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Abstract: Snow is an important component of the water cycle, and its estimation in
hydrological models is of great significance concerning the simulation and forecasting of
flood events due to snow-melt. The assimilation of Snow Cover Area (SCA) in physical
distributed hydrological models is a possible source of improvement of snowmelt-related
floods. In this study, the assimilation in the LISFLOOD model of the MODIS sensor SCA
has been evaluated, in order to improve the streamflow simulations of the model. This work
is realized with the final scope of improving the European Flood Awareness System (EFAS)
pan-European flood forecasts in the future. For this purpose daily 500 m resolution MODIS
satellite SCA data have been used. Tests were performed in the Morava basin, a tributary of
the Danube, for three years. The particle filter method has been chosen for assimilating the
MODIS SCA data with different frequencies. Synthetic experiments were first performed
to validate the assimilation schemes, before assimilating MODIS SCA data. Results of
the synthetic experiments could improve modelled SCA and discharges in all cases. The
assimilation of MODIS SCA data with the particle filter shows a net improvement of SCA.
The Nash of resulting discharge is consequently increased in many cases.

Keywords: data assimilation; particle filter; distributed hydrological model; MODIS Snow
Cover Area; discharge; LISFLOOD; Danube
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1. Introduction

Snow is an important component of the water cycle and of the climate evolution [1]. Snowpacks
can contain a huge quantity of water that can be released suddenly during the spring. Moreover, its
characteristics, like the albedo, can have an important impact on surface energy fluxes. Research in recent
years has been aimed at a better understanding of snowpack evolution and its simulation (e.g., [2–4]).
However further investigation is needed in particular with respect to incorporating this information into
hydrologic and Land Surface Models (LSMs, e.g., [5,6]). The assimilation of observed data in order to
keep physical states of the models up-to-date, is a widely used technique in meteorology (e.g., [7–9]).
Only in recent years its use in hydrology, for improving initial states and thus the simulation of flows,
water budget, or snow pack, has significantly increased (e.g., [10–14]).

Snow height observations are available from many meteorological stations. Unfortunately these
data are very dependent on local conditions (wind, vegetation, slope, sun exposition) and are therefore
only of limited use in large scale hydrological modeling. Moreover, they cannot represent the spatial
variability of snow cover to a sufficiently accurate extent. Therefore the use of satellite observations of
snow becomes an increasingly interesting alternative especially when simulating hydrologic processes in
large-scale river basin models (e.g., [6,15–21]). Such observations are usually available on a daily
time-step and can cover large areas such as Europe or even the entire globe.

Snow satellite observations are found in two forms: Snow Water Equivalent (SWE), or Snow Cover
Area (SCA). The quality of SWE data is often not high enough for use in hydrology, as studies have
found large errors in microwave estimates compared with actual measurements because they are too
much impacted by the forest cover, topography, snow type and are considered not reliable for high
latitude tundra regions [16,22,23], and the data frequency is often low (most of the time around a week).
There are two types of satellite SCA data: those derived from passive microwave sensors, or those
from optical sensors. A major difference between these two types of data is that optical sensors cannot
see through clouds, whereas for passive microwave sensors, clouds are not an issue. However, the
sensors using passive microwaves, such as AMSR-E (Advanced Microwave Scanning Radiometer-EOS)
or SSM/I (Special Sensor Microwave/Imager), provide data at a coarse resolution (more than 5 km for
AMSR-E and more than 2.5 km for SSM/I) and with a lower frequency (more than a day), which limits its
applicability to assimilation in models. The resolution of some radar data, such as RADARSAT or ASAR
(Advanced Synthetic Aperture Radar), is very high, but the frequency of acquisition and the quality of
observations seem not yet to reach the standards (daily frequency) needed for frequent assimilation in a
hydrological model.

On the other hand, optical SCA data are more easily available for large areas and at a relatively
high-sampling frequency, usually with good quality [24]. As a result, its use in hydrologic modeling
has been increasing in recent years [15]. SCA gives information about the presence or not of snow on
the surface, according to the satellite image. No indication about the snow quantity (height or SWE)
can be given directly by SCA data. One direct drawback of the use of optical satellite-based SCA is
the lack of penetration through clouds, which means that during some periods, a large amount of data
can be lacking.The MODIS (Moderate Resolution Imaging Spectroradiometer) snow product, which is
the satellite-based snow product that is the most widely used in hydrology, may contain an average of
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63% of cloud coverage over Austria [24]. To overcome these problems a variety of techniques has been
developed, that mostly consists of using cloud-free data from other days or from neighbouring pixels, or
even from interpolating data from pixels at a similar altitude (e.g., [25–28]).

The use of snow data assimilation has been tested recently in LSMs and in hydrological models. Slater
and Clark [29], for instance, implemented an Ensemble Kalman Filter and an Ensemble square root
Kalman Filter to assimilate real local snow depths observations spatially interpolated into a conceptual
model. They showed an improvement of the simulated SWE and of the short-term forecasts of SWE
during the melt period. Clark et al. [5] assimilated synthetic SCA information to update a hydrological
model. They used the Ensemble Kalman Filter to modify the distribution of the sub-grid probability
distribution function of snow. They demonstrated that the SWE was improved but that the accuracy of
streamflows was only slightly increased, due to the fact that snowmelt begins before SCA depletion.
However, they believed that satellite SCA data are an important source of information for streamflow
forecasts. Clark and Vrugt [30] assimilated interpolated in-situ snow measurements to calibrate a snow
model with a method including a stochastic error term to quantify model errors. This method resulted in
parameters with more realistic values. All these works showed that assimilating snow data, whatever its
form, could improve snowmelt or discharge simulation.

The MODIS SCA data have been integrated into models using simple or complex methods by
different researchers. The simple methods are mostly insertion methods, and cannot be called data
assimilation methods. Rodell and Houser [15], for instance, used MODIS data to modify the snow cover
of their model with a simple addition/removal method. They added 5 mm of snow if the model had no
snow and if MODIS had more than 40% of SCA, and removed the snow if the MODIS SCA was lower
than 10%. This work showed an improvement of snow cover by removing superfluous snow. Increase
of snow happened much less frequently, mainly because of the small quantity (5mm) of snow added.
The effect of adding snow was also limited by the fact that if the forcing temperature was positive, this
thin layer of added snow would melt immediately. Roy et al. [19] used a combination of MODIS and
the NOAA Ice Mapping System (IMS) products, and integrated these into the MOHYSE hydrological
model with a “direct-insertion” method. The method was controlled using a SWE threshold. If snow
was observed by the satellite but the model had less snow than the SWE threshold, then the model
snow was fixed to this threshold. On the other hand, if the model had more snow than the threshold
but the satellite observed no snow, then the snow was fixed to the threshold in the model. This method
improved the simulation of discharge peaks—Nash [31] and root-mean square error (RMSE)—when
using both MODIS data and the NOAA IMS product but improved only the RMSE of discharges when
only MODIS was used while the Nash coefficient was not significantly different from the one of the
original simulation. These methods are rather simple to implement, but their application to diverse areas
does not necessarily lead to positive results, since they are usually quite case-dependent.

More complex methods have been tested to integrate MODIS SCA data into models as is the case for
data assimilation methods. However, MODIS observations only provide information about the presence
or non-presence of snow, whereas the majority LSMs and hydrological models rather simulate the SWE
(an example for an exception is the HBV model which simulates SCA directly [32]). This leads to the
problem that either the model SWE data need to be converted to SCA using special techniques, or the
satellite SCA data need to be converted to SWE. One conversion approach uses so-called Snow Depletion
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Curves (SDCs). SDCs are essentially curves, based on observations and characteristics of the snow,
which try to fit the evolution of the quantity of snow with the SCA. Andreadis and Lettenmaier [16] used
the SDC approach to transform modeled SWE into SCA, and assimilated MODIS SCA in the Variable
Infiltration Capacity (VIC) hydrological model with an EnKF. They considered the SWE of each pixel in
the model as one element of the state variable (even if they are spatially correlated), which allowed them
to use a limited number of members and to update separately each pixel. They showed the benefits of
using the EnKF rather than a replacement method, because the EnKF takes into account different sources
of errors. Su et al. [17] assimilated MODIS SCA for North America in a LSM with the EnKF on every
grid point, and illustrated its beneficial effect for the simulation of snow. Zaitchik and Rodell [6] also
used an SDC in order to convert the MODIS SCA to SWE. Their assimilation method is a push-and-pull
algorithm, in which SWE is directly added to or removed from the LSM, and the air temperature can be
modified depending on observed and modeled snow values in order to improve the snow cover. They
were able to illustrate an improvement in the simulation of SCA and SWE when assimilating MODIS
SCA using their approach.

The main goal of this paper is to illustrate the incorporation of MODIS SCA data into a distributed
hydrological model (LISFLOOD) using the particle filter and to evaluate the effects on the simulation
of snow and discharges. The implementation of the particle filter for assimilating satellite SCA data
that has been tested in this work for hydrological purposes is a novel approach, since it has not been
used for this kind of data until now. The special nature of the particle filter, which conserves the
mass balance in the system without modifying directly any variable of the model, is an important
feature in the choice of this method. The final goal of this work is improving the European Flood
Awareness Systems (EFAS) forecasts [33] at the pan-European scale. However, this article concentrates
only on discharges simulations, not on discharges forecasts, and to a reduced area: the Morava River
basin (Czech Republic, 26, 000 km2). Section 2 provides a brief review of the particle filter, while
Section 3 describes the MODIS data, the methods used to deal with cloud cover, and the SDC used
to convert the model SWE into SCA. In Section 4, the LISFLOOD model is discussed and the study
area and the different sources of errors are described. The results of the experiments on the upstream
Kromericz basin (8, 000 km2, located within the Morava River basin), and the results for the complete
Morava basin are respectively presented in Sections 5 and 6. In Section 7 the results of all the different
experiments are discussed. Finally, the conclusions are presented in Section 8.

2. Data Assimilation

In this Section 2, the emphasis is on the particle filter, the data assimilation method used in the study.
For further information about data assimilation in general, including this particular method, the reader
is referred to [34–36]. Let x(t) be a vector containing the model prognostic variables and y(t) a vector
containing the available observations, at time t. The vector y(t) is defined as:

y(t) = H(x(t)) + εo(t) (1)

where εo(t) is the error on observations at time t, defining the observation error covariance matrix R(t)

(R(t) = E(εo(t)εoT (t))), T is the transpose of a matrix, and H is the measurement operator transforming
the model state to the observation space. The R matrix has been defined in this study as a percentage of
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the squared observations. Several percentages values of the observation error have been used to study its
impact on the efficiency of the particle filter: 5, 10, 15, 20, 30 and 40%. These values were squared to
obtain the coefficient applied to R. Applied to our work, it becomes clear that y(t) represents the SCA
observations at time t, and x(t) represents the SWE simulated by the LISFLOOD model at time t. These
two variables do not belong to the same state space, so the measurement operator H has to be defined.
This is done in Section 3.3 with the definition of the SDC.

The particle filter is a data assimilation technique approximating the posterior probability density
function (pdf) by a collection of weighted Monte-Carlo samples (N particles) taking into account the
entire trajectory of the model states and the past observations. The original definition of the particle filter
is given by [34] as follows:

p(x(0 : t)|y(1 : t)) =
p(x(0 : t− 1)|y(1 : t− 1)).p(y(t)|x(t)).p(x(t)|x(t− 1))

p(y(t)|y(1 : t− 1))
(2)

where p(x(0 : t − 1)|y(1 : t − 1)) is the prior, p(y(t)|x(t)) is the likelihood, p(x(t)|x(t − 1)) is
the transition probability, and p(y(t)|y(1 : t − 1)) is the normalization factor. According to [37], the
particles drawn from the posterior distribution at time t are used to map the integrals to discrete sums by
the following empirical approximation:

p(x(0 : t)|y(1 : t)) ≈
N∑

n=1

w(n)(t)δ(x(0 : t)− x(n)(0 : t)) (3)

where w(n)(t) is the normalized weight of the particle n at time t and δ() is the Dirac delta function. To
update the particle weights during the assimilation procedure, importance sampling is performed using
a proposal distribution. In order to avoid that the entire historical trajectory of the particle needs to be
stored, we apply a commonly-used simplification as outlined in [37], where the proposal distribution is
modified such that q(x(t)|x(0 : t − 1),y(1 : t)) = q(x(t)|x(t − 1),y(t)). Thus, Equation (3) can be
simplified as:

p(x(t)|y(1 : t)) ≈
N∑

n=1

w(n)(t)δ(x(t)− x(n)(t)) (4)

The normalized weight of a particle is obtained by normalizing the importance weight of this particle
(w∗(n)(t)) with the sum of the importance weights of all the particles:

w(n)(t) =
w∗(n)(t)
N∑
i=1

w∗(i)(t)

(5)

The importance weight of each particle n was computed as follows (e.g., [35,38]):

w∗(n)(t) =
exp

{
−
[
y(t)−H(x(n)(t))

]T
R−1(t)

[
y(t)−H(x(n)(t))

]
/2
}

√
det(2πR(t))

(6)

No variable state of the model is updated when the particle filter is used. Given the comparisons
between the observations and variable states, the simulations are kept with no modification (and
duplicated if needed) if their normalized weights are high, or discarded if their normalized weights
are low, using stochastic universal sampling [39]. By doing this, no snow is directly removed from the
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model, but the evolution of the snow is driven by the model and its forcing only and the mass balance
is conserved. For further details concerning the theoretical background of the particle filter and its
implementation with hydrological models the reader is referred to [34,36,40].

3. Satellite Snow Cover Area

3.1. The Data

MODIS (Moderate Resolution Imaging Spectroradiometer; http://modis.gsfc.nasa.gov/about/) is a
key instrument aboard the Terra and Aqua satellites and is part of the NASA Earth Observing System
(EOS; http://eospso.gsfc.nasa.gov/) program. Terra’s orbit around the Earth is timed so that it passes
from North to South across the equator in the morning, while Aqua passes from South to North over
the equator in the afternoon. Terra MODIS and Aqua MODIS cover the entire Earth’s surface every
1 to 2 days, acquiring data using 36 spectral bands or groups of wavelengths. The MODIS data used
in this study were downloaded from the NASA NSIDC (National Snow and Ice Data Center) website
(http://nsidc.org/). Daily data from Terra (MOD10A1) and Aqua (MYD10A1) were downloaded for
the period from 1 July 2003 to 10 December 2006 [41,42] for the study area, which is included in
two MODIS tiles (i.e., “h19v03” and “h19v04”). The downloaded data contain four layers: the snow
cover, the quality assurance, the snow albedo and the fractional snow cover. The first layer, the snow
cover, was used in this study. Fractional snow cover data can also be obtained from newly developed
algorithms that assess SCA at a higher resolution (250m for MODIS). Obtaining fractional snow cover
information [43,44] is not necessary at this point of the study. Their advantage is to allow non
binary values of SCA at the 500m-resolution. However, since we are working at the LISFLOOD
5km-resolution, the SCA values are already smoothed, so we used the first layer, not the fourth one.
The pixels values provided by the snow cover layer are classified in different categories as shown in
Table 1. According to this ranking we grouped categories 100 and 200 as snow pixels, categories 25,
37 and 39 as no-snow pixels, and the other categories in the category no-data (“Not known”). The SCA
maps described below (before aggregation on the LISFLOOD 5 km grid) thus contain three class-values:
1 for snow, 0 for no-snow, and missing values for no-data (Table 1). Clouds are classified as no-data.

3.2. Preprocessing of SCA Data

Due to the frequently high cloud coverage, several steps were necessary in order to prepare the data
for the assimilation procedure. After combining the Aqua and Terra data, on average 48.6% of no-data
(mainly due to cloud cover) were still present in the complete Morava basin and for the 2004–2006
period (Table 2). Consequently, several spatio-temporal combinations and regional snow-line methods,
described and evaluated by [27,28], were used in this study. All of these methods were applied using the
original resolution (500 m) and projection (equal area sinusoidal projection) of MODIS data.

The first step was to use the combined Aqua and Terra snow cover maps of the seven previous days.
This method assumes that the snow cover is not evolving quickly for such a short time period, and
that during a 7-day period most of the area would have at least one cloud-free satellite image [27]. As
detailed in Table 2, this method significantly reduced the no-data extent over the Morava basin, from
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a value of 48.6% of no-data when only using the current day data, to a value of 4.9% after using the
combined Aqua/Terra maps from day-1 to day-7. Figure 1 illustrates the effects of merging Aqua and
Terra images and then combining this with the previous days observations for the 24 December 2005.
After this temporal combination, most of the basin appears to contain data for this date. However, even
after this process, some points still contain no-data. Thus, we also applied a neighbouring method [27].
In this case, each pixel representing a no-data value was affected according to the average of the values
of its close (eight) neighbours: 1 if 0.5 < average ≤ 1, 0 if 0 ≤ average ≤ 0.5 and missing value if
none of its neighbours had a value.

Table 1. Snow categories in the MODIS classification (left part) and as used for the
preprocessing (right part).

MODIS Classification Used Classification
Value Data Value Data

0 Missing
1 No decision

11 Night Missing value “we don’t know”
50 Cloud obscured

254 Detector saturated
255 Fill
25 Snow-free land
37 Lake or inland water 0 No snow
39 Open water (ocean)

100 Snow-covered lake ice 1 Snow
200 Snow

Table 2. Percentage of cloud coverage, averaged over the period 10 January 2004–10
December 2006, for the different improvement methods.

Aqua+Terra +Day-1 +Days-2/-3 +Days-4/-5 +Days-6/-7
48.6 33.2 16.8 9.0 4.9

Finally, a regional snow-line method [28] was used in order to fill the remaining missing values pixels.
For this purpose, the average altitude of all the snow pixels (“snow alt”) and the average altitude of all
the no-snow pixels (“no snow alt”) were computed. The remaining pixels with missing values were
then allocated to 1 if their altitude was higher than “snow alt” and to 0 if their altitude was lower than
“no snow alt”. The pixels with missing values and an altitude between “snow alt” and “no snow alt”
were assigned to 0.5, which means partial snow cover. At this step, all the pixels of the Morava basin
were attributed with a value (see Figure 1, “Final map at MODIS resolution”).

The last step was to aggregate this map to the resolution of the model (5 km) and to project it on the
LISFLOOD projection, which gave the last image of Figure 1. As it will be described below, several
frequencies of assimilation were tested in this study. The final map was used by the assimilation system
for the 2-day, 3-day and 7-day frequencies. However, for the exclusive case of the daily assimilation
experiments, the combination of the original Aqua and Terra maps were used, with no spatial or
temporal combination. We will call these data the “daily MODIS SCA” in the present manuscript. The
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spatio-temporal combination of MODIS SCA data, used for the 2-day, 3-day and 7-day frequency
experiments, will be named “composite MODIS SCA”.

Figure 1. The differents steps for merging MODIS maps. The Snow Cover Area (i.e., SCA)
is shown here, from 0 for no snow to 1 for pixels entirely covered by snow. Details are given
in the text in Section 3.

3.3. Conversion from SWE to SCA

Hydrologic models usually provide information about SWE (simulation output) and this is also the
case with LISFLOOD. Consequently, a method is required to transform the LISFLOOD SWE output
data into SCA, in order to be comparable with the MODIS SCA data as required by the assimilation
algorithms. This is the measurement operator H in Equation (1).

This transformation can be performed using a Snow Depletion Curve (SDC). Various forms of SDCs
have been proposed in literature (e.g., [6,16,17,45]). Most of these algorithms require, besides the SCA
data, other observed data, such as additional field measurements, most of the time at a very high spatial
resolution, and if possible high-quality datasets, either for the calibration of the SDC or as a direct
input for the SWE computation. Unfortunately, when assimilating SCA for large areas, as is the case
here, this additional information is not available. Thus, we have chosen the SDC described by [6]
whose additional data requirements are low. This SDC description has proven to approximate well
the relationship between SCA and SWE, especially for large-scale models, such as the NCEP LSM
(NOAH, [46]). The SDC of [6] can be written as follows:

SCA = min

{
1−

[
exp

(
− τSWE

SWESCA=1.0

)
− SWE

SWESCA=1.0

exp(−τ)
]
, 1.0

}
(7)

where SCA is the fraction of each LISFLOOD grid cell covered by snow, SWESCA=1 defines the
minimum SWE required for full snow cover for a specific land use and τ is a shape parameter relating
the total amount of snow to the snow cover fraction in a pixel. In this study, we follow [6] and assign
SWESCA=1 values ranging from 13mm for bare soil, 20mm for sparse forest and 40mm for full forest
coverage. τ was set to 4, as in [6]. Since the SWE values are directly given by the output of LISFLOOD,
all parameters in Equation (7) are known and the corresponding SCA value can be easily calculated.
Clearly, more complex approaches to derive SWE from SCA could be employed, depending on the
availability of additional input data. However, a detailed assessment of the advantages and disadvantages
of the different approaches is beyond the scope of this manuscript.
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4. Hydrological Model and Setting Up of the Assimilation System

4.1. The LISFLOOD Model

In this work we used the spatially-distributed, partially physically-based LISFLOOD model [47,48]
that has been developed at the European Commission’s Joint Research Centre for simulating discharges
in large-scale river basins in Europe. LISFLOOD is used for the European Flood Awareness System
(EFAS, [33]) in order to provide a pan-European system able to detect flood several days ahead within a
short computing time range. LISFLOOD is a raster based model and is implemented using a combination
of the PCRaster dynamic modelling language [49] and the Python scripting language facilitating the
handling of large data sets. In contrast to a full energy transfer model requiring significant amounts of
input data, the LISFLOOD model focuses on the processes describing river runoff for flood forecasting
purposes, i.e., the generation of surface and subsurface flows as well as river routing, thus reducing the
amount of data required to calibrate and validate this model.

Physically-based, soil and land-use related parameters have been derived from various
databases [50–52]. The meteorological inputs of LISFLOOD are spatially distributed data such
as precipitation, temperature, and wind speed, which are derived from the Meteorological
Archiving and Retrieving System [53], the World Meteorological Organizations synoptic observations
(http://www.wmo.int/pages/prog/www), and the German Weather Service (http://www.dwd.de/).
Although LISFLOOD is based on physics to a certain extent, some processes are only represented in
a conceptual way. For the calibration of the Danube basin we used nine parameters that need to be
estimated against measured streamflow records.

An overview of the structure of LISFLOOD is now presented. The simulation of fast sub-surface flow
through macro-pores (preferential flow) is assumed to be a non-linear function of the relative saturation
of the topsoil. For the remaining water that falls on the soil surface, infiltration and surface runoff
are simulated using the Xinanjiang approach [54,55]. Moisture fluxes out of the top- and sub-soil
are calculated assuming that the flow is entirely gravity-driven. The groundwater system is described
using two parallel interconnected linear reservoirs, similar to the HBV-96 model [32]. The upper
zone represents a mix of fast groundwater and sub-surface flow. The lower zone has a much slower
response and generates the base-flow. Routing of water through the river channel is done on the 5 km
raster at European scale with the kinematic wave descriptions [56]. Special structures such as lakes,
water reservoirs and retention areas can be simulated by giving their location, size and in- and out-flow
boundary conditions.

The simulation of Snow Water Equivalent (SWE, mm), which is the LISFLOOD variable of interest
for this assimilation of the MODIS data, can be described as follows. If the temperature is below 1◦C,
all precipitation is assumed to be snow. Snow-melt is simulated using the temperature index approach,
which is also commonly used in other models (e.g., PREVAH [57], Topkapi [58]). The amount of
snow-melt (mm) depends on the temperature above the melt-point temperature (1 ◦C), the rainfall rate,
and a calibrated coefficient called the snow-melt coefficient [59]:

snow melt = C(1 + 0.01R)T (8)
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where C is the snow-melt coefficient (mm ·◦C−1 ·day−1), R is the daily rainfall (mm) and T is the daily
temperature (◦C). As LISFLOOD uses large grid cells (5 × 5 km), the sub-grid cell heterogeneity in
snow accumulation and snow-melt is taken into account by modeling these processes for three separate
elevation zones. For this, a normal distribution was used to split the average grid cell height into
three equal parts. Furthermore, a sinusoidal function was used inside the model in order to modify
the snow-melt coefficient according to the season [60]. This assumption relies on the fact that because
of the snow albedo and the solar radiation modifications throughout the year, the snow-melt rate is more
important during the summer. Finally, an additional snow-melt process was added for periods from
15 June to 15 September in order to mimic glaciers melt (see LISFLOOD User Manual, [61]). The
hydrological simulations are computed at a daily time-step.

4.2. Case Study

The area used for this study is the Morava River basin. The Morava River is a tributary of the
Danube River, located mainly within the Czech Republic (see Figure 2). The area of the Morava River
basin is around 26, 000 km2 with an elevation ranging from 120 to almost 1,500 m. Daily discharge
data were available for our study area at seven gauge stations in the Morava River basin. A smaller
part of this basin (8, 000 km2), upstream of the Kromericz gauging station, has also been used for
preliminary experiments.

Figure 2. Map of the Morava basin study area (the Kromericz gauge station is the station 4).

In this work, the state variable and the observation state of the particle filter have been defined in
two different ways. The first approach only considers one part of the Morava basin (the study area will
be described in more details in part 4.2), given by the upstream area of the Kromericz gauging station
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(station 4 in Figure 2). This area is represented in Figure 3 by the sub-basins 1, 2, 3 and 4 altogether. The
state variable and the observation state have been defined by summing the SCA values of all pixels within
this area. Consequently, the x and y vectors in Equation (1) are 1-dimensional. The basin upstream of
the Kromericz gauging station has an area of 8, 000 km2 only, which allows assuming that the snow
conditions are more homogeneous than in the complete Morava River basin (26, 000 km2). This size can
be considered as very large, but at the scale of Europe, and for the European Flood Awareness System
especially, it represents a rather small river basin. The aim of the experiments realized in this area was
to consider a simple case where multi-dimensionality would not be a problem in the data assimilation
algorithm. Moreover, this particular river basin is almost not influenced by human interaction.

The second approach was to consider the whole Morava basin. Given the larger area and
heterogeneities, this basin has not been considered as one whole. It was decided to split this basin
into seven areas (Figure 3) obtained from the drainage areas of the seven gauge stations where we had
observations (called sub-basins). The state variable and the observation state are consequently vectors
of dimension 7, each vector element containing the sum of the SCA values of all pixels within each
sub-basin. It is important to note that the term “sub-basin” designs the area upstream of a given gauge
station excluding the area upstream of another upstream station.

Figure 3. Map of the 7 different zones used for the assimilation experiments on the
Morava basin (the black part was not taken into account for the particle filter). The data
assimilation experiments on the area upstream of the Kromericz station only include the
zones 1, 2, 3 and 4.

Experiments were carried out for the period 10 January 2004 to 10 December 2006. This period
could not be extended because no discharge data were available for the stations for a longer period.
We acknowledge that it would have been better not to begin and end the data assimilation process in
the middle of the snow season, however in our case it would have meant reducing the dataset to only
two snow seasons. In order to have realistic model states at the beginning of the data assimilation
process, the model simulations started during the summer 2003 without data assimilation activated.
The assimilation timestep (i.e., frequency of assimilation) was variable, from seven days—which we
considered a reasonable compromise between the computing time and the time evolution of the snow
cover—to a daily time-step, including 2-day and 3-day time-steps. Testing higher frequencies was not
possible since the time step of the model is 1 day, and testing frequencies of more than one week
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seems too coarse for having a sufficiently positive impact on discharges. The assimilation was not
performed during summer (i.e., from 1 May to 31 October of each year). The period of assimilation
(from 1 November to 30 April of each year) usually includes the complete snow accumulation and snow
melt periods for an area such as the Morava River basin.

4.3. Sources of Errors

Simulation of snow in LISFLOOD is mainly influenced by three factors: precipitation, temperature,
and snow-melt coefficient. Hence, random errors have been added to these factors in order to generate
the particles for the particle filter, which aim at estimating the probability density functions of these
parameters. For the experiments performed on the area upstream of the Kromericz station, the parameters
have been perturbed uniformly on the whole area. For the experiments realized on the whole Morava
basin, the parameters have been perturbed uniformly on each sub-basin area. The precipitation fields
were multiplied by a value between 0.5 and 1.5 on each zone, drawn from a uniform distribution on a
daily basis. For the temperature, a value from a uniform distribution between −3 ◦C and +3 ◦C was
added to each zone on a daily basis. This value is realistic; it is only slightly higher than the RMSE
reported in [62], for example. Finally, the snow-melt coefficient was created with a uniform distribution
for each zone in the range of the usual values of the calibrated parameter for LISFLOOD (between 2.5

and 5.5 mm ·◦ C−1 · day−1). During summer, there is no data assimilation performed, the perturbed
meteorological fields have been replaced by the observed fields, and particles have not been resampled
(in the case of the particle filter).

4.4. Definition of the Scores Used

Two different scores have been used in this study: the Ratio-RMSE (for snow) and the Nash criterion
(for discharges). The scores are computed in this article for a vector z(t), that contains for each day
of the period, even for the experiments running at a lower frequency than the daily one, the average of
all the particles of the variable of interest (i.e., SCA or discharge) over the particles. The observation
is given by o(t) and N represents the number of days of the vectors. The Ratio-RMSE is the classical
RMSE divided by the average of the observation:

Ratio−RMSE =
1

o

√
1

N

∑
t

(z(t)− o(t))2 (9)

The Ratio-RMSE is equal to 0 for simulations perfectly fitting the observations and is unbounded by
above. The Nash criterion ([31]) is:

Nash = 1−

∑
t

(o(t)− z(t))2∑
t

(o(t)− o)2
(10)

The Nash criterion is equal to 1 for discharges perfectly fitting the observations and is unbounded by
below. In these equations, the average of observations o is defined as:

o =
1

N

∑
t

o(t) (11)
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The SCA scores are computed for the whole area and for the whole study period
(10 January 2004–10 December 2006), even for summer periods, for which no assimilation was
performed. The discharges scores are computed for each station (only one for the “Kromericz”
experiments, and seven for the whole Morava River basin) and averaged, if necessary, for the same
study period.

5. Assimilation of the Area Upstream of the Kromericz Station

The results will be presented as follows: first, data assimilation on the area upstream of the Kromericz
station will be discussed (Section 5). Then, the complete Morava catchment will be considered
(Section 6). For each case, tests on synthetic experiments will be first processed (Section 5.1 and 6.1),
and then experiments using real MODIS SCA data will be processed (Sections 5.2 and 6.2). The
experiments are summed up in Table 3 and linked to every subsection. In this Section 5, only the
area upstream of the Kromericz station is considered. The state variable and the observation state for the
particle filter are scalar values, containing the sum of the SCA values in this area. The discharge scores
are computed at the outlet of this area, i.e., at the Kromericz gauge station.

5.1. Synthetic Experiments

Synthetic experiments aimed at showing the effect on discharge of SCA assimilation only with
no intervention of real MODIS SCA data. For these experiments, a normal run of LISFLOOD
(called “proxy”) has been utilized for providing synthetic SCA observations and synthetic observed
discharges. It means that we used observations derived from meteorological stations as input for the
LISFLOOD model, and we used its SWE output, converted to SCA using the SDC, as observations
for the assimilation experiments. We then compared the model performance between simulations
including the particle filter and simulations not using it. The latter simulations represent the “no
assimilation” experiment.

Results of the assimilation of synthetic SCA data in LISFLOOD with the particle filter are presented
here for 50 particles. Figure 4 shows the impact of both the observation error and the frequency of SCA
assimilation on SCA (left part) and discharge (right part) average. The reference values (i.e., without
assimilation but with perturbed input) are shown as a grey line. The error intensity is irrelevant for this
reference value (there is only one experiment, and no assimilation—and thus no error—is used), but it is
displayed for each error intensity in order to facilitate interpretation of the graphs.

It is clear from the left part of Figure 4 that the particle filter improved the SCA, since all ratio-RMSE
scores are closer to 0 than the reference one. Furthermore, it can also be observed that the lower the
observation error, the larger the improvement in SCA. The frequency of assimilation also has an impact:
the best results are indeed obtained for a daily assimilation, whereas a 7-day assimilation has a poorer
impact. The right part of Figure 4 shows that the average discharge is also improved for every experiment,
with Nash values very close to 1. The efficiency of the assimilation experiments is quite constant when
the observation error or the frequency is modified. The only remarkable feature is observed for the 7-day
assimilation experiment, which seems less efficient for observation error values of 30% or 40%. Since



Remote Sens. 2013, 5 5838

these are the experiments with the highest errors and the lowest frequencies, it is logical to observe that
their impact on discharges is lower (i.e., the scores are closer to reference).

The same experiments have been performed with 200 particles (results not presented). The results
for SCA and discharge showed a similar behaviour as for 50 particles. The Ratio-RMSE score for
SCA was slightly improved and the Nash criterion for discharge was also slightly improved. Stronger
improvements were seen for low error intensities (5%–15%). It is noticeable that the curves are smoother
due to the increase of the number of particles.

Figure 4. SCA ratio-RMSE (left) and Nash (right) for the synthetic SCA particle filter
assimilation experiments on the area upstream of the Kromericz station with 50 particles.
Impact of the magnitude of the R matrix and of the frequency of assimilation is shown.

5.2. Real Experiments

In this Section 5.2, the assimilation of real MODIS SCA data is described. Results of the assimilation
of real MODIS SCA with the particle filter (50 particles) are given in Figure 5. On the left part of
this figure the evolution of the SCA ratio-RMSE with observation error and assimilation frequency is
given. Note that for the daily assimilation experiments, daily MODIS SCA data have been used as
observations. Consequently, it has been necessary to compare the no-assimilation experiment to both the
composite MODIS SCA (this is the “No ass.” curve) and the daily MODIS SCA (“No ass. daily” curve)
on Figure 5. For better readability, the scores of the proxy run are not plotted in the figure: the proxy
SCA has a ratio-RMSE of 0.51 compared with the composite MODIS and 0.50 compared with the daily
MODIS; the proxy discharges have a Nash of 0.85.

It is clear from the left part of Figure 5 that the particle filter improves the SCA of the LISFLOOD
model on the Kromericz station upstream basin. Similarly to the synthetic experiments, the smaller the
observation error, and the higher the assimilation frequency, the better is the improvement. Comparison
of the daily assimilation experiment curve and the No ass. daily curve shows that the improvement
provided by the assimilation is substantial (from 0.06 to 0.11 Nash improvement). The impact of the
particle filter (50 particles) on the Kromericz station discharge is presented in the right panel of Figure 5.
Only adding perturbations to the input already brought a slight improvement to the Nash criterion of
the average discharge (the “No ass. daily” curve is around 0.86 and the proxy run performed a Nash
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score of 0.85). From this Figure 5 we can also see that not all experiments improved the quality of the
discharges. High frequency experiments with low observation error, and low frequency experiments with
high observation error, deteriorated the Nash scores.

Figure 5. SCA ratio-RMSE (left) and Nash (right) for the real MODIS SCA particle filter
experiments on the area upstream of the Kromericz station with 50 particles. The SCA
proxy (not plotted) has a ratio-RMSE of 0.51 compared with the composite MODIS and
0.50 compared with the daily MODIS; the proxy discharges have a Nash of 0.85.

Figure 6. SCA ratio-RMSE (left) and Nash (right) for the real MODIS SCA particle filter
experiments on the area upstream of the Kromericz station with 200 particles. The SCA
proxy (not plotted) has a ratio-RMSE of 0.51 compared with the composite MODIS and
0.50 compared with the daily MODIS; the proxy discharges have a Nash of 0.85.

Experiments realized with 200 particles lead to the same conclusions (Figure 6). Comparing
this figure with Figure 5 shows that the improvement of the LISFLOOD SCA due to the increase
of the number of particles is very low. However, in the daily experiments the Nash criterion is
significantly improved by the higher number of particles, whereas the other experiments do not exhibit
clear modifications.
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6. Assimilation on the Whole Morava Basin

In these experiments, the whole Morava basin as presented in Figure 2 is considered. The state
variable and the observation state are 7-dimensional vectors, containing the sum of the SCA values on
each sub-basin described in Figure 3. The discharge scores are computed on average for the seven
stations and the SCA scores are computed for the whole area. Tests have been performed where the
Morava basin is considered as a whole (i.e., 1-dimensional vectors) similarly to the Kromericz upper
basin set of experiments (not shown here), but they were not conclusive. This was caused by the fact that
spatial heterogeneities are much more important in a large-scale basin, such as the Morava (26, 000 km2),
compared with the much smaller Kromericz basin (8, 000 km2). In such a case, it is very difficult to make
the model SCA to correspond with MODIS SCA observations on a large area. This justifies the division
of the Morava basin in seven more homogeneous zones in the following. The experiments described in
this Section 6 are summed up in Table 3 and linked to every subsection.

Table 3. Summary of experiments.

Area Method Observations Obs. Error Range Frequency
Section 5.1 Upstr. Kromericz Synthetic
Section 5.2 Particle filter MODIS From 5% to 40% 1,2,3,7 days
Section 6.1 Morava basin Synthetic
Section 6.2 MODIS

6.1. Synthetic Experiments

Figure 7 shows the results of synthetic experiments with 50 particles on the whole Morava basin.
Figure 7 left leads to similar conclusions as for the synthetic experiments for the Kromericz case. In
other words: the SCA is improved for all intensities of observation error, and for all frequencies. The
improvement is also higher for high frequency assimilations and for low observation errors. On Figure 7
right the impact of synthetic SCA data on discharges is shown. All experiments show a Nash increase
when compared with the reference, whatever the observation error used, and whatever the frequency
of assimilation.

Synthetic experiments with 200 particles show that the improvement of SCA and discharges is higher
than within the experiments with only 50 particles (Figure 8).

6.2. Real Experiments

The assimilation of real MODIS SCA data on the whole Morava basin with the particle filter is
presented in this Section 6.2. Results are shown in Figure 9 for 50 particles. All the experiments show a
clear improvement of the LISFLOOD SCA compared with their respective no-assimilation experiments
(left panel of Figure 9). This improvement seems better for intermediate values of observation error.
However, an improvement is not necessarily observed when compared with the proxy, which has a
ratio-RMSE equal to 0.52 when evaluated against composite MODIS and to 0.55 when evaluated against
daily MODIS. In fact, the no-assimilation experiments have SCA ratio-RMSE scores that are worse than
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the proxy score, and for some experiments this deterioration of scores is only partially recovered by
the particle filter experiments. This is especially the case for the 7-day assimilation experiments which
have SCA ratio-RMSE scores higher (i.e., worse) than the proxy. Improvements are observable (even if
low) for all the other experiments except for observation error of 30% and 40%, which shows that under
certain conditions the particle filter is efficient for improving SCA from real MODIS SCA.

Figure 7. SCA ratio-RMSE (left) and Nash (right) for the synthetic SCA particle filter
experiments on the whole Morava basin with 50 particles.

Figure 8. SCA ratio-RMSE (left) and Nash (right) for the synthetic SCA particle filter
experiments on the whole Morava basin with 200 particles.

The effect of the particle filter on discharge is different (Figure 9 right).This figure shows that the
discharge is improved by the perturbations, since the no-assimilation experiment has a Nash 0.02 point
higher than the 0.76 Nash of the proxy. However, discharge is adversely affected by the particle filter
for the case of the daily assimilation. When not deteriorated by data assimilation (with 2-, 3-, and 7-day
frequencies), only low improvements of discharge can be observed (0.02 at maximum) in this figure
in comparison with the no-assimilation experiment. The results of experiments with 200 particles (not
shown here) lead to similar results.
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Figure 9. SCA ratio-RMSE (left) and Nash (right) for the real MODIS SCA particle filter
experiments on the whole Morava basin with 50 particles. The SCA proxy (not plotted) has
a ratio-RMSE of 0.52 compared with the composite MODIS and 0.55 compared with the
daily MODIS; the proxy discharges have a Nash of 0.76.

7. Discussions

Every experiment showed that the improvement of SCA is dependent on the frequency of assimilation
and on the observation error used. It is quite straightforward that the higher the frequency, the better
the efficiency of assimilation will be, because when the SCA is not improved between each assimilation
timestep, it allows the input and model errors to affect adversely the SCA quality without hindrance. Also
the lower the observation error, the more the assimilation will trust the observations (i.e., the synthetic
SCA or the MODIS SCA) and so the better the LISFLOOD SCA will be.

A simple 1-dimensional experiment on the area upstream of the Kromericz station showed that the
quality of both average SCA and average discharges are clearly improved when synthetic SCA data
are assimilated using the particle filter. This indicates the theoretical potential of the particle filtering
for improving discharges via satellite SCA assimilation. Regarding the dimension of the problem,
experiments on the complete Morava basin (7-dimensional experiment) showed improvements for both
SCA and discharges for the synthetic case. This proves that the use of the particle filter is a suitable
method for improving discharges and can deal with heterogeneity of snow within the complete basin.
The particle filter respects the mass balance by adjusting the entire trajectory of the LISFLOOD SCA
to fit the MODIS SCA. There is no trajectory break (as it would be for the Ensemble Kalman filter for
example) that would provoke the non-conservation of the mass balance. In other words, to decrease
SCA, the particle filter needs to melt the snow within the model, not to remove it from the system, so
this snow amount will naturally increase the river discharge. This result shows that extending the kind of
assimilation we tested in this work to larger areas (for example entire Europe) will require either a high
number of particles, which will be limited by the computer power available, or an optimisation of the
implementation of the particle filter (for example in the way the area is cut). It seems difficult to find the
best intensity of observation error or the best frequency of assimilation for the synthetic experiments, the
trends were not clear for discharges. This maybe due to the fact that the scores were already quite good
(Nash close to 1) and thus the experiments are not able to have clear differences of performance.
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Applying the particle filter on the area upstream of the Kromericz station for a real case experiment
(i.e., assimilation of MODIS SCA) also lead to an improvement of SCA (always) and discharges (in most
of the cases). When the observation error used is either very low or very significant, discharges could be
deteriorated. These extreme cases (under- and over-confident with the observations) clearly show that a
balance has to be found in the setup of the assimilation experiments, as is the case for every assimilation
algorithm. Intermediate experiments show an improvement of the Nash criterion of more than 0.01 in all
cases but two. The improvement of discharge remains weak, but considering that the Nash criterion was
already high (0.86) and that this improvement is observed for an important number of tests, this shows
that the real MODIS SCA data do increase the quality of discharges when they are assimilated by the
particle filter.

Regarding the chaotic shapes of Nash curves with observation error variations (right part of
Figures 5–9), it is first important to note that this chaotic aspect is not observed for the SCA curves.
The strong variation in the Nash curves suggests that the particle filter always selects the best samples
of SCA values. With a slightly different selection of SCA values, it is clear that the Ratio-RMSE scores
will not be very different. However, these SCA values result in SWE values that can differ significantly
from each other (because the same SCA value, when it is equal to 1, can cover an important range of
SWE values for each pixel). These differences on SWE have an impact on discharges which is likely
the reason for the erratic behaviour of the Nash scores. In order to verify that the conclusions we drew
in this paper on single experiments (in the sense that for each frequency of assimilation, and for each
observation error, we performed only one experiment for a given basin) are correct, we reproduced each
experiment nine times. In total we obtained a set of ten (9 + 1) experiments, for each frequency of
assimilation, and for each observation error. These experiments are summarized for the area upstream
of the Kromericz station with boxplots on Figure 10, for both the Ratio-RMSE on SCA and the Nash
criteria. Each panel representing the Ratio-RMSE on SCA shows a clear increase if the observation
error increases. The panels representing the Nash show a higher dispersion of results. This dispersion is
higher for frequent assimilation with low observation error and for less frequent assimilation with high
observation error. A higher number of particles seems to lower the dispersion of Nash, especially for
daily assimilation, because of a better representation of the SCA distribution.

MODIS SCA assimilation on the Morava basin showed lower performance of LISFLOOD on SCA
and discharge than on the area upstream of the Kromericz station. This may be due to the difficulty of
the particle filter to deal with our 7-dimensional problem. This difficulty has already been pointed out by
some authors, including [36]. Daily assimilation of daily MODIS SCA data on the Morava basin led to
an important deterioration of discharges, that is not observed for assimilation of composite MODIS SCA
at any frequency or for synthetic experiments. This shows that trusting partial SCA data (since the daily
data contains around 48% of missing values due to clouds) at a high frequency can adversely affect the
discharges. Assimilating the composite MODIS SCA on the Morava basin does not improve significantly
the discharges except for the 3-day frequency experiments, which show a small improvement of the Nash
criterion except for high values of observation error. As for the Kromericz case, additional experiments
were realized and are represented on Figure 11. This figure shows that the dispersion of the results is
higher than for the Kromericz case, even for SCA (even though it remains limited). This figure also
confirms that the improvement of Nash is never important and is highly dependent on the frequency



Remote Sens. 2013, 5 5844

of assimilation and on the observation error. However, we can see that the improvement sometimes
observed with single experiments was representative of the behavior of the assimilation system. To
summarize, the particle filter can bring improvement on discharge even on a 7-dimensional problem,
but this improvement shows to be weak and sometimes not reproduced. Other studies, using the
EnKF instead of the particle filter, made similar conclusions: despite of an improvement of the snow
representation, the improvement of discharge is not necessarily observed ([5,19]).

Figure 10. SCA ratio-RMSE and Nash for the real MODIS SCA particle filter experiments
on the area upstream of the Kromericz station. The frequency of assimilation (freq) and the
number of particles (nb part) are indicated for every panel on the y-axis. The boxplots are
drawn for 10 similar-condition experiments. The corresponding no-assimilation experiment
is represented with a line.

To end up with the discussion, we would like to emphasize that the particle filter reduces the
uncertainty in snow cover induced by the perturbations. This effect is stronger for the experiments with
the most frequent assimilation. Reducing the uncertainty can provoke a so-called collapse of the particle
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filter, when only particles very close to the observations are kept. This is more often the case when only
few particles are used. Losing the uncertainty at one assimilation time-step can make it difficult to cover
a realistic range of possible states for the following assimilation timestep, and thus deteriorates scores.
By increasing the number of particles to 200, a better representation of the uncertainty of snow cover
is kept.

Figure 11. SCA ratio-RMSE and Nash for the real MODIS SCA particle filter experiments
on the whole Morava basin. The frequency of assimilation (freq) and the number of particles
(nb part) are indicated for every panel on the y-axis. The boxplots are drawn for 10
similar-condition experiments. The corresponding no-assimilation experiment is represented
with a line.
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8. Conclusions

The use of snow satellite observations such as the MODIS (Moderate Resolution Imaging
Spectroradiometer) SCA (Snow Cover Area) data has received increased attention in recent studies.
We presented here the benefits of using the particle filter for assimilating the MODIS SCA in the
distributed hydrological LISFLOOD model. The assimilation was applied to all or part of the Czech
Morava River basin, a tributary of the Danube, for a time-period of three years. The uncertainty in
precipitation, temperature, and the snow-melt coefficient parameter was taken into account by using
random distributions. The impact of the intensities of observation error, as well as the frequency of
assimilation, have been assessed. Furthermore, the importance of the number of members or particles
has been investigated.

In order to validate the assimilation algorithms, synthetic experiments have been performed. They
showed the positive impact of the particle filter for SCA and discharges before real MODIS SCA
assimilation. Moreover, this study showed that the particle filter is a suitable tool for real satellite SCA
assimilation in a hydrological model. By suitable, we mean that improving SCA simulation within
the LISFLOOD model with SCA assimilation should improve discharge simulation of the LISFLOOD
model. Application to real cases of the MODIS SCA assimilation with the particle filter seems
promising, especially for relatively small areas. In a small basin (8, 000 km2), assimilation results were
positive for discharges improvement. However, dealing with spatial heterogeneities seems more difficult,
which makes the algorithm poorly efficient (even if one could consider that as already being interesting)
or even counter-productive when applied on a larger area (the entire Morava River, 26, 000 km2).

Despite of these poor results on the complete Morava basin, the positive results on the area
upstream of the Kromericz station indicate that there is room for obtaining an efficient system on larger
(i.e., multi-dimensional) basins. Improving the way uncertainty is represented could for example lead
to better results. Moreover, giving the same importance to each sub-basin when calculating the particle
weight may be improved by a better distribution (more importance to more snowy areas). Finally, the
use of reliable satellite SWE (Snow Water Equivalent) or snow-depth data is also a possible way to
improve the representation of snow in LISFLOOD and will probably be investigated in the future. The
limitation to these data is of course that satellite SWE is still of poor quality, and that snow-depth data is
not representative of the snow cover for large areas.
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