a key input to productivity models, can be estimated using a variety of remote 

sensing techniques (e.g., [5–7]). The focus of this research is on the ability of passive (i.e., high 

resolution multispectral satellite data) and active (i.e., Light Detection and Ranging (LiDAR)) sensors 

to estimate LAI. The results of this research will provide insight into the accuracy and precision of 

these two remote sensing data types for estimating LAI over large tracts of boreal mixedwood forest in 

Ontario as well as the utility of each for providing suitable inputs to productivity models. 

LAI has been used in many studies to derive, or correlate to, primary productivity or biomass  

(e.g., [8–11]). Current productivity and biomass estimates from provincial government organizations 

use only growth estimate statistics and intensive ground sampling to derive biomass estimates from 

models [2]. Allometric measurements (i.e., using known relationships between parts of an organism 

and its whole) of tree height or diameter at breast height (DBH) rely on statistical distributions derived 

from prior destructive sampling. This technique is one of the fastest in situ methods of providing forest 

mensuration data such as biomass, but has problems relating to phenology and variation in 

environmental conditions from the original curve-defining measurements [12]. 

LiDAR LAI models have the potential to provide fast, repeat assessments of a forest, returning 

variables that can provide accurate estimations of biomass and productivity. Studies have been carried 

out around the world that assess LAI using LiDAR (e.g., [13–15]). Building on those studies, this 

research will examine techniques for a Canadian boreal mixedwood setting using relatively low point 

density LiDAR, a requirement for cost effective, large area forest resource inventories.  
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The other aspect of this research, i.e., examining spectral vegetation indices (SVI) and their 

correlations to LAI, has been well documented, but primarily for lower resolution satellite sensors (i.e., 

Landsat, MODIS and AVHRR) (e.g., [16–19]). Here, we will examine high spatial resolution satellite 

imagery (i.e., WorldView-2) to determine the relationship of SVIs to plot level estimates of LAI. 

These relationships can then be compared to estimates modeled from LiDAR data. Forest managers are 

eager to have the ability to create products such as these at improved spatial and temporal resolutions [20]. 

It is hypothesized that there will be a statistically significant relationship between in situ 

measurements of LAI and low point density LiDAR data and/or high resolution Normalized Difference 

Vegetation Index (NDVI) data. Models of LAI combining these two data sources will also be 

examined to determine the utility of integrating spectral and structural information for modeling LAI.  

2. Materials and Methods 

2.1. Study Area 

The field campaign to collect in situ digital hemispherical photographs (DHPs) for model 

calibration/validation took place in June and July 2011 in the Hearst Forest, centered roughly on 

Hearst, Ontario, Canada (49.7°N, 83.7°W) (Figure 1). This forest falls within the boreal mixedwood 

region and covers approximately 1.23 million ha; 1.00 million ha of which is productive forest [21]. It 

is an actively managed, commercial forest, with approximately 60,000–70,000 ha harvested annually [22].  

Figure 1. Map depicting Hearst, Ontario and surrounding cities. 

 

The majority of the tree species in the Hearst Forest are coniferous, with black spruce (Picea 

mariana Mill. B.S.P.) present in approximately two-thirds of the forest units. The coniferous species in 
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this forest also include jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca Moench Voss), 

balsam fir (Abies balsamea L. Mill.) and tamarack (Larix laricina Du Roi K. Koch). Deciduous 

species in the study area include white birch (Betula papyrifera Marsh.), trembling aspen (Populous 

tremuloides Michx.) and balsam poplar (Populous balsamifera L.). 

The plots selected for this project were extracted from a pre-existing pool of 446 plots. These plots 

were established in 2010 in support of two integrated LiDAR projects, i.e., Geomatics for Informed 

Decisions (GEOIDE) and Advanced Forest Resource Inventory Technologies (AFRIT). Each plot was 

classified by forest unit and growth stage. The circular 0.04 ha plots (i.e., 11.3 m radius) were sampled 

for multiple height and wood fiber variables in 2010 [23]. Of these plots, 249 were chosen to provide a 

representative range of forest unit types, growth stages, and basal area to ensure a range of canopy 

closures. On a secondary level, these chosen plots were examined again to ensure as even spatial 

distribution as possible over the forest, while still maintaining ease of access from both the town of 

Hearst and accessible logging roads (Figure 2).  

Figure 2. Plot distribution in the Hearst Forest. 

 

2.2. Remotely Sensed Data 

2.2.1. LiDAR Data Acquisition 

LiDAR data were acquired by North West Geomatics Ltd. during the period of 4 July to 4 

September 2007 during leaf-on conditions. LiDAR data were collected using an Optech ALS50 sensor 

mounted in a Cessna 310 aircraft. These data were discrete pulse, with up to four returns measured. 
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The properties of the LiDAR acquisition are summarized in Table 1, with the resulting LiDAR point 

density being, on average, 0.81 m−2 across the Hearst Forest. Filtered and classified data were provided 

by North West Geomatics Ltd to partners at the Ontario Ministry of Natural Resources, who then 

generated the full suite of LiDAR predictor variables, including height and density metrics  

(Table A1). Variables that may be unfamiliar include D1 through 9 and cc0 through 28. DX is a 

canopy density metric that provides the cumulative proportion of returns found in 10 bins equally 

spanning the range of heights. ccX is the crown closure from X meters upwards through the canopy. 

Values are closest to 100% near ground level and decrease with height. These calculations were done 

at both the plot level and the forest level at a 20 m pixel resolution. 

Table 1. Light Detection and Ranging (LiDAR) acquisition properties [24]. 

Property Value 

Pulse Rate 119 KHz 

Scan Rate 32 Hz 

Field of View 30 Degrees 

Flying Height 2,400 m 

Line Spacing 1,000 m 

Overlap 20% 

Point Density 0.81 m−2 

Vertical Accuracy  
<30 cm 

Horizontal Accuracy 

2.2.2. WorldView-2 Data Acquisition 

One hundred km2 tiles of WorldView-2 data were acquired on 26 June, 2011 between 13:02 and 

13:03 local time (i.e., each tile was acquired on the same orbital path). These areas included eight 

multispectral channels at 2.0 m spatial resolution along with a panchromatic band at 0.5 m. These areas 

were selected to maximize the number of plots sampled, i.e., 122 of 249 plots fall within the 

WorldView-2 coverage (Figure 3). 

WorldView-2 images were delivered in five segments spanning the three areas of interest. Image 

calibration was first done to convert relative radiance to absolute radiance, then conversion of the raw. 

TIFF image file to .BIL (binary interleaved by line) to prepare the image for atmospheric correction. 

Atmospheric correction was performed using the FLAASH module in ENVI© 5.0 (Boulder, CO, 

USA) with the atmospheric model set to “sub-arctic summer” (applicable for the 49°N latitude) and 

the aerosol model to “rural.” Ground elevations were extracted from the LiDAR derived digital 

elevation model (DEM) of the Hearst Forest. Initial visibility, set to 24.1 km, was taken from the 

Environment Canada climate archives [25]. The tiles were then mosaicked, with the mean blending 

operator used for overlapping areas, to make further processing more efficient. An NDVI was 

calculated using the red and near infrared-1 bands as seen in Equation (1). Mean NDVI for each 0.4 ha 

plot was extracted and added to the table of LiDAR predictor variables for each plot. 11  (1) 

 



Remote Sens. 2013, 5 5045 

 

Figure 3. WorldView-2 satellite image coverage in the Hearst Forest. 

 

2.3. Digital Hemispherical Photography Collection 

At each plot, DHPs were taken in order to estimate LAI using methods described in the 

DHP/TRACwin software manual [26] and by Leblanc et al. [6]. The sampling design used was a 

modification of several different patterns found in the literature, all designed specifically for the 

particular area or research question (e.g., [14,26–28]). Due to our circular plots with radii of 11.3 m, a 

gridded, 3-by-3, north-aligned design was selected with the central image being taken at plot center 

(Figure 4). Testing was completed afterwards to assess the necessity of capturing nine images and will 

be discussed later. The camera was oriented so that the top of the image always faced north. The 10 m 

spacing was measured using a Haglof Vertex© Hypsometer (Långsele, Sweden), calibrated daily. 

Figure 4. Digital hemispherical photographs (DHP) sampling design. 

 

The images were taken with a Nikon© D700 (Tokyo, Japan) and Fisheye-Nikkor© 8 mm f/2.8 lens 

(Tokyo, Japan) (Figure 5). The D700 featured a 12.1 megapixel, FX full frame sensor required for use 
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with the specialized lens. The lens itself provided a 180° field of view projected as a circular image. 

The camera was set to take medium quality images (i.e., resolution of 3,184 by 2,120 pixels) as this 

was greater than the image resolution recommended in the literature [6], and optimized storage 

requirements. Using the automatic light metering on the camera, each scene was captured attempting 

to under-expose the image by one or two stops of shutter speed. This exposure produced the best 

relationship of dark foliage/woody biomass to slightly overexposed background sky, although varying 

lighting and canopy conditions required constant manual adjustments. Vegetation within 1 m of the 

lens was moved out of frame view. 

Figure 5. Setup of camera and lens system in a plot. 

 

Images were taken with the focal point at standardized breast height (i.e., 1.3 m) (Figure 5) [26]. Before 

taking an image, the camera was leveled using a spirit level. Most plots were topographically flat, but in 

plots with varied elevation or a consistent slope the camera was oriented to be level with the local ground 

surface, or artificial horizon, not the true horizon [26]. Ideal sampling conditions consisted of overcast, 

uniformly illuminated skies (i.e., diffuse light). The lens was cleaned regularly to remove collected dust and 

fingerprints. Figure 6 provides an example of a correctly exposed DHP; foliage/biomass pixels are 

underexposed, i.e., verging on black, and sky pixels are close to saturated, i.e., near white.  

Using a combination of DHP 4.7s and TRACWin 5.1.0 software (Ottawa, Canada), 2,241 DHPs 

were processed to retrieve true LAI values. Images were first processed by “thresholding” [26]. In this 

process, thresholding refers to a manual process consisting of two stages. First, the logarithm of the 

histogram of digital numbers in the blue channel of the image was examined (Figure 7). The blue 

channel was used as it provides better delineation between vegetation, sky and mixed pixels [6]. The 

goal of this initial inspection was to place the threshold bounding the linear portion of the histogram. 

Then, an iterative process was used to refine the two thresholds to best represent the unique scene and 

zenith conditions for each of several image rings. Figure 8 shows a full resolution zoom of a 

comparison between a raw blue channel image and the resulting thresholded image. 
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Figure 6. DHP image example (Jack Pine LAI = 1.5). 

 

Figure 7. Logarithm of digital number histogram used for thresholding and initial 

threshold placement (relative y-axis scaling of image digital numbers). 

 

Figure 8. DHP thresholding example (1:1 resolution image (A); threshold image  

(B) black = vegetation, green = mixed, white = sky). 

 
(A)                                          (B) 
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DHP provided a measure of Effective LAI (LAIe). To derive LAI, data were exported from DHP to 

TRACWin. In this software package, two ratios for each tree species were applied to account for 

clumping (i.e., needle:shoot ratio for coniferous species) and the expected amount of woody biomass 

in an image (i.e., woody:total ratio) (Table 2). Species that had published values included black spruce, 

jack pine, balsam fir and trembling aspen [29]. The application of these ratios for other species (e.g., 

black spruce for tamarack and which spruce) was performed after personal communication with Drs. 

Jing Chen, Sylvain Leblanc and Valerie Thomas [30]. Through this consultation it was concluded that 

these additional species had not been verifiably measured, and that using pre-existing, similar species 

parameters was appropriate. 

Table 2. Species TRACWin ratios. 

Species Needle:Shoot Ratio Woody:Total Ratio 

Black Spruce 1.35 0.14 

Tamarack 1.35 0.14 

White Spruce 1.35 0.14 

Balsam Fir 1.77 0.08 

Jack Pine 1.30 0.03–0.34 

White Birch  0.21 

Trembling Aspen  0.21 

Baslam Poplar   0.21 

After all images were processed, the mean of each set of nine individual LAI values for each plot 

was calculated to provide an estimate of plot LAI. Any plots with a mixed species composition where 

the minority species had greater than 20 percent coverage by basal area of trees ≥ 10 cm DBH were 

linearly weighted. That is to say, a plot with 85% black spruce and 15% jack pine would be treated 

entirely as black spruce. This methodology was consistent with LAI processing work conducted by 

Karin van Ewijk [31]. 

There is a temporal gap between LiDAR collection (2007) and DHP/WorldView-2 collection 

(2011), but it has been shown that annual variability in maximum LAI is relatively stable [32].  

Intra-annual variability has been shown to occur based mainly on differences in cumulative degree 

days impacting the timing of leaf emergence. DHP collection was timed with the WorldView-2 

acquisition, but LiDAR data were collected before this projects inception and therefore had to be used 

in its original form.  

2.4. Statistical Methods 

Multiple Linear Regression (MLR) was the statistical method used for modeling LAI using the 

LiDAR variables. A preliminary goodness-of-fit test of LAI normality resulted in identifying a normal 

distribution, though with distinct outliers. An assessment of outliers determined that they corresponded 

to plots that included balsam fir, a species whose TRACWin ratios were in question due to apparent 

over-estimation of LAI values. Removing these ten plots resulted in a statistically verified normal 

distribution (Shapiro-Wilk W test: Prob < W = 0.37). From the extensive suite of predictor variables 

(Table A1) reduction was performed using a scatterplot matrix, visually and with R2, to avoid 
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multicollinearity due to the high similarity between some variables. Most notably, the percentile (i.e., 

P10–P100 [maximum]) and density (i.e., D1–D9) variables were highly correlated and were reduced to 

three or four variables within each set. If two or more seemingly unrelated variables were highly 

correlated (i.e., high R2) the more straightforward (i.e., simple statistical variables over derived 

indices) was usually retained.  

From the much smaller subset of variables, several automated techniques were used to further 

investigate the relationships for modeling. Forward and backward stepwise selection of variables was 

run using the minimum Akaike Information Criterion (AIC) as the criteria for termination. Also, an 

automated decision tree approach provided insight into some of the variables with the most 

explanatory power. Variable reduction was completed beforehand even though automated stepwise 

methods in JMP© could have been run with the entire set of predictors. This pre-screening was due to 

the tendency of model accuracy overestimation with large pools of predictor variables [33]. The 

detrimental influence of plots with exceedingly little canopy cover was noted, and a single plot with a 

measured LAI value < 0.1 was removed. The remaining set of plots, a total of 225, was randomly 

divided into two-thirds calibration and one-third validation. From the most significant variables 

discovered through automated forward and backward exploratory step-wise methods, manual forward 

stepwise selection was performed using live-updating sum of squares. Variable addition terminated 

when an increasing R2 was offset by an overabundance of predictor variables and a minimized  

AIC [34]. Model residuals were graphed and were seen to be uniformly distributed. Three separate 

models were created: (i) LiDAR only predictor variables; (ii) vegetation indices; and (iii) a 

combination of LiDAR predictor variables with the vegetation indices. Model validation was 

performed using a matched pairs t-test. 

3. Results  

3.1. Leaf Area Index Estimation 

Descriptive statistics for the final set of plots can be seen in Table 3, with the final LAI distribution 

in Figure 9. Over 90 percent of the LAI values fall between 1.0 and 3.5. This narrow range is not ideal 

for regression analyses, in spite of the fact that sampling was specifically designed to sample areas of 

expected high and low LAI to acquire data from within some of the anticipated “tails” of the 

distribution. The distribution of values is statistically normal, a prerequisite for multiple linear 

regression model generation.  

Table 3. Leaf Area Index (LAI) statistics for final plots. 

 Final Plots 

Mean 2.26 

Standard Deviation 0.83 

Range 4.64 

Minimum 0.37 

Maximum 5.01 

Total Count (n) 225 
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Figure 9. Frequency Histogram of LAI values from 225 final model plots. 

 

The statistics presented in Table 3 are based on the mean of all nine DHPs collected for each plot. 

Testing was performed to investigate the effects of the positioning of the DHPs collected at each plot 

(Figure 4). The same statistics using: (i) the five DHPs within the plot boundary (i.e., center and four 

cardinal directions within the 11.3 m radius); and (ii) the center DHP alone are presented in Table 4. 

Over the three scenarios (i.e., nine DHPs, five DHPs and one DHP), the LAI mean remains constant, 

likely due to the large number of samples and small range of LAI values. As the number of 

photographs used in the calculations at each plot decreases, the standard deviation and range of values 

increases. Conversely, at the intra-plot level five DHPs in the cross pattern have less variation than the 

nine DHPs. This trend, which seems unexpected, is likely caused by: (i) the tighter spacing of the 

center and immediately adjacent DHPs; (ii) the probable overlap of fields-of-view within adjacent 

DHPs; and (iii) the fact that these DHPs are more likely to fall within the densest central portion of 

potentially smaller forest stands than in differing fringe areas.  

Table 4. Descriptive statistics of three trials using different combinations of DHPs to 

estimate LAI. 

LAI Statistics All DHPs (9) Cross Pattern (5) (within Plot) Center (1) 

Mean 2.26 2.26 2.26 

Standard Deviation 0.83 0.86 0.97 

Range 4.64 4.68 6.00 

Minimum 0.37 0.32 0.12 

Maximum 5.01 5.00 6.12 

Intra-plot Standard Deviation 0.38 0.36 -- 

While the statistics below demonstrate that there are only small statistical variations in LAI between 

sampling designs, Figure 10 illustrates in more detail the plot-by-plot differences observed between 

full and subset sampling. With a 1:1 line shown, there appears to be strong correlation (R2 = 0.84) at 

the single DHP level, albeit with a moderate spread and general overestimation at higher LAI values. 
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The variability around the 1:1 line results from the lack of any averaging, and the overestimation is 

likely because of the nature of the original plot selection. A small number of plots represent smaller 

forest stands close to the size of the DHP grid. These few small stands were originally visited to ensure 

adequate species representation in the initial studies undertaken in Hearst. This size discrepancy means 

that the central photograph was usually placed in the densest, central part of the stand. Examining 

some WorldView-2 scenes in both the multispectral and panchromatic confirms that several of the 

overestimated plots indeed fall in these smaller pockets. When using five DHPs within the plot a  

near-perfect correlation (R2 = 0.98) to the full nine photograph sample is observed, with minor 

variability around the 1:1 line and only slight overestimation at higher LAI values. From this figure it 

could be argued that future research in this area could be completed using a five photograph cross 

pattern with almost no loss of accuracy. 

Figure 10. Comparison of plot LAI between the nine sample DHP average (x-axis); the five 

sample DHP cross pattern average (y-axis) and the single sample DHP estimate (y-axis). 

 

3.2. LiDAR Model Generation 

From the 53 original LiDAR predictor variables, variable selection was performed using scatterplot 

matrices and correlation analysis. Some of the most simple exclusions were variables from different 

sets that had similar calculations (e.g., median and P50, standard and absolute deviation). As median 

and P50 are actually the same value, it was simple to remove P50 from the potential list. Other 

variables like the Shannon Weaver Index (H) and the VCI were so closely related that it was easy to 

eliminate the more complex variable, H. The most difficult variables to exclude were height and 

density metrics, as they provided a large amount of information, but were also severely  

inter-correlated. Percentile variables correlated strongly with their adjacent variables (i.e., P20 to both 

P10 and P30) ranging from R2’s of 0.80 to 0.98, and adjacent density variables were even more  

inter-correlated, ranging from R2’s of 0.89 to 0.97. Based on inter-correlations and correlations to LAI 

itself, 22 predictor variables were selected for model development (Table 5). 
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Table 5. Final suite of LiDAR predictor variables. 

LiDAR Predictor Description 

ABS_DEV Absolute Standard Deviation 

KURTOSIS Kurtosis 

P10 First Decile LiDAR Height (m)  

P40 Fourth Decile LiDAR Height (m) 

P60 Sixth Decile LiDAR Height (m) 

MAX Maximum height (m) 

D1 Cumulative percentage of the number of returns found in Bin 1 of 10 

D5 Cumulative percentage of the number of returns found in Bin 5 of 10 

D9 Cumulative percentage of the number of returns found in Bin 9 of 10 

DA First returns/All Returns 

DV First Vegetation Returns/All Returns 

MEDIAN Median Height (m) 

VDR Vertical Distribution Ratio = VDR = [Max−Median]/Max 

COVAR Coefficient of variation (STD/Mean) 

CanCOVAR Coefficient of variation (STD/Mean) of first returns only 

VCI Vertical Complexity Index  

FIRSTVEG Number of First Vegetation Returns only 

ALLGROUND Number of Ground Returns 

cc2 Crown closure ≥ 2 m 

cc6 Crown closure ≥ 6 m 

cc12 Crown closure ≥ 12 m 

cc20 Crown closure ≥ 20 m 

Using automated decision tree and forward and backward, step-wise, automated variable selection 

methods within the model generation framework of JMP©, several key variables began to emerge. The 

coefficient of variation (COVAR) (i.e., standard deviation divided by mean) and VCI were highly 

influential components of automatically derived models. As well, several other variables relating to 

vegetation complexity were flagged for later inspection: i.e., absolute standard deviation, DA (i.e., first 

return divided by all returns) and DV (i.e., first vegetation return divided by all returns). Interestingly, 

height and density metrics were not selected earlier than 5th or 6th in automatic variable selection, and 

did not provide much additional explanatory power to the model. 

Using manual entry and expert knowledge, in conjunction with monitoring the sum of squares and 

F-ratios, these remaining key variables were passed together in various combinations. This analysis 

generated the final model from the randomly selected calibration dataset of 150 plots (Equation (2)): 

601.010.184.103.0 ccVCICOVARDALAI ++−=  (2) 

This model has an adjusted R2 of 0.53 and RMSE of 0.57 (RMSE% = 24.7). All parameters are 

statistically significant at the <0.0001 level, with the exception of VCI at a slightly higher value (i.e.,  

p = 0.009). The Durban-Watson test for residual autocorrelation gave a value of 1.07 and 

autocorrelation probability of 0.44, upholding the null hypothesis of a lack of autocorrelation. A plot of 

model residuals lacked heteroscedasticity and residuals statistically passed a Shapiro-Wilk W test for 

normality (Prob < W = 0.56). 
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Using the remaining 75 plots as validation, the model was run with the same predictor variables. 

This dataset results in an adjusted R2 of 0.58 (p < 0.0001) and RMSE of 0.55 (RMSE% = 25.1). This 

R2 corresponds well to the explanatory power of both the calibration model (R2 = 0.53). A matched 

pairs test of the predicted and in situ estimated values shows no difference, statistically, with a null 

hypothesis-refuting (H0 = the data sets means are statistically different) p-value = 0.13. 

3.3. Spectral Vegetation Index Model Generation 

Using the atmospherically corrected WorldView-2 data, an NDVI surface with 2 m spatial 

resolution was created and mean values were extracted for each plot. These NDVI values were 

compared to plot LAI values in an attempt to determine whether there was a relationship between 

NDVI and LAI for the Hearst Forest using these high resolution data (i.e., DHP and WorldView-2). 

Upon plotting NDVI versus LAI at the plot level, it was apparent both visually (Figure 11) and 

statistically (i.e., R2 = 0.01) that the expected relationship between NDVI, as derived from 

WorldView-2 data, and LAI was not present.  

Figure 11. WorldView-2 Normalized Difference Vegetation Index (NDVI) versus LAI for 

n = 122 plots. 

 

3.4. Combination Model 

While optical instruments alone proved insufficient to model LAI, further testing was done to 

investigate whether WorldView-2 data could improve the LiDAR model. MLR models may be able to 

extract information from a combination of predictor variables that may not have been apparent in a 

simple regression model [35]. As the WorldView-2 scene only covers a subset of the plots (i.e., 122), 

preliminary testing to evaluate model effectiveness was done using the full subset, with no 

calibration/validation subdivision. The first model to be tested was the initial LiDAR model shown in 

Equation (2) with the simple addition of the NDVI predictor variable. This new model has an adjusted 

R2 of 0.52 and RMSE of 0.52 (RMSE% = 22.2); coefficients can be seen in Equation (3): 
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NDVIccVCICOVARDALAI 98.0601.010.184.103.0 −++−=  (3) 

Although it uses a different, reduced data set, it is apparent that the addition of the new NDVI 

variable does not improve the predictive ability of the existing LiDAR model. In fact, the NDVI 

predictor coefficient has a statistically non-significant p-value of 0.64. 

The second model used the forward stepwise technique with the NDVI predictor variable  

pre-inserted into the selection. An additional four variables were automatically added to generate a 

comparable model to Equations (2) and (3). As seen in Equation (4), three of the previously included 

variables were added again, with COVAR being replaced by D1, the proportion of the number of 

returns found in the lowest ten percent of the vertical canopy structure. The adjusted R2 of this model 

is 0.55 with an RMSE of 0.50 (RMSE% = 21.6). 

NDVIccVCIDDALAI 23.1601.076.0123.304.0 −++−=  (4) 

Unlike the previous models, only three variables are statistically significant in this model, with 

NDVI and VCI having statistically non-significant p-values, i.e., 0.35 and 0.17, respectively. 

4. Discussion  

4.1. LiDAR Model 

The inclusion of the four final variables presented above suggests some interesting aspects about 

the model and LiDAR prediction of LAI in general. The COVAR exhibited a strong, negative 

correlation to LAI (R2 = 0.42), i.e., as LAI increased, COVAR decreased (Figure 12A). High COVAR 

corresponds to high standard deviation (i.e., more open, penetrable, variable canopies), and/or 

low mean height (i.e., shorter, immature trees). It was anticipated that a variable of this nature 

would be included in the final model since it is a coarse surrogate for gap fraction (i.e., greater 

penetration = higher gap fraction = lower LAI). In laboratory controlled experiments with high density 

laser scanners and artificial trees it has been shown that increased leaf count corresponds to a decrease 

in pulse return density at greater distances into the canopy, thereby increasing standard deviation [36].  

Other predictor variables did not exhibit strong correlations to LAI. However, the nature of MLR is 

that the combination and interplay of trends between predictor variables can often generate more 

explanatory power than an individual variable. Figure 12B illustrates the relatively weak positive 

correlation between LAI and VCI. VCI is a variable similar to COVAR, in that it is a measure of the 

structural complexity of the forest canopy, but inverse to COVAR, as high VCI corresponds to high 

LAI (i.e., multi-layered forest canopy) [37].  

DA (i.e., first return divided by all returns) was another variable that linked closely to the concept of 

gap fraction and how much penetration a canopy allows [36]. As the number of first returns was equal 

to the total number of laser pulses transmitted (i.e., a near-constant value for each equal area plot), the 

only changing variable in DA was the total number of returns. If the canopy is dense, the pulse is 

occluded and there is a higher chance of the first return being the only return; more open canopies 

allow for greater pulse penetration and a higher chance of two or three returns. The expected 

relationship was therefore that higher DA values are indicative of higher LAI. That trend was not 

observed clearly with this dataset, as there were many low LAI values which actually had the highest 
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DA value (Figure 12C). It was observed that in non-vegetated, completely open areas the same high 

DA values can be seen, given first returns (i.e., only returns) were ground returns. Since this dataset 

contained only plots that were vegetated to some degree, a non-linear relationship would not be 

expected, but this trend may be partially responsible for odd artifacts in clear-cut areas in the complete 

forest LAI estimate surface. 

Figure 12. Comparison of LAI and (A) COVAR, (B) VCI, (C) DA, and (D) crown closure 

(≥ 6 m) for n = 225 plots. 

 

Crown closure (≥6 m; cc6) was the predictor variable most unlike the others as it was not a measure 

of statistical spread or the direct complexity of the canopy. Crown closure at each height was 

calculated as a proportion of the number of 2 m sub-pixels within the 20 m pixel that matched the 

height criteria to the total number of pixels (i.e., 100). As a measure of how closed the canopy was 

looking down from above to a certain height, cc6 was an interesting substitute for gap fraction. This 

trend shows that higher LAI corresponds to greater crown closure at six meters and above  

(Figure 12D). The basis of this relationship is that for the plots investigated, six meters is below a 

significant portion of the canopy, and is definitely above understory vegetation. Maximum tree height 
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in each plot is close to 15 m, so all vegetation greater than six meters is a good indication of total 

crown closure. This particular relationship compares especially well with the LAI values as the camera 

system was mounted 1.3 m from the ground and processing eliminated a conical field of view 18° 

above the horizon. Selecting six meters as the particular height to use from the suite of two meter 

intervals was done through the same step-wise methods as the primary model. Six meters was chosen 

as the variable from the low height ranges (i.e., two–eight meters) that had the most explanatory power 

in the model. 

The lack of height (P‘XX’) and density (D‘X’) metrics captured in the model was noteworthy as 

these tend to be predominant in modeling many other forest inventory variables (e.g., biomass, height, 

density) (e.g., [23,38,39]). This absence likely stems from the fact that although the P‘XX’ and D‘X’ 

variables do give a general measure of canopy penetration and complexity, there were other variables 

in the LiDAR suite that were better surrogates for canopy gap fraction. Rough trials using only basic 

height and density metrics as potential inputs to a stepwise model proved that satisfactory models 

could be created, albeit at lower R2’s (e.g., 0.40–0.45). The lower accuracy may be an acceptable 

trade-off for users hoping to generate more basic, easily interpretable models, where simplicity could 

outweigh a small level of error. Overall, this portion of the study provides interesting insight into the 

relationships between these height and density metrics and variables more related to overall canopy 

characteristics and crown closure. LAI seems to be more reliably estimated with the latter. 

Using the regression model created with the calibration dataset to estimate values of LAI for the 

validation dataset resulted in the trend of predicted versus in situ estimated values presented in  

Figure 13. Scatter around the 1:1 line may be partially due to the time lag between the acquisition of 

the LiDAR data (i.e., summer 2007) and in situ data collection (i.e., summer 2011). This phenomenon 

may have most affected younger plots, which had potential to gain most biomass and leaf area. 

Figure 13. Predicted versus in situ estimated LAI values for n = 75 validation plots. 

 

Existing work using LiDAR data alone to estimate LAI tends to show marginally better results than 

what was demonstrated here, but for different forest environments. A temperate coniferous forest study 
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by Jensen et al. [15] was able to obtain an adjusted R2 of 0.65 for their true LAI model and a slightly 

higher value (R2 = 0.68) when examining LAI values without clumping index processing. Their final 

model also used four predictors: i.e., crown closure above breast height, COVAR above breast height 

and two simple percentile variables. As their study had an even larger suite of predictor variables to 

draw from than this study it is significant that they also found utility in a low height crown closure and 

COVAR variable. The stronger explanatory power of the Jensen et al. their model may be related to: 

(i) the different species in the temperate coniferous forest of Idaho, and/or (ii) the use of an LAI-2000 

instead of DHP for in situ LAI data collection. 

Another coniferous study in the eastern United States showed even better results [40]. This study 

compared in situ LAI derived from the LAI-2000 to LiDAR metrics derived from high density LiDAR 

(i.e., 5 m−2) for intensively managed loblolly pine (Pinus taeda L.) plantations. Results were presented 

for five models with an incrementally greater number of predictors; adjusted R2 ranged from 0.61 with 

two predictors to 0.82 with six predictors. The comparable, four variable model to our study obtained 

an adjusted R2 of 0.78 and used very different predictors, i.e., mean (>1 m), P20 (>1 m), LPI  

(Laser penetration index − ground returns/(ground returns + all returns)) and mean intensity. This was 

one of the only studies we found that incorporated LiDAR intensity values alongside height and 

density metrics. High model explanatory power may have been linked to the single species (i.e., 

plantation) nature of the study. 

4.2. Spectral Vegetation Index Model 

The results of this portion of the study were not entirely unexpected. A previous study by [41] 

examined the relationships between DHP and optically (i.e., MODIS) derived LAI across several 

different forest types. They found poor correlations for sites that had open canopies, branches 

extending to the ground surface, and relatively low LAI values, particularly in black and white spruce 

stands. Studies with conflicting results include Stenberg et al. [42] and Chen and Cihlar [16],  

which use Landsat TM and ETM data, respectively. Stenberg et al. [42] found the NDVI/LAI 

correlation coefficient to be 0.55 in managed pine and spruce stands in Finland with LAI ranging from 

0.36 to 3.72. One of the first to use NDVI to estimate LAI in boreal Canada, Chen and Cihlar  [16] 

obtained R2’s of 0.50 and 0.42 for their two campaigns. LAI values ranged from 0.92 to 4.17. 

A Landsat-5 scene, acquired 14 August, 2008, was obtained for the same region as the WorldView-2 

coverage and an NDVI surface was generated. The positive relationship between the two NDVI 

datasets was R2 = 0.61. A matched-pairs test of the WorldView-2 and Landsat values shows no 

statistical difference, with a null hypothesis-refuting p-value of 0.37. This relationship shows that the 

WorldView-2 NDVI values are comparable to the Landsat NDVI values.  

It was originally surmised that the poor correlation was primarily due to a combination of the high 

spatial resolution of the sensor and the low spatial density of individual trees in the Hearst Forest (i.e., 

open canopy), resulting in substantial shadowing and significant reflectance from the ground surface. 

Landsat-5 has significant, inherent averaging of reflectance, while Worldview-2 shows distinct tree 

crowns and gaps with associated shadows. While this phenomenon impacts measurements at the pixel 

level with WorldView-2 data, it is assumed that this is not the problem in this study. As was discussed 

earlier, for each plot the mean NDVI value was calculated, so the values being used for the 
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WorldView-2 calculation include both crown and gap values, technically replicating the Landsat data, 

which integrates reflectance of each of these surfaces within the 30 m pixel. Even studies using lower 

spatial resolution sensors like AVHRR (i.e., 1 km resolution) or MODIS (i.e., 500 m resolution) 

obtained correlation coefficients between 0.39 and 0.46 [17]. 

The most reasonable explanation for the poor performance of optical data in estimating LAI is due 

to the open canopies and the introduction of alternate understory spectra into the NDVI calculations. 

One of the failings of the DHP product was that it only provided an estimate of LAI from the focal 

point of the lens upwards, i.e., 1.3 m. The cover below 1.3 m for the study sites ranged dramatically 

and included bare ground, thick moss and/or leafy shrubs, thereby impacting the NDVI values derived 

for these open canopy mixedwoods. As seen in several successful LiDAR studies, variables tend to be 

used that exclude this understory vegetation by implementing a height threshold of approximately one 

meter (e.g., [14,15,40]).  

Deriving a statistical relationship was also difficult, given the narrow range of the NDVI and LAI 

values being compared. NDVI values ranged from 0.47 to 0.77 (range of 0.30) and LAI from 0.57 to 

4.20 (range of 3.63). This range affected the ability of regression models to accurately depict trends in 

these data. Previously discussed successful models (e.g., [43]) have ranges of LAI values as large as 

0.2 to 8.5 and NDVI ranges from 0.6 to 0.93, and other studies have found that the wider ranges of 

other, non-normalized SVIs are better suited to LAI analysis [42,44]. As the plot sampling was 

specifically designed to sample both dense and relatively open areas, as judged by basal area measured 

the previous summer, this limited range is a product of the forest structure itself. The extensive single 

species dominance in some areas and physical similarity between several of the dominant tree species 

(e.g., trembling aspen/balsam poplar, white spruce/black spruce) generate similar canopy conditions in 

the boreal environment, exhibiting a low and narrow range of LAI. 

4.3. Combination Model 

It would seem that the addition of other LiDAR variables in conjunction with NDVI does not 

improve the models sufficiently to warrant further testing. This result was not unexpected considering 

the extremely poor correlation of NDVI values to LAI. While the model in Equation (3) has the same 

explanatory power as the LiDAR-only model and a slightly lower RMSE%, the addition of a 

completely independent optical dataset is not financially feasible for operational implementation. One 

study that attempted a similar combinatorial approach using LiDAR variables integrated with SPOT-5 

SVIs found an improvement from R2 of 0.75 to 0.79 [15]. This improvement to both explanatory 

power of the model and residual error (i.e., 0.75 to 0.69) is small considering that the LiDAR-SPOT 

model used seven parameters, including two SVI (i.e., reduced simple ratio and standard deviation of 

the red band), and the additional expense of acquiring a second remotely sensed dataset. 

The results discussed here present a strong case for LiDAR modeling of LAI as opposed to more 

traditional optical approaches, particularly for the boreal mixedwood forests of central Ontario. Given 

the open canopies typical of the Hearst Forest, high resolution optical data tend to integrate surface 

spectra from all components of the plot (i.e., canopy, understory and ground) and for this region 

exhibit a narrow range of NDVI values. Conversely, LiDAR allows for a distinction between the forest 

canopy and the underlying ground cover, allowing it to better estimate LAI for the forest canopy alone. 
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5. Conclusions 

This study was undertaken to examine several potential methods to remotely estimate Leaf Area 

Index (LAI) in a boreal mixedwood forest of northern Ontario. This research is unique in examining 

LAI in this particular setting in Ontario, using low density Light Detection and Ranging (LiDAR). 

Accurate and precise models of LAI allow for the monitoring of a wide array of LAI-dependant 

variables, e.g., biomass, productivity, general forest health. The ecological and commercial benefits to 

provincial and federal government agencies, as well as commercial forest managers, are far reaching. 

These benefits include more accurate predictions of harvest yields, better timing of forest management 

practices, periodic monitoring of invasive species progression, tracking carbon sequestration by 

vegetation, and more. The general result from this study shows that LiDAR data provide adequate LAI 

estimations to predict the variable over large spatial extents at moderate resolution. The final model 

included DA, COVAR, VCI and crown closure (≥6 m). The variables selected tended to be 

representative of whole canopy distribution, rather than individual statistical metrics (e.g., percentiles). 

The overall model produced an adjusted R2 of 0.53 with a 24.7% RMSE (validation dataset R2 = 0.58, 

RMSE% = 25.1). The validation dataset produced statistically consistent results. 

There was no relationship observed when comparing Normalized Difference Vegetation Index 

(NDVI) derived from WorldView-2 data and LAI derived from digital hemispherical photographs 

(DHPs). Averaging at the plot level inherently smoothed some of the variability expected from the 

higher resolution WorldView-2 data. Testing concluded that this lack of relationship was not 

erroneous, i.e., separate sensors (i.e., Landsat) verified that the NDVI calculations were accurate. The 

most probable causes of the failure were twofold. First, the low density of the boreal forest (i.e., open 

canopy) resulted in a significant inclusion of understory spectra contributing to the reflectance, thereby 

skewing NDVI results. Second, the vegetation of the boreal forest itself has inherently low ranges of 

LAI and NDVI, making it difficult for regression models to generate strong trends.  

The combined model utilizing LiDAR and optical data also proved unsuccessful. Neither the 

original LiDAR model with NDVI inserted nor a new model built around NDVI improved the 

explanatory power of the original LiDAR-only model. This lack of success demonstrated that there 

were no within-data trends that could be exploited by the multiple linear regression (MLR) framework. 

It was determined that there were no statistical differences in in situ LAI estimates when five or 

nine DHPs were processed per plot. Future studies could reduce the number of DHPs taken within 

each plot, dramatically reducing the amount of time and effort spent sampling at each plot. From these 

photographs, LAI for the final plots had a small dynamic range (0.37–5.01); values typical for the 

boreal mixedwood forest of northern Ontario. 

In order to obtain a better understanding of patterns within the data it may be beneficial to reduce 

the full dataset down into smaller subsets, i.e., by tree species or even species by age class. In this 

forest environment, these divisions may consist of black spruce (white spruce and tamarack included), 

jack pine, and mixedwoods (white birch, trembling aspen and balsam poplar), which, with the current 

data, would yield sub-groups of 132, 40 and 53 samples, respectively. Separate models may reveal 

trends not observed in the full dataset. 

Since NDVI derived from WorldView-2 data provided little insight into LAI, it may be suitable to 

investigate spectral vegetation indices (SVIs) that incorporate a soil or understory vegetation baseline 
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coefficient derived from spectral endmembers. To test other SVIs that incorporate spectral unmixing to 

distinguish canopy from understory reflectance, would require spectral measurements from beneath the 

canopy [45,46]. These measurements could be most easily done with a handheld spectroradiometer. 
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Appendix 

Table A1. LiDAR predictor variable descriptions. 

LiDAR Predictor Description 

LG%Hwd Percent Hardwood by Basal Area for trees ≥ 10 cm 

LG%Con Percent Conifer by Basal Area for trees ≥ 10 cm 

Sm%Hwd Percent Hardwood by Basal Area for trees < 10 cm 

Sm%Con Percent Conifer by Basal Area for trees < 10 cm 

MEAN Mean height (m) 

STD_DEV Standard Deviation 

ABS_DEV Absolute Standard Deviation 

SKEW Skewness 

KURTOSIS Kurtosis 

MIN Minimum height (m) 

P10 First Decile (10th Percentile) LiDAR Height (m)  

P20 Second Decile (20th Percentile) LiDAR Height (m) 

... ... 

P90 Ninth Decile (90th Percentile) LiDAR Height (m) 

MAX Maximum height (m) 

D1 Cumulative percentage of the number of returns found in Bin 1 of 10 

D2 Cumulative percentage of the number of returns found in Bin 2 of 10 

... ... 

D9 Cumulative percentage of the number of returns found in Bin 9 of 10 

DA First returns/All Returns 

DB First and only return/All Returns 

DV First Vegetation Returns/All Returns 

MEDIAN Median Height (m) 

VDR Vertical Distribution Ratio = VDR=[Max − Median]/Max 

COVAR Coefficient of variation (STD/Mean) 

CanCOVAR Coefficient of variation (STD/Mean) of first returns only 

H Shannon-Weaver Index 

VCI Vertical Complexity Index  

FIRST Number of First Returns 

ALLRETURNS Number of all Returns 

FIRSTVEG Number of First Vegetation Returns only 

ALLGROUND Number of Ground Returns 

cc0 Crown closure > 0 m 

cc2 Crown closure ≥ 2 m 

cc4 Crown closure ≥ 4 m 

… … 

cc28 Crown closure ≥ 28 m 
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