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Abstract: Projected changes in the frequency and severity of droughts as a result of 

increase in greenhouse gases have a significant impact on the role of vegetation in 

regulating the global carbon cycle. Drought effect on vegetation Gross Primary Production 

(GPP) is usually modeled as a function of Vapor Pressure Deficit (VPD) and/or soil 

moisture. Climate projections suggest a strong likelihood of increasing trend in VPD, while 

regional changes in precipitation are less certain. This difference in projections between 

VPD and precipitation can cause considerable discrepancies in the predictions of 

vegetation behavior depending on how ecosystem models represent the drought effect. In 

this study, we scrutinized the model responses to drought using the 30-year record of 

Global Inventory Modeling and Mapping Studies (GIMMS) 3g Normalized Difference 

Vegetation Index (NDVI) dataset. A diagnostic ecosystem model, Terrestrial Observation 

and Prediction System (TOPS), was used to estimate global GPP from 1982 to 2009 under 

nine different experimental simulations. The control run of global GPP increased until 
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2000, but stayed constant after 2000. Among the simulations with single climate constraint 

(temperature, VPD, rainfall and solar radiation), only the VPD-driven simulation showed a 

decrease in 2000s, while the other scenarios simulated an increase in GPP. The diverging 

responses in 2000s can be attributed to the difference in the representation of the impact of 

water stress on vegetation in models, i.e., using VPD and/or precipitation. Spatial map of 

trend in simulated GPP using GIMMS 3g data is consistent with the GPP driven by soil 

moisture than the GPP driven by VPD, confirming the need for a soil moisture constraint in 

modeling global GPP.  

Keywords: GPP; VPD; precipitation; GIMMS 3g; TOPS 

 

1. Introduction 

Estimation of global vegetation Gross Primary Production (GPP) and Net Primary Production 

(NPP) and their interannual variations are critical for understanding the feedbacks between the 

biosphere and the atmosphere. Ecosystem carbon models, inversion models, and inventories have been 

used for assessing global land primary production, generating total annual global estimates of GPP and 

NPP converging around 120 [1] and 60 [2] Pg∙C∙yr
−1

, respectively. Meanwhile, Net Biome 

Productivity (NBP), the net carbon accumulation by ecosystems [3], was estimated just 2% of GPP for 

the 1990s [4]. Therefore, estimation of interannual variations of GPP and NPP are also important as 

well as their total magnitudes for understanding NBP response to CO2 emissions and changes in 

climate. To elucidate the mechanisms that cause the interannual variation in GPP, we need to rely on 

bottom up modeling approaches [5]. However, in contrast to total magnitude of GPP, there is no 

consensus on interannual variation in global GPP or NPP even for the last few decades with satellite 

observations (for example, [6,7]).  

One reason for the models failing to reach agreement on the interannual variations of GPP is the 

oversimplification of the simulated responses of vegetation to climate variability. By tuning the model 

parameters to match their output to the data from validation sites, even simple models can provide a 

reasonable estimate of total GPP [8,9]. Indeed, as more validation data are becoming available, the 

annual magnitudes of global GPP and NPP estimations from different models have been 

converging [1,2]. However, it is another issue whether those simple models tuned to acceptable annual 

GPP range can produce realistic interannual variations in estimated carbon fluxes. In addition, not 

enough long-term data are available to validate the model results globally on inter-annual time scales. 

The recent availability of a 30-year satellite record of Global Inventory Modeling and Mapping 

Studies (GIMMS) 3g data, focus of this special issue, from NOAA/AVHRR provides an unprecedented 

opportunity to examine the interpretation of long-term GPP simulations by simple models. In this study, 

we focus on the effect of drought stress on the interannual variation in GPP, and assess the structural 

uncertainty in model-simulated trends of global GPP. Reductions in GPP caused by drought stress can be 

modeled through increases in Vapor Pressure Deficit (VPD) and/or reductions in precipitation via soil 

moisture. Because time series of VPD and precipitation are generally highly correlated, some models use 

only VPD sub-models or only soil moisture sub-models to simulate the impact of drought stress on 
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GPP [10]. Short-term comparisons have shown that VPD-only models can produce variations in GPP 

that are similar to the ones obtained from models with both VPD and soil moisture sub-models [11]. 

These similarities are not surprising when precipitation and VPD trends are coherent, but this is not 

necessarily always the case. For example, it has been reported that while global warming-induced 

increases in VPD were observed [6], global total precipitation did not show a significant trend for the last 

three decades [12,13]. In this case, we would expect the VPD-only models to produce incorrect time series 

of GPP estimates. Furthermore, according to the Coupled Model Intercomparison Project Phase 5 

(CMIP5), reduction in relative humidity with global warming was expected to continue over the 21st 

century [14], while globally averaged precipitation was projected to increase with high uncertainty around 

regional estimates [15]. Therefore, it is crucial to clarify how model structure of drought stress affects the 

interannual variations in GPP. To address this question, we used the Terrestrial Observation and Prediction 

System model (TOPS) [16] to produce global GPP estimates from 1982 to 2009 using GIMMS 3g data, 

and analyze how VPD and soil moisture influence the interannual variation in global GPP. 

2. Data and Methods 

2.1. The Terrestrial Observation and Prediction System Model (TOPS) 

TOPS is a diagnostic ecosystem process model that simulates the fluxes of energy, carbon, and 

water through vegetation in response to climate and weather variability [16]. TOPS employs a Light 

Use Efficiency (LUE) model to calculate GPP [17], as follows: 

GPP = PAR · fPAR · ε (1) 

where PAR is the Photosynthetically Active Radiation (W∙m
−2

) and fPAR is the fraction of Absorbed 

PAR. ε is the light use efficiency (g∙C∙J
−1

), calculated as: 

ε = ε max · min{Ψtmin(Tmin), ΨVPD(VPD), ΨSM(SM)} (2) 

where εmax is the maximum light use efficiency of a given biome, and Ψtmin(Tmin), ΨVPD(VPD), 

ΨSM(SM) are down-regulation functions of minimum temperature, VPD, and soil moisture, 

respectively. The down-regulation functions are parameterized depending on the land cover type.  

Soil moisture is simulated using a one-layer bucket model with predefined wilting point and field 

capacity. Precipitation and evapotranspiration dynamics largely control soil moisture. Evapotranspiration 

is simulated with a two-layer model that consists of soil evaporation and canopy evapotranspiration. 

The canopy evapotranspiration was simulated using the Penman-Monteith equation with a Jarvis-type 

stomatal conductance submodel [18]. Water cycle components in TOPS, very similar to those in 

BIOME-BGC [19], have been validated over the past 25 years, for example stream flow [16], snow 

cover [20], and water stress [21]. 

Often less than average rainfall (hydrological drought) results in higher VPD inducing both 

physiological as well as meteorological drought conditions. Increased VPD triggers the closure of 

stomata resulting in a decrease in GPP. The stomatal responses to drought and their impact on canopy 

process are well observed in flux tower observations [22,23]. 

Because TOPS was developed from Biome-BGC, the GPP calculation in TOPS is similar to that of 

the MODIS 17 algorithm [24]. The main difference between the TOPS and MODIS 17 algorithms is 
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that TOPS has a soil moisture routine and a soil moisture control on GPP, while the MODIS 17 

algorithm is a VPD-only model. One of the reasons why MODIS 17 algorithm does not have soil 

moisture control is that MODIS 17 algorithm is developed for near real-time monitoring on a global 

scale. There are no satellite observations of soil moisture, and adding soil moisture sub-model is 

computationally expensive for an operational algorithm.  

2.2. LAI and FPAR 

TOPS requires estimates of Leaf Area Index (LAI) and fPAR to define the amount of vegetation 

and its photosynthetic capacity. For this study, LAI and fPAR were derived from the GIMMS 3g 

dataset using a neural network algorithm [25] and MODIS land cover [26].  

2.3. Climate Data 

TOPS ingests daily climate data for temperature, precipitation, VPD, and shortwave radiation and 

these inputs are obtained from the CRU-NCEP dataset version 4 [27]. The CRU-NCEP dataset 

provides climate variables for the period 1901–2010 and was made from the CRU TS3.1 dataset [28] 

and the NCEP-NCAR Reanalysis data [29] (hereafter referred to as CRU and Reanalysis, 

respectively). The CRU is 0.5-degree monthly climate data based on ground data, while the Reanalysis 

is ca. 2.5-degree 6-hourly modeled datasets. To compensate the downside of each dataset, the 

Reanalysis was interpolated to 0.5 degree and 6-hourly variations of the interpolated Reanalysis for 

each month were added to CRU monthly data to make the CRU-NCEP dataset. In this study, we used 

CRU-NCEP data for maximum temperature, minimum temperature, precipitation, specific humidity, 

and shortwave radiation for the period 1982 to 2009. Because the monthly time-series of the  

CRU-NCEP dataset is provided by the CRU dataset, the uncertainty of the CRU-NCEP dataset was 

inherited from the CRU dataset. The uncertainty of the CRU datasets tends to be larger in the earlier 

portion of the datasets and over developing countries. Because VPD data are not available from the 

CRU-NCEP data, VPD data were calculated from maximum temperature, minimum temperature, and 

specific humidity [30] within TOPS.  

2.4. TOPS Simulations 

TOPS was run from 1982 to 2009 at 0.5-degree resolution globally. We analyzed the vegetation 

response to each of the individual climate components and their combined effect using the approach 

adopted by Ichii et al. [31]. For each simulation, we use the CRU-NCEP time series of only one climate 

variable at a time, while holding the other climate components to their 1982 to 2009 climatologies. In 

addition, to analyze the effects of the down regulation functions Ψvpd and Ψsm in Equation (2), we 

perform TOPS simulations by keeping one of them equal to 1 (i.e., no control), while allowing the other 

one to vary. These simulations are summarized in Table 1. Hereafter, we refer to each simulation with 

the naming convention reported in Table 1. To initialize soil moisture, we spin-up TOPS with a 10-year 

spin-up run using the first 10 years (1982–1991) of climate data, and average of soil moisture difference 

for all the pixels was 0.72 mm between spin-up 1991 run and S_control 1991 run. 
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Table 1. Terrestrial Observation and Prediction System (TOPS) simulations naming 

convention. For each simulation, X indicates the variables allowed to vary while the 

climatology was used for the remaining variables. For the simulations with either ΨVPD = 1 

or ΨSM = 1, the down regulation function of either Vapor Pressure Deficit (VPD) or soil 

moisture was set to 1 so to have no control on Gross Primary Production (GPP). S_control 

was the GPP simulation with changing all the input variables. S_veg was the simulation 

driven by only Leaf Area Index (LAI)/FPAR, and the trend of S_veg was made from 

GIMMS 3g trend. S_clim was the simulation driven by climate variables, and represented 

the GPP trend explained by climate variability. S_temp, S_vpd, S_precip, and S_srad were 

driven by temperature, VPD, precipitation, and shortwave radiation, respectively. 

S_wo_vpd and S_wo_sm were simulation without VPD and soil moisture regulation, and 

thus represented models whose drought down-regulation were functions of soil moisture 

and VPD, respectively. 

 LAI/FPAR Temperature VPD Precipitation Radiation Model 

S_control x x x x x  

S_veg x      

S_clim  x x x x  

S_temp  x     

S_vpd   x    

S_precip    x   

S_srad     x  

S_wo_vpd  x x x x ΨVPD = 1 

S_wo_sm  x x x x ΨSM = 1 

3. Results 

3.1. How Did Each Climate Component Control Simulated Trends in Global GPP? 

The effect of each climate component on the interannual variations of global GPP is shown in 

Figure 1. Under S_control, GPP kept increasing until around 2000 and then declined modestly until 

2007. This trend is consistent with the results of shorter-term studies using the MODIS 17 

algorithm [6,32]. For each climate variable analysis, only S_vpd showed a consistent decreasing trend, 

while the other simulations all produced increasing trends in global GPP (Figure 1). These results 

suggest that land models solely relying on VPD may overestimate the reduction in GPP caused by 

water stress in 2000s.  

The cross-correlation coefficient matrix among the GPP time series produced by the different 

simulations is shown in Table 2. The GPP derived from the four climate variable simulations (S_temp, 

S_vpd, S_precip, and S_srad) did not correlate well with each other. The highest correlation was found 

between S_temp and S_precip, but the Pearson coefficient is still low (r = 0.43). Thus, the high 

correlation between S_clim and S_precip can be simply explained with precipitation having the 

strongest influence on climate-driven GPP. 
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Figure 1. Sensitivity tests of global Gross Primary Production (GPP) to the individual 

climate variables for the period 1982 to 2009. Each anomaly in global GPP was simulated 

with (a) control run (S_control) and changing, (b) temperature (S_temp), (c) Vapor Pressure 

Deficit (VPD) (S_vpd), (d) precipitation (S_precip), or (e) shortwave radiation (S_srad). The 

vertical grey stripes indicate the timing of the Multivariate ENSO (El Niño–Southern 

Oscillation) Index (MEI) phases, with darker shades representing stronger El Niño phases. 

 

Table 2. Correlation coefficients among five simulated annual GPP (S_clim, S_temp, 

S_vpd, S_precip, and S_srad) with each other, annual CO2 growth rate [33], annual mean 

Multivariate ENSO (El Niño–Southern Oscillation) Index (MEI) [34], and annual mean 

GISS global land temperature anomaly [35]. 

 S_clim S_temp S_vpd S_precip S_srad CO2 MEI GISS 

S_clim -- 0.25 0.48 0.70 0.15 −0.49 −0.73 −0.25 

S_temp 0.25 -- −0.39 0.43 0.37 0.29 −0.35 0.55 

S_vpd 0.48 −0.39 -- −0.21 −0.35 −0.69 −0.04 −0.87 

S_precip 0.70 0.43 −0.21 -- 0.37 0.01 −0.79 0.37 

S_srad 0.15 0.37 −0.35 0.37 -- 0.18 −0.19 0.41 
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In spite of the low correlation coefficients among the four climate variable simulations, Figure 1 shows 

a clear correspondence in the short term, i.e., shorter than a decade. S_temp and S_vpd are anti-correlated, 

with increases in the GPP driven by temperature and decreases in the GPP driven by VPD. The symmetric 

patterns are caused by VPD variation being largely driven by temperature. Elevated temperatures promote 

higher GPP at high latitudes, while high VPD lowers GPP by inducing drought stress. 

The comparison between S_vpd and S_precip in Figure 1 showed a different correlation pattern 

between short and long-term. Over the short-term, as in the case of ENSO, both S_vpd and S_precip 

decreased. Meanwhile, over long-term, the S_vpd showed the opposite trend of S_precip. The trend of 

increasing temperatures caused S_vpd to have an overall decreasing trend, while S_precip increased 

over the same period. The controlling effects of temperature on VPD also resulted in S_vpd having no 

correlation with MEI (r = 0.04), while S_precip was well correlated with MEI (r = −0.79) (Table 2).  

The same analysis presented in Table 2 was performed using the residual carbon flux, which was 

calculated from fossil fuel and cement emissions, land-use change emissions, atmospheric growth, and 

ocean carbon flux [36]. Assuming that the residual carbon is equivalent to the land sink, the analysis 

can directly assess the climate influence on carbon sequestration by land vegetation. The correlation 

coefficient of S_precip was improved from 0.01 to 0.31, but the correlation was still insignificant. The 

coefficients of the other simulations (S_clim, S_temp, S_vpd, and S_srad) were not improved.  

3.2. Can Simulated Global GPP Explain Interannual Variations in Atmospheric CO2 Growth Rate? 

Among the four climate component simulations, S_vpd had the highest correlation with the growth 

rate of CO2 (r = −0.69) (Table 2). As a first thought this high correlation could lead to validating the 

hypothesis that VPD controls global GPP and the CO2 growth rate. However, this hypothesis must be 

rejected on the grounds that the CO2 growth rate should strongly correlate with the Net Ecosystem 

Production (NEP). On the other hand, it has to be noted that S_vpd is strongly correlated with the GISS 

tropical (24°N–24°S) land temperature (r = −0.85), and the GISS tropical land temperature is also 

highly correlated with the CO2 growth rate (r = 0.74). It is therefore reasonable to assume that S_vpd 

shows a spurious and not a causal relationship with the CO2 growth rate through temperature, which 

controls both S_vpd and respiration. 

In Figure 2 we compared the time-series of S_clim, S_wo_sm, and S_wo_vpd with the CO2 growth rate. 

S_wo_sm and S_wo_vpd showed opposite long-term trends, more pronounced from the year 2000 onwards 

(Figure 2(a)), similarly to what was observed for S_vpd and S_precip in Figure 1. Overall, in the short term 

the interannual variations in GPP of the three simulations are anti-correlated with the CO2 growth rate. 

Similar to the relationship between S_precip and S_vpd, S_wo_sm showed higher correlation with the CO2 

growth rate (Figure 2(b)). The long-term correlation coefficients of S_wo_sm and S_wo_vpd with the CO2 

growth rate were −0.67 and 0.12, respectively. However, in the Pinatubo eruption era (1991–1994), all the 

three simulations deviated from the CO2 growth rate. This confirms that one cannot explain the CO2 

growth rate variability through GPP variability and that changes in respiration are required to simulate the 

observed CO2 growth rate. Therefore, though we still cannot exclude the possibility that TOPS failed to 

model VPD drought-effect on GPP, high correlation between GPP and CO2 growth rate was most likely 

spurious. Increase in diffusive radiation ratio in Pinatubo eruption era can mitigate the reduction in global 

GPP, but the effect was not strong enough to make global GPP increase [37].  
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Figure 2. (a) Anomaly of global GPP estimated by the climate only run (S_clim), climate 

only run without soil moisture control (S_wo_sm), and climate only run without Vapor 

Pressure Deficit (VPD) control (S_wo_vpd). The time series of the CO2 growth rate is 

shown with the black dashed line. (b) Time series of the correlation coefficient between 

GPP of the three simulations and CO2 growth rate for the past 7 years. 

 

3.3. Which Control (VPD or Soil Moisture) Can Explain Long-Term Trend in GIMMS NDVI? 

To evaluate whether the TOPS simulations are consistent with satellite observations, we calculated the 

differences of mean annual GPP between 2000–2009 and 1982–1999 for three simulations (S_control, 

S_veg, and S_clim) (Figure 3). Because S_veg was derived from GIMMS 3g under a fixed climate, we can 

assume S_veg to correspond to the anomaly of satellite-observed GPP. S_control and S_clim were very 

consistent with each other, while S_veg showed spatial patterns of higher GPP in China, Brazil, India, and 

USA, indicating that TOPS underestimated GPP in these regions during the 2000s. 

Next, we calculated the difference of mean annual GPP between 2000–2009 and 1982–1999 for 

S_wo_sm and S_wo_vpd (Figure 4(c,d)). Inconsistencies between S_wo_sm and S_wo_vpd occurred in 

Brazil, Africa, and Europe, with S_wo_sm showing more negative anomalies than S_wo_vpd in most 

of the regions. In these regions, precipitation increased in 2000s (Figure 4(b)), while VPD also 

increased (Figure 4(a)). Estimates from S_wo_vpd, compared to S_wo_sm, are more consistent with 

S_veg (Figure 3(b)) especially in West Brazil and Europe. Overall the effects of drought stress were 

more marked in the S_wo_sm simulations than in S_wo_vpd. 

Figure 5 shows the histograms of the differences between 2000–2009 GPP and 1982–1999 GPP for 

the 3 simulations (S_veg, S_wo_sm, and S_wo_vpd), which were derived from Figures 3(b) and 4. Both 

S_veg and S_wo_vpd were positively skewed (skewness are 0.597 and 1.865, respectively), while 

S_wo_sm was negatively skewed (skewness is −1.460). The mean of S_veg (0.011 kg∙C∙yr
−1

) was 

between the means of S_wo_sm (−0.008 kg∙C∙yr
−1

) and S_wo_vpd (0.023 kg∙C∙yr
−1

). As a result, 

distribution of S_veg is between S_wo_vpd and S_wo_sm, but closer to S_wo_vpd than S_wo_sm. 

These results suggest that the TOPS model overestimated the drought stress due to an overestimated 

VPD effect in the 2000s, and that both precipitation and VPD down regulation functions are required 

to simulate the long-term GPP trend.  
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Figure 3. Difference of mean annual Gross Primary Production (GPP) between 2000–2009 

and 1982–1999. Panel (a–c) are simulated with control run (S_control), fixed climate run 

(S_veg), and fixed vegetation run (S_clim), respectively. 
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Figure 4. Difference of mean Vapor Pressure Deficit (VPD), precipitation, and Gross 

Primary Production (GPP) between 2000–2009 and 1982–1999. Panel (a) is annual mean 

VPD difference, and Panel (b) is annual total Precipitation difference. Panel (c) is the 

difference of annual total GPP of the simulation without-soil moisture (S_wo_sm), and 

Panel (d) is that of the simulation without-VPD (S_wo_vpd). The climatology of fPAR was 

used for all the simulations. 

 

Figure 5. Histograms of the differences between 2000–2009 Gross Primary Production 

(GPP) and 1982–1999 GPP for the GIMMS-3g driven simulation (S_veg), without-soil 

moisture simulation (S_wo_sm), and without-VPD (Vapor Pressure Deficit) simulation 

(S_wo_vpd). The maps of the differences are shown in Figure 3(b), Figure 4(c,d), 

respectively. The means in the legend are mean value of the difference for each scenario. 
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4. Discussion 

According to van der Molen et al. [38], there are two direct dependencies of GPP on drought: 

structural changes in the vegetation, and physiological responses of the vegetation. In this study we 

only consider the latter ones. Depending on the physiological responses of stomata to soil moisture, 

plant species can be roughly divided into two types, i.e., isohydric and anisohydric species [39]. The 

isohydric species close their stomata when soil moisture decreases or VPD increases, while the 

anisohydric species are insensitive to soil moisture but close their stomata only responding to high 

VPD. Therefore, modeling drought response using VPD or soil moisture is similar to assuming that 

vegetation is composed by either isohydric or anisohydric species. The TOPS model structure assumes 

an isohydric behavior of vegetation, whereas models in which drought is simulated through VPD 

controls, such as the MODIS 17 algorithm, assume an anisohydric behavior of vegetation. Although 

plants cannot be clearly divided into isohydric or anisohydric by species [40], forest trees are 

predominantly of isohydric nature [41–43]. Thus, ecosystem models should have both VPD and soil 

moisture sub-models to properly represent the drought effect on GPP.  

Although both VPD and precipitation are required for modeling physiological processes an 

exception can be made for short-term analyses when VPD and precipitation tend to be closely related. 

Our simulation in Figure 1 showed similar trend with MODIS17 analysis in 2000s [6]. Caution should 

be exerted, however, in extending the interpretation of short-term effects of drought effects on GPP to 

long-term trends. Our 30-year simulation clearly showed different trends between soil moisture-driven 

and VPD-driven simulations. Dynamic global vegetation models (DGVMs) also showed  

model-dependent sensitivities to increased VPD in correspondence to increased temperature in the 

Amazon during the 21st century [44]. 

Though this study focused on the global scale variability and trends in GPP, we need more studies 

dealing with the differential controls on a regional scale. For example, Mu et al. [11] reported the 

decoupling between precipitation and VPD caused a failure in GPP simulation by MODIS 17 

algorithm in monsoon-controlled China. It is also known that variations in VPD sometimes fail to 

capture severe droughts at a watershed scale [45]. Therefore, assessing long-term trend in GPP in 

regional scale is more difficult by VPD-only model. 

In addition to climate variability, other factors, not accounted here, such as CO2 fertilization, 

nitrogen deposition [46], and diffuse radiation [37], affect the interannual variation in GPP. These 

effects are difficult to quantify and complicate the bottom-line GPP trend through combined 

effects [47]. In this study, by focusing on the difference of after-2000 and before-2000, we ignored 

these effects on the interannual variation in GPP. CO2 concentration and nitrogen deposition have a 

smaller interannual variability compared to the climate variables [5,48], and the effect of diffuse 

radiation is marginal over the three decades studied here [37]. 

The differences in GPP after 2,000 simulated by different models were also found in time series of 

estimated evapotranspiration [49]. Jung et al. [49] showed that most of the ecosystem models 

displayed an increasing trend in modeled evapotranspiration from 1982 to 1998, but after that trends 

diverged among models. Jung et al. [49] concluded that the decreasing trend in evapotranspiration 

found in some models after 1998 was due to the limited soil moisture supply. However, similarly to 

the divergent GPP trends simulated for the 2000s, the diversion after 1998 can be explained by the 
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relative sensitivity of the model structure to VPD compared to other climate components. The 

observed global warming trend over the past few decades causes the VPD to increase. It is therefore 

crucial to assess how different land models handle drought stress so as not to equate an increasing 

trend in VPD with a decline in GPP or ET.  

This study focused on long-term trend around three decades, so that this study does not provide any 

conclusive judgment on the topic of short-term drought-induced NPP decline after 2000 [6,50,51]. 

Furthermore, discussing NPP trend is harder than GPP because of the need to include autotrophic 

respiration which is complex in itself [7]. Our results suggest that proper assessment of water 

limitation is one of the key issues to be clarified before assessing trends in global GPP or NPP.  

5. Conclusions  

In this study we performed a series of experiments using the TOPS model and Global Inventory 

Modeling and Mapping Studies (GIMMS) 3g data to evaluate the impacts of drought on the 

interannual variation of Gross Primary Production (GPP) simulated either in terms of VPD or soil 

moisture effects. Although Vapor Pressure Deficit (VPD) alone can simulate the effects of drought 

stress on GPP for short periods, we find that both VPD and soil moisture are required to simulate the 

long-term trend in global GPP. Terrestrial Observation and Prediction System (TOPS) simulations 

with a VPD control only underestimate GPP during the period 2000–2009 because of over-sensitivity 

to VPD drought effects. We also find that the strong correlation of the interannual variations of VPD 

with the CO2 growth rate observed in recent studies can be spurious because it is induced by a 

warming temperature trend. We recommend that assessments similar to the ones carried out for this 

study be performed for all ecosystem models aiming at analyzing the long-term trend in GPP or 

evapotranspiration. These sensitivity analyses are needed to correctly project the effects of climate 

change on the global carbon cycle. 
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