
Remote Sens. 2013, 5, 5680-5701; doi:10.3390/rs5115680 
 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Evaluation of ALOS PALSAR Imagery for Burned Area 
Mapping in Greece Using Object-Based Classification 

Anastasia Polychronaki 1,*, Ioannis Z. Gitas 1, Sander Veraverbeke 2 and Annekatrien Debien 3 

1 Laboratory of Forest Management and Remote Sensing, Aristotle University of Thessaloniki,  

P.O. Box 248, GR-54124 Thessaloniki, Greece; E-Mail: igitas@for.auth.gr 
2 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena,  

CA 91109, USA; E-Mail: Sander.S.Veraverbeke@jpl.nasa.gov 
3 KSAT, Prestvannvegen 38, N-9291 Tromsø, Norway; E-Mail: annekatrien.debien@gmail.com 

* Author to whom correspondence should be addressed; E-Mail: anpolych@for.auth.gr;  

Tel.: +30-2310-992-701; Fax: +30-2310-992-677.  

Received: 30 September 2013; in revised form: 24 October 2013 / Accepted: 24 October 2013 /  

Published: 4 November 2013 

 

Abstract: In this work, the potential of Advanced Land Observing Satellite (ALOS) Phased 

Array type L-band Synthetic Aperture Radar (PALSAR) imagery to map burned areas was 

evaluated in two study areas in Greece. For this purpose, we developed an object-based 

classification scheme to map the fire-disturbed areas using the PALSAR imagery acquired 

before and shortly after fire events. The advantage of employing an object-based approach 

was not only the use of the temporal variation of the backscatter coefficient, but also the 

incorporation in the classification of topological features, such as neighbor objects, and class 

related features, such as objects classified as burned. The classification scheme resulted in 

mapping the burned areas with satisfactory results: 0.71 and 0.82 probabilities of detection 

for the two study areas. Our investigation revealed that the pre-fire vegetation conditions and 

fire severity should be taken in consideration when mapping burned areas using PALSAR in 

Mediterranean regions. Overall, findings suggest that the developed scheme could be 

applied for rapid burned area assessment, especially to areas where cloud cover and fire 

smoke inhibit accurate mapping of burned areas when optical data are used. 
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1. Introduction 

It is argued that wildfires have ceased to be a natural ecological factor and have become an 

anthropogenic factor of regular and intense occurrence [1]. The increased intensity during burning in 

tropical regions, temperate, and boreal forests and the increasing trend in the occurrence of fire events in 

boreal regions as a result of climate change emphasize the importance of improving our understanding of 

global biomass burning [2], and underlines the need for the development of a reliable procedure to 

accurately and rapidly map burned areas.  

Satellite remote sensing is a valuable tool for fire detection, mapping, and managing fire-prone  

areas [2]. In particular, optical satellite data have been extensively used and proved to be useful for 

mapping of burned areas [3–7]. However, accurate mapping could be inhibited in areas with frequent 

cloud coverage, such as tropical and boreal forests [8]. In contrast, Synthetic Aperture Radar (SAR) 

imagery has the ability to penetrate clouds and fire smoke [9] providing invaluable information on 

burned areas. SAR has not only been used for various ecological applications, such as vegetation mapping 

and biomass estimation [10], but has also been used for burned area mapping, given that the backscatter 

signal is sensitive to vegetation structure and biomass: removal of leaves and branches from trees due to 

fire alters the scattering mechanisms causing temporal variations of the backscatter coefficient. 

The effect of fires on the backscatter coefficient has been exploited in several fire-related studies. For 

example, Bourgeau-Chavez et al. [11] and Bourgeau-Chavez et al. [12] identified fire scars in boreal 

forests by exploiting the enhanced C-band backscatter from burned areas. Siegert and Hoffman [13] 

employed principal component analysis and multi-temporal European Remote Sensing Satellite (ERS) 

SAR images to map forest fires, while Gimeno et al. [14] achieved the identification of burned areas in a 

Mediterranean region using an ERS-2 time series with neural network classification. Moreover, research 

on forest fires in boreal forests has shown that the backscatter intensity from burned scars is stronger than 

that from unburned areas due to changes in moisture content [11,12,15–17]. Siegert and Ruecker [18] and 

Huang and Siegert [19] made similar observations in a tropical rain forest environment, but found that 

fires caused a decrease in backscatter under dry weather conditions whereas under wet conditions 

burned areas could not be discriminated from unburned areas.  

In this work, we employed object-based image analysis (OBIA) to map fire-affected areas using  

SAR images. Several studies demonstrated that OBIA results in accurate land-cover mapping [20,21], as 

well as burned area mapping [22] when SAR imagery was employed. As, the basic processing units of 

OBIA are image objects and not single pixels, the disturbing effects of speckle and other noise of 

SAR are diminished because only the average pixel values of each object are considered by the 

classifier [23,24]. One more motivation for using OBIA is the advantage of the object-based approach to 

incorporate in the classification an increased uncorrelated feature space using object’s statistics 

(e.g., mean values and standard deviations) and topological features (e.g., neighbor objects) [25].  

Therefore, the aim of this work was to investigate the potential of OBIA to map burned areas in  

two study areas in Greece using multi-temporal ALOS PALSAR data. We chose to employ PALSAR 

data, because even though the use of PALSAR has been demonstrated in a wide array of global 

environmental application areas [23,26–29] thus far, has had rather limited applications in the mapping 

of burned areas [30,31]. 
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Our evaluation on PALSAR imagery revealed that the pre-fire vegetation conditions and fire severity 

did not allow the object-based mapping of burned areas with very high accuracy. 

2. Study Area and Dataset Description 

We investigated fires that occurred during the summers of 2007 and 2008 in the Greek regions of the 

Peloponnese peninsula and Rhodes Island, respectively (Figure 1b). During the summer of 2007, Greece 

faced the worst natural disaster recorded in recent decades in terms of human losses, the number of fire 

outbreaks, and the extent of the estimated burned area [32], mainly affecting large areas of Western and 

Southern Peloponnese. In this work, we investigate the fire-affected area located near the town of 

Megalopoli in the Peloponnese (Figure 1b). The area is characterized by a complex topography elevation 

ranging from 60 to 1,300 m above sea level on slopes up to 43° with heterogeneous pre-fire vegetation 

conditions: grasslands with sclerophyllous shrubs and agricultural areas dominated the area, whereas the 

forested areas consisted mainly of black pines (Pinus nigra) and oak trees (Quercus sp). The second 

study area is Rhodes Island, where a large wildfire occurred in late July of 2008. The island is located in 

the southeast part of the Aegean Sea (Figure 1b) and is characterized by a moderate topography elevation 

ranging from sea level to 550 m on slopes below 30°. The fire-affected areas were characterized by 

homogeneous pre-fire vegetation conditions: the dominant land-cover type found in Rhodes was brutia 

pine (Pinus brutia) forest whereas grassland with sclerophyllous shrubs and phrygana (i.e., dwarf shrubs), 

as well as agricultural areas (olive trees and vineyards) were also present (Figure 1c). 

For this work different types of earth observation (EO) data were acquired (Table 1). More 

specifically, for the study area of the Peloponnese, two ALOS PALSAR fine-beam dual-polarization 

(FBD) (Horizontal-to-Horizontal (HH) and Horizontal-to-Vertical (HV) polarizations) images acquired 

at 39° with a pixel spacing of 9.4 m in slant range and 3.1 m in azimuth, were delivered in single-look 

complex (SLC) format: one image acquired before the fire event (8 August 2007) and one after 

(23 September 2007). Similarly, for Rhodes Island two PALSAR FBD SLC images were acquired: one 

before (24 May 2008) and one after the fire event (9 October 2008).  

Satellites Pour l’Observation de la Terre (SPOT)-4 High-Resolution Visible and Infrared (HRVIR) 

images at 20 m spatial resolution ((Green: 0.50–0.59 µm), Red (0.61–0.68 µm), NIR (0.78–0.89 µm), 

SWIR (1.58–1.75 µm)) acquired before and after the fire events were also available for the two study 

areas. The SPOT images were used to produce land-cover maps and to calculate a fire severity index. To 

assess the burned area classification accuracy we obtained very high-resolution (VHR) images acquired 

after the fire events. The VHR comprised one SPOT-5 High Resolution Geometric (HRG) image at 10 m 

spatial resolution and two IKONOS pan-sharpened multi-spectral images at 1-m spatial resolution (Blue 

(0.445–0.516 µm), Green (0.506–0.595 µm), Red (0.632–0.698 µm), NIR (0.757–0.853 µm)), for the 

Peloponnese and for Rhodes fires, respectively (Table 1). The IKONOS images were ordered on 

demand and purchased by World Wide Fund (WWF)-Hellas together with the prefecture of Dodecanese, 

Greece. In addition, Shuttle Radar Topography Mission (SRTM) Digital Elevation Models (DEMs) 

(90 m spatial resolution) were acquired for both study areas (data were downloaded from [33]). 

Given the sensitivity of the backscatter to soil moisture [17,34,35] we collected meteorological data 

from nearby stations for both study areas (data provided by the Hellenic National Meteorological 

Service). More specifically, the station in the Peloponnese was located at the airport of Kalamata, 
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approximately 30 km away from the burned area under investigation: 22 mm of precipitation were 

recorded one day before the acquisition of the second PALSAR image (acquired on 23 September 

2007). The meteorological station in Rhodes Island was located in the Rhodes airport, about 35 km away 

from the center of the burned area. In this case no precipitation was recorded shortly before as well as on 

the dates of the image acquisitions. 

Figure 1. (a) Greece highlighted (darker grey) in the map of Europe. (b) Location of the two 

study areas: The darker boxes indicate the extent of the Advanced Land Observing Satellite 

(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) images. (c) 

Pre-fire land-cover conditions of the two study areas.  

 

 

  

(c) 

(a) (b) 
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Table 1. List of the available Earth Observation (EO) data for the Peloponnese and Rhodes 

Island study areas. 

Study Area EO Data Bands (wavelength) 
Pixel 

Size (m) 

Acquisition 

Date 

Date of 

Fire Event 

Peloponnese ALOS PALSAR FBD SLC 1 HH 5, HV 6 polarizations 25 2007-08-08 

2007-08-30 

 ALOS PALSAR FBD SLC HH, HV polarizations 25 2007-09-23 

 SPOT-4 HRVIR 2 

Green (0.50–0.59 µm), 

Red (0.61–0.68 µm),  

NIR 7(0.78–0.89 µm), 

SWIR 8(1.58–1.75 µm) 

20 2007-07-19 

 SPOT-4 HRVIR Green, Red, NIR, SWIR 20 2007-09-09 

 SPOT-5 HRG 3 Green, Red, NIR, SWIR 10 2007-09-02 

 SRTM DEM 4  90  

Rhodes ALOS PALSAR FBD SLC HH, HV polarizations 25 2008-05-24 

2008-07-28 

 ALOS PALSAR FBD SLC HH, HV polarizations 25 2008-10-09 

 SPOT-4 HRVIR 1 Green, Red, NIR, SWIR 20 2008-07-17 

 SPOT-4 HRVIR 1 Green, Red, NIR, SWIR 20 2009-05-15 

 Two IKONOS 

Blue (0.445–0.516 µm), 

Green (0.506–0.595 µm), 

Red (0.632–0.698 µm), 

NIR (0.757–0.853 µm) 

1 2008-07-31 

 SRTM DEM  90  
1 Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) 

fine-beam dual-polarization (FBD) single-look complex (SLC); 2 Satellites Pour l’Observation de la Terre 

(SPOT) High-Resolution Visible and Infrared (HRVIR); 3 SPOT High Resolution Geometric (HRG); 4 Shuttle 

Radar Topography Mission (SRTM) Digital Elevation Model (DEM); 5 Horizontal to Horizontal polarization; 
6 Horizontal to Vertical polarization; 7 near-infrared; 8 short-wave infrared. 

3. Methodology 

3.1. Dataset Pre-Processing 

Pre-processing initially included the image-to-image geometric correction of the SPOT-4 HRVIR 

images to the VHR reference images (i.e., the SPOT-5 and IKONOS for the Peloponnese and Rhodes 

Island, respectively) using bilinear interpolation. This step was necessary because the images were 

acquired at different angles. The total root mean square errors associated with the Ground Control Points 

(GCPs) used to geometrically correct the images did not exceed 0.5 pixels. Subsequently, the SPOT-4 

images were atmospherically corrected: to convert the raw digital numbers (DN) to surface reflectance 

values the Cosine of Solar Zenith Angle Correction (COST) method, [36], was used. 

Furthermore, the SPOT-4 images acquired before the fire events were visually interpreted and 

manually digitized for generating land cover maps for the two study areas. The interpretation was aided 

by available forest maps in analogue format, VHR images available in Google Earth and thematic maps 

of agricultural areas (1:5,000 scale). In addition, due to the absence of official fire perimeters, reference 

perimeters were generated from photointerpretation and digitization of the available VHR images.  
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The SAR pre-processing procedure was performed in three steps using the SARscape software 

(ENVI SARscape 4.3, Exelis Visual Information Solutions). These steps included: multilooking, 

geocoding, radiometric calibration and normalization. The images were multi-looked (1 range and  

8 azimuth) and geocoded to 25 m pixel size. Geocoding was carried out following the Range-Doppler 

approach using the SRTM DEMs in geographic map projection (latitude/longitude) and World Geodetic 

System (WGS)-84 datum [37]. The radiometric calibration was carried out by following the radar 

equation law [37], and the radiometric normalization was performed using the semi-empirical correction 

available from SARscape. The backscatter dependency is estimated through linear regression of the 

cosine of the local incidence angle and the backscattering coefficient in logarithmic form (SARscape 

Help). The images were extracted in gamma naught (γ°) format and were multiplied by one hundred to 

facilitate the subsequent object-based image analysis. In addition, a mask was generated indicating the 

layover and shadow areas, which were excluded from further processing. Specifically, 196 hectares 

were excluded in the Peloponnese. We did not use any filtering for the SAR images, not only because 

multi-looking had already reduced the speckle noise [38], but also because we use in our analysis objects 

(and not single pixels) which enable further reduction of the speckle [23,24]. 

Finally, all resulted thematic maps were reprojected into the EGSA projection system (Greek grid) 

for further analysis. In summary, the following information was available for both study areas following 

the pre-processing of the EO data: PALSAR images in gamma naught (γ°) format, pre-fire land-cover 

maps, and reference fire perimeters. 

3.2. Burned Area Mapping Using Object-Based Image Analysis (OBIA) 

We used eCognition Developer 8 (Trimble Geospatial Imaging) software to develop the classification 

scheme for burned area mapping. eCognition’s multi-resolution segmentation is a bottom up 

region-merging technique starting with one-pixel objects. In subsequent steps, smaller image objects are 

merged into bigger ones. The size of the objects is determined by the scale parameter and the 

heterogeneity criterion. The scale is an abstract term, which determines the upper limit for a permitted 

change of heterogeneity throughout the segmentation process (the smaller the value the smaller the 

object’s size). Heterogeneity considers as primary object features color (radiometry) and shape [25]. 

Color and shape are complementary and add up to one. However, the shape criterion cannot have value 

greater than 0.9, because otherwise the resulting objects will not be related to their radiometry. The 

shape criterion is also defined by the complementary criteria smoothness and compactness (values range 

from 0 to 1). 

The temporal variation of the backscatter coefficient is important information to map burned  

areas [13,14]. In particular, we aimed to exploit this information from the PALSAR images acquired 

before and after the fire event within the OBIA environment to identify fire-affected areas by means of 

change detection. Change detection in SAR involves mainly the subtraction or division of two SAR 

images, followed by thresholding [39]. Here, we tested several approaches that are used in SAR for 

change detection with pixel-based classifications. These approaches were modified for our object-based 

approach and included the normalized difference index of objects (NDI) [40], which is defined 

as follows: 
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NDI = ((DATE1 − DATE2))/((DATE1+DATE2)) (1)

where, DATE1 and DATE2 correspond to the SAR image objects acquired before and after the fire 

event, respectively. 

In addition, three more approaches were employed, namely the object’s difference in decibels (dB) 

(Od), the object’s ratio and the object’s log ratio (Olr) [41,42], which are defined as follows: 

Od = DATE1(dB) − DATE2 (dB) (2)

Olr = DATE1/DATE2 (3)

Olr = log(DATE1/DATE2) (4)

3.3. Accuracy Assessment  

We assessed the ability of the developed object-based classification scheme to accurately map burned 

areas by estimating the agreement between the burned area maps resulting from the scheme and the 

reference maps, for the two study areas. All maps were converted to raster images of 25 m pixel size and 

an image-to-image comparison was performed using all pixels. Accuracy measurements were 

determined in terms of the probability of detection (Pd) and probability of false alarm (Pf) [43]: 

Pd = Mff/(Mff + Mnf) (5)

Pf = Mfn/(Mff + Mnn) (6)

where Mff is the number of correctly classified fire pixels, Mnn is the number of correctly classified  

non-fire pixels, Mnf is the number of pixels assigned as non-fire by the classification while assigned as 

fire in the reference map and Mfn is the number of pixels assigned as fire by the classification, while 

assigned as non-fire in the reference map.  

Furthermore, we analyzed our classification result in terms of a fire severity index since studies 

showed that the backscatter coefficient of burned areas varies as a function of fire severity [44]. For this 

purpose, the available SPOT-4 images for both study areas were used. The differenced Normalized Burn 

Ratio (dNBR) is accepted as the standard spectral index [45,46], nevertheless, dNBR incorporates a 

band in the wavelength between 2.08–2.35 μm, which is not present in the SPOT-4 images used for this 

work. However, Veraverbeke et al. [46] evaluated the relationship between field data from 160 Geo 

Composite Burn Index (GeoCBI) plots and several pre- and post-fire differenced vegetation indices for 

the fires occurred in the Peloponnese in the summer of 2007. These authors found that the differenced 

Normalized Difference Moisture Index (dNDMI) approach gave a reasonable correlation with GeoCBI 

field data (R2 = 0.51) and, therefore, the dNDMI was used in this work to define the degrees of severity 

for the selected sites. The dNDMI incorporates the near-infrared (NIR) (0.78–0.89 μm) and short-wave 

infrared (SWIR) bands (1.58–1.75 μm) of SPOT-4 images and is defined as: 

dNDMI = NDMIprefire − NDMIpostfire (7)

where, NDMI = (NIR − SWIR)/(NIR + SWIR) (8)

The value range of dNDMI was −2 to 2 and values closer to 2 represent increased fire severity while 

the continuous dNDMI was reclassified into dNDMI classes, each being 0.1 units wide. 
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4. Results and Discussion 

4.1. Discrimination between Unburned and Burned Areas 

The first step in OBIA consists of segmenting the images. The initial segmentation relies on low-level 

information, e.g., pixel values [25] and does not automatically lead to meaningful objects in the real 

world [47]. Therefore, the best segmentation result is the one that provides optimal information for 

further processing such as classification and segmentation of burned areas [6]. For the initial 

segmentation, we carefully carried out a trial-and-error procedure to choose the appropriate parameters 

to successfully encapsulate the burned areas. At each step of the procedure the segmentation results were 

visually evaluated using the reference optical images of the burned areas. The final parameters were set 

as follows: all PALSAR data were used, scale was set to 15, color criterion was set to maximum 

(i.e., 0.9) and the compactness criterion of shape was set to 0.9 (Figure 2). The segmentation was 

performed on the entire images and resulted in 8,005 and 7,601 objects for the Peloponnese and Rhodes 

study areas respectively. The area of the objects for the Peloponnese ranged from 0.625 to 

345.25 hectares while for Rhodes from 2.8125 to 267.375 hectares.  

Next, we carried out the classification of the generated objects. During the development of the 

scheme we found that some unburned low vegetation areas (i.e., grasslands and agricultural areas) and 

burned areas exhibited similar temporal variations in the backscatter, which caused misclassifications 

between the two classes. Santoro et al. [26] also observed that temporal signatures of the PALSAR’s 

backscatter for agricultural fields and clear-cut areas were similar. To overcome the misclassifications 

we investigated the performance of the features introduced in Section 3.2 as well as other features such 

as the mean values, standard deviation of objects and shape features. Different feature values were 

visualized and histograms were analyzed using 176 sample objects, which were collected from the 

problematic areas [47] (Figures 3 and 4).  

From our analyses we found that the feature “Mean backscatter of HV data before the fire”, which is 

defined as the mean backscatter of all pixels of the pre-fire HV data forming an object, allowed a good 

discrimination between unburned low vegetation areas and burned areas. The use of HV backscatter at 

this step can be explained by the sensitivity of the L-band HV polarized backscatter to variations in 

aboveground biomass [17]. The feature was therefore introduced to the description of class “uncertain 

area” which included unburned low vegetation areas and the threshold assigned was: “Mean of HV data 

before the fire” ≤ 1.1. Even though the use of the aforementioned feature allowed an almost clear 

discrimination of the two confusion classes in both study areas, further investigation on the use of HV 

data before the fire event will be needed in other Mediterranean regions and different ecosystems since 

the feature is correlated to vegetation biomass. 
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Figure 2. Segmentation of the Advanced Land Observing Satellite (ALOS) Phased Array 

type L-band Synthetic Aperture Radar (PALSAR) images. (a) Objects (in black perimeter) 

overlaid on the Satellites Pour l’Observation de la Terre (SPOT) image acquired after the fire 

event (R: Near-infrared (0.78–0.89 µm), G: Red (0.61–0.68 µm), B: Green (0.50–0.59 µm)) 

generated during the initial segmentation and (b) the objects’ classification. (c) Objects (in 

black perimeter) generated during the second segmentation overlaid on the SPOT image and 

(d) the objects’ classification. (e) Final objects (in black perimeter) generated after the 

implementation of the region-growing algorithm overlaid on the SPOT image and (f) the 

objects’ classification.  

 unclassifieduncertain area burned seed objects

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3. Visualizations of different object features for mapping burned areas (a) The 

burned area in the Peloponnese as depicted by Satellites Pour l’Observation de la Terre 

(SPOT) imagery (R: Near-infrared (0.78–0.89 µm), G: Red (0.61–0.68 µm), B: Green 

(0.50–0.59 µm)). The black perimeter is the reference fire perimeter, which is generalized 

for viewing purposes. Healthy vegetation is depicted in red, burned areas in black, and 

non-vegetated areas in white. (b) Visualization of the normalized difference index of objects 

(NDI) using the HH (H: Horizontal) polarization data of the Advanced Land Observing 

Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) images 

acquired before and after the fire (c) Visualization of the log-ratio feature using the HV 

(V: Vertical) polarization data of the PALSAR images acquired before and after the fire, 

(d) Visualization of the HV data of the PALSAR image acquired before the fire, 

(e) Visualization of the HV data of the PALSAR image acquired after the fire.  

 

(a) (b)

(c) (d)

(e) 
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Figure 4. Histograms of different object features, which were investigated to overcome  

the confusion between burned and unburned objects during the classification. Histogram of 

(a) the HV (H: Horizontal, V: Vertical) data of Advanced Land Observing Satellite (ALOS) 

Phased Array type L-band Synthetic Aperture Radar (PALSAR) image acquired before the 

fire; (b) the normalized difference index of objects (NDI) using the HH polarization data of 

the PALSAR images acquired before and after the fire; (c) the log-ratio feature using the HV 

polarization data of PALSAR images acquired before and after the fire; (d) before and after 

the fire event difference of object mean values in decibels; (e) the ratio feature using the HV 

polarization data of the PALSAR images acquired before and after the fire; and (f) standard 

deviations (StdDev.), mean and range values of the different features.  

 

HV before fire 

StdDev Burned: 0.59, Mean: 1.89, Range: 0.78–4.06 

StdDev Not-Burned: 0.18, Mean: 0.79, Range: 0.31–1.1 

NDI HH 

StdDev Burned: 0.075, Mean: −0.129, Range: −0.31–0.08 

StdDev Not-Burned: 0.087, Mean: 0.008, Range: −0.21–0.21 

Log-ratio 

StdDev Burned: 0.14, Mean: −0.29, Range: −0.73–0.01 

StdDev Not-Burned: 0.049, Mean: −0.06, Range: −0.21–0.048 

(c) (d) 

(e) (f) 

(a) (b) 
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However, some confusion still remained between burned and unburned agricultural areas using only 

the feature “Mean backscatter of HV data before the fire”. This confusion was observed only in the case 

of the Peloponnese and not in the case of Rhodes. We therefore included in the class description of 

“uncertain area” the NDI from Equation (1), which enabled an improved discrimination of the 

aforementioned classes. NDI was defined as follows:  

NDI = ((HH1 − HH2))/((HH1 + HH2)) (9)

where HH1 and HH2 are the backscatter coefficient of the HH data of each image object before and after 

the fire event respectively. The threshold assigned for this feature was: NDI ≤ −0.03. Despite the optimal 

classification of the class “uncertain area” using the “Mean backscatter of HV data before the fire” and 

the NDI, the confusion could not be completely overcome and some burned low vegetation areas were 

classified as “uncertain area” (Figure 2). 

4.2. Classification of Burned Areas 

Following the classification of “uncertain area”, we introduced the new class “burned seed objects” to 

the scheme. The goal of the “burned seed objects” class was to identify seed burned objects which would 

act as initial objects for applying a region-growing algorithm. Such a concept was successfully 

employed in other studies for mapping burned areas using optical data [48,49]. We performed analyses 

on feature values from sample objects in order to find the appropriate features and thresholds for 

identifying the seed burned objects. We concluded that the combination of the NDI from Equation (9) 

with the object’s difference from Equation (2) features gave the most accurate results. The object’s 

difference was defined as follows:  

Od = HV(dB)1 − HV(dB)2 (10)

where HV1 and HV2, are the backscatter coefficient in decibels (dB) of the HV data of each image object 

before and after the fire event, respectively. The thresholds assigned for the two features were:  

NDI ≤ −0.08 and Od from Equation (10) ≥ 1.2. Only unclassified objects were used in this classification 

process. This means that objects classified as “uncertain area” were excluded in this process (Figure 5). 

Next, all objects classified as “burned seed objects” were merged and all objects classified as 

“uncertain area” were also merged. Prior to the implementation of the region-growing algorithm a 

second segmentation process was performed on unclassified objects (Figures 2 and 5), which enabled an 

optimal delineation of the remaining burned areas. The parameters set for the second segmentation were: 

only the HV data before and after the fire were used, scale was set to 15, the color criterion was set to 

maximum (i.e., 0.9) and the compactness criterion of the shape was set to 0.5. 

The last step in developing the scheme involved the final classification of the burned areas by 

improving the classification of the “burned seed objects” class using the region-growing algorithm. 

Under certain conditions, the algorithm extended image objects classified as “burned seed objects” with 

neighboring unclassified image objects. The algorithm worked in sweeps, which means that at each 

execution of the algorithm, it merged all direct neighboring image objects according to the conditions 

applied [50]. Here, the log-ratio feature from Equation (4) was used as the condition for merging and 

was defined as: 



Remote Sens. 2013, 5 5692 

 

 

Olr = log(HV1/HV2) (11)

where HV1 and HV2 are the backscatter coefficient of the HV data of each image object before and after 

the fire event, respectively. The feature’s threshold was set to: Olr ≤ −0.077. Furthermore, we compared 

the performance of the log-ratio feature with the ratio feature, which was defined from Equation (3) 

as follows:  

Or = HV1/HV2 (12)

The feature’s threshold was set to: Or ≤ 0.082. Results of the accuracy assessment revealed higher 

probabilities of detection (Pd) when the feature log-ratio was used for both study areas: 0.68 using the 

feature ratio and 0.71 using the feature log-ratio in the case of the Peloponnese, while in the case of 

Rhodes Island 0.78 when the feature ratio was employed and 0.82 using the log-ratio. Probabilities of 

false alarm (Pf) were lower when the feature ratio was used for both study areas: 0.040 using the feature 

ratio and 0.048 using the feature log-ratio in the Peloponnese while in Rhodes Island 0.076 when the 

feature ratio was utilized and 0.083 using the log-ratio. As the probabilities of false alarm were very low 

using either feature we decided to incorporate the log-ratio feature in the final version of the 

classification scheme given the resulted higher probabilities of detection. 

Figure 5. Flowchart of the basic steps followed for the development of the object-based 

classification scheme for burned area mapping using Advanced Land Observing Satellite 

(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) images  

(H: Horizontal and V: Vertical polarization). 
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4.3. Classification Results 

Results of the object-based classification accuracy of the burned areas, revealed higher probability of 

detection (Pd) for Rhodes Island (0.82) compared with the Pd for the Peloponnese (0.71), as well as low 

probabilities of false alarm (Pf) for both study areas (Table 2). 

Table 2. Accuracy assessment results of the object-based burned area mapping using 

Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture 

Radar (PALSAR) images. The probabilities of detection (Pd) and the probabilities of false 

alarm (Pf) are provided for the Peloponnese and Rhodes Island. 

Study Area Probabilities of Detection Probabilities of False Alarm 

Peloponnese 0.71 0.048 

Rhodes Island 0.82 0.083 

Figure 6. Black perimeters with the transparent white color show the burned area mapped by 

the object-based classification scheme and the multi-temporal Advanced Land Observing 

Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) imagery 

in the Peloponnese (a) and in Rhodes Island (b). The perimeters are overlaid on the 

land-cover maps of the burned areas, which are generalized for viewing purposes.  

 

The low Pd observed for the Peloponnese could be attributed to the more heterogeneous landscape of 

the Peloponnese area compared with the landscape of Rhodes Island. In particular, the main cause of 

omitting burned areas in the classification of the Peloponnese fire is likely due to the greater area 

covered by low vegetation such as grasslands, agricultural areas, and sparsely and non-vegetated areas: 

approximately 67% of the total area compared to 53% in the case of Rhodes (Figure 1). The contribution 

of soil to the backscatter is increased in low vegetation areas [51], which likely resulted in 

misclassifications of the burned areas. Several studies have also shown that the L-band is less sensitive 

to low biomass vegetation, compared with high biomass vegetation [28,29,51]. However, it seems that 

not only the higher percentage of area covered by low vegetation classes caused the lower accuracy in 

Legend
Forest Grassland Agricultural areas Sparsely and Non-vegetated areas
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the Peloponnese, but also the spatial distribution of these land-cover classes (i.e., grasslands, agricultural 

and sparsely and non-vegetated areas). The landscape of the Peloponnese resembled a mosaic of the 

different land-cover classes whereas the distribution of the different classes in Rhodes Island was more 

homogeneous (Figure 6). Owing to the heterogeneous distribution of land-cover classes in the 

Peloponnese, the extension of image objects classified as “burned seed objects” using the 

region-growing algorithm was not feasible, in particular with neighboring sparsely and non-vegetated 

areas (Figure 7). This is probably because the sparsely and non-vegetated areas were undetected since 

these areas exhibited no apparent change of the scattering mechanisms before and after the fire events. In 

the case of Rhodes Island, the algorithm performed better since only 2% (most of which were roads), 

compared to 12% in the case of the Peloponnese, of the total area was covered by sparsely and 

non-vegetated areas. Therefore, we could suggest that the algorithm performs better when the spatial 

distribution of the pre-fire land-cover classes is compact. Similar conclusions were drawn in other 

studies where a region-growing algorithm has been applied [47,48].  

Overall, the higher percentage of area covered by grasslands, agricultural and sparsely and 

non-vegetated areas as well as the heterogeneous landscape of the Peloponnese seem to have contributed 

to the low classification accuracies of the aforementioned classes (Table 3). The accuracy assessment of 

the class sparsely and non-vegetated areas in the Peloponnese also confirmed the problematic 

classification of this class given its low probability of detection (0.51).  

Furthermore, we investigated the burned areas not mapped by the classification scheme in terms of 

fire severity and we found that approximately 65% of the low vegetation areas in the Peloponnese had 

low dNDMI values (less than 0.5). This could be a factor of omitting burned areas [44]: the existence of 

partially burned vegetation could cause very low temporal variability of the backscatter coefficient 

which in turn could not be detected as change by the classification scheme (Figure 8a). The same 

conclusion could not be drawn for forested areas as approximately 70% of the omitted areas showed 

values higher than 0.5 degrees of dNDMI. In this case, the influence of local incidence angle might have 

caused the misclassifications since studies have shown that the backscatter coefficient of burned areas 

varies as a function of the incidence angle [19,52]. It was observed that 40% of the omitted burned forest 

was located in areas with local incidence angles ≤25° and ≥50°. Even though the percentage of omitted 

areas is rather low, future investigation could include the use of beta naught (b°), since it gives an 

estimate of what radar actually measures [53] or the terrain-flattened γ° proposed by Small [53].  

As already mentioned, the higher Pd observed for Rhodes Island, compared with the Pd of the 

Peloponnese, is attributed to the different pre-fire vegetation conditions of the two study areas. The 

Island had rather homogeneous high biomass pre-fire vegetation conditions (Figure 1c), which 

minimized the contribution of soil to the backscatter resulting in a more accurate classification. In the 

case of Rhodes, we found that the main cause of omitting burned pine forest was probably owing to fire 

severity since approximately 75% of the undetected burned forest had dNDMI values less than 0.4 

(Figure 8b). A closer look at the available VHR IKONOS images revealed that the omitted burned 

forests were highly heterogeneous in terms of a mixture of burned and unburned pine trees (Figure 8c). 

Even though a comparison between SAR and optical data is out of the scope of this investigation, we 

should mention that fire-affected areas were detected visually when using the VHR optical images for 

the generation of the reference fire perimeters, regardless of the pre-fire land-cover type (Figure 7). Our 

findings therefore suggest that a synergy of optical and SAR imagery could provide an avenue for 
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further research on burned area mapping. Specifically, very useful information could be extracted from 

optical data on the exact location of burned areas as well as from SAR data on areas of specific 

land-cover types that have been severely affected. 

Figure 7. (a,b) A subset of the burned area in the Peloponnese as depicted by Satellites Pour 

l’Observation de la Terre (SPOT) imagery (R: Near-infrared (0.78–0.89 µm), G: Red 

(0.61–0.68 µm), B: Green (0.50–0.59 µm)) before (a) and after (b) the fire event. The black 

perimeter with the transparent white color shows the area mapped as burned by the 

object-based classification scheme with the use of the multi-temporal Advanced Land 

Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar 

(PALSAR) imagery. Healthy vegetation is depicted in red, burned areas in black, low 

vegetation areas in pink, and non-vegetated areas in white. It can be observed that the burned 

areas in the yellow boxes are not mapped by classification scheme using PALSAR images, 

which is attributed to pre-fire low vegetation and to non-vegetated areas. (c) The same 

burned area as depicted by the multi-temporal ALOS PALSAR imagery (R: HV after, 

G: HV before and B: HH before the fire event, H: Horizontal, V: Vertical).  

 

(a) (b)

(c) 
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Table 3. Probabilities of detection (Pd) and probabilities of false alarm (Pf) for the two study 

areas for each land-cover.  

 Accuracies Peloponnese Rhodes 

Probabilities of 
detection 

Forest 0.77 0.83 
Grassland 0.72 0.81 

Agricultural areas 0.75 0.84 
Sparsely and Non-vegetated areas 0.51 0.81 

Probabilities of 
false alarm 

Forest 0.01 0.02 
Grassland 0.01 0.02 

Agricultural areas 0.01 0.02 
Sparsely and Non-vegetated areas 0.004 0.002 

Figure 8. Statistics related to the differenced Normalized Difference Moisture Index (dNDMI) 

values of the areas omitted by the classification for the study areas of the Peloponnese (a) 

and Rhodes Island (b). (c) Subset of the IKONOS VHR image (R: Near-infrared 

(0.757–0.853 µm), G: Red (0.632–0.698 µm), B: Green (0.506–0.595 µm)), depicting the 

high heterogeneity, in terms of a mixture of burned and unburned trees, of the burned areas 

omitted by the classification scheme for the study area of Rhodes Island. Red areas represent 

healthy vegetation whereas burned areas are represented by black and grey colors. 

 

Finally, the soil moisture parameter cannot be neglected as a cause of observed misclassifications: 

active microwave backscatter was found to be sensitive to variations in soil moisture in fire-related 

(c)

(a) 

(b) 
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studies [14,18,35,54]. In particular for L-band, Ulaby et al. [55] showed that backscatter of bare-soil 

fields was strongly correlated to soil moisture, whereas Kasischke et al. [17] demonstrated that 

monitoring regrowth of low-biomass forests, requires to account for the soil moisture influence on 

L-band microwave backscatter. However, for this investigation, apart from the precipitation records, no 

additional information on soil moisture was available in order to make any conclusive statements. 

5. Conclusions  

In this work we investigated the potential of multi-temporal ALOS PALSAR imagery for burned area 

mapping in typical Mediterranean areas in Greece using OBIA. More specifically, we developed an 

object-based classification scheme using PALSAR images acquired before and after fire events in two 

study areas. We employed in the scheme a region-growing algorithm, which mapped burned areas with 

satisfying results: 0.71 and 0.82 probabilities of detection for the Peloponnese and Rhodes Island study 

areas, respectively. The advantage of employing OBIA was the use in the classification of the temporal 

variations of the backscatter coefficient information in combination with additional information, such as 

topological features (e.g., neighbor objects) and class related features (e.g., classified as burned objects). 

This advantage enabled to overcome observed confusion between burned and other unburned areas.  

We found that two parameters could be the source of omitting burned areas by the classification 

scheme: the pre-fire land-cover types and fire severity. The low Pd observed for the Peloponnese was 

possibly because PALSAR backscatter is not so sensitive to low vegetation burned areas, such as 

agricultural and grasslands, which dominated the study area. Furthermore, sparsely and non-vegetated 

areas exhibited a very low classification accuracy owing to the unchanged scattering mechanisms in 

these areas before and after the fire. In contrast, a high Pd was observed for Rhodes Island as the area  

was dominated by a homogeneous pine forest before the fire. Our results also suggest that the 

region-growing algorithm performs better when the pre-fire land-cover consisted of relatively large  

and homogeneous patches compared with a highly heterogeneous and patchy landscape. The 

investigation on the influence of fire severity to the classification accuracy showed that most 

fire-affected areas with low values of dNDMI were undetected. These results imply that the proposed 

classification scheme could be more appropriate in the case of homogeneous high biomass areas, which 

have been severely burned. 

Overall, our findings indicate that the developed object-based scheme using PALSAR images could 

be valuable when rapid burned area assessment is needed since radar images have the capability to 

penetrate clouds and smoke and therefore can be used as an alternative to optical data. Future work 

includes testing the performance of the developed classification procedure in other regions of the 

Mediterranean area and in different ecosystems. In addition, future investigation could include the 

development of a similar classification procedure, to the one presented in this work, to be used with 

other SAR frequencies such as the forthcoming Sentinel-1 C-band imaging radar mission.  
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