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Abstract: Landcover change alters not only the surface landscape but also regional carbon
and water cycling. The objective of this study was to assess the potential impacts of
landcover change across the Kansas River Basin (KRB) by comparing local microclimatic
impacts and regional scale climate influences. This was done using a 25-year time series
of Normalized Difference Vegetation Index (NDVI) and precipitation (PPT) data analyzed
using multi-resolution information theory metrics. Results showed both entropy of PPT and
NDVI varied along a pronounced PPT gradient. The scalewise relative entropy of NDVI
was the most informative at the annual scale, while for PPT the scalewise relative entropy
varied temporally and by landcover type. The relative entropy of NDVI and PPT as a
function of landcover showed the most information at the 512-day scale for all landcover
types, implying different landcover types had the same response across the entire KRB. This
implies that land use decisions may dramatically alter the local time scales of responses
to global climate change. Additionally, altering land cover (e.g., for biofuel production)
may impact ecosystem functioning at local to regional scales and these impacts must be
considered for accurately assessing future implications of climate change.

Keywords: landcover; information theory; wavelet analysis; precipitation;
NDVI; vegetation
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1. Introduction

Vegetation is a key variable of interaction between the land and atmosphere. Driven by climate,
vegetation is highly sensitive to precipitation and/or temperature, which depends on the region under
consideration [1,2]. The central US Great Plains are a leading producer of wheat, sorghum and a
significant amount of corn and soybeans. Production of corn for ethanol can reduce petroleum use
by about 95% on an energetic basis [3]. However, food production and energy needs are competing
pressures that alter decisions concerning the type of crops to produce. These landcover changes will have
spatially and temporally varying environmental impacts, such as altering water cycling in this region.
Understanding these impacts is vitally important for quantifying the responses to climate change in this
major agricultural producing region.

For semi-arid regions, such as the central US Great Plains, biosphere-atmosphere interactions are
strongly coupled to climate variability in these water-limited areas [2]. Precipitation is a primary
control of vegetation dynamics in grasslands, and disturbances in both the frequency and timing result
in observable ecosystem responses [1,4]. In addition, the structure and productivity of grasslands vary
along different spatial and temporal scales of precipitation. Sala et al. [5] confirmed the importance
of precipitation in relation to spatial and inter-annual variations in grassland production at a regional
scale. It is known that long-term average precipitation can determine large-scale ecosystem and species
distributions [6]. However, Yang [7] showed that the summer and spring precipitation was the dominant
climate control on grassland productivity of the central and northern US Great Plains. Therefore,
the variability in precipitation, across spatial and temporal scales, can strongly influence ecosystem
dynamics [8], and ecosystems are very susceptible to climate change induced perturbations. Global
circulation models are forecasting drying in the region is due to climate change [9], thus necessitating
an enhanced understanding of ecosystem feedbacks between local land cover and regional climate for
mitigating climate change.

The evidence for biotic responses to climate changes can be based on analysis of satellite data,
and the Normalized Difference Vegetation Index (NDVI) is the most common indicator of terrestrial
vegetation productivity [10,11]. NDVI can be used to evaluate responses of vegetation to climate change
because it is well correlated with the fraction of photosynthetically active radiation (FPAR) absorbed
by plant canopies and thus leaf area, leaf biomass, and potential photosynthesis [12]. Notaro et al. [13]
also suggested that there is the largest interannual variability with large anomalies in the relationship
between FPAR and precipitation on the prairie of the central US. Lotsch et al. [8] used continental scale
precipitation data and NDVI, indicated that variability in precipitation at seasonal and longer time scales
strongly influence ecosystem dynamics in arid and semi-arid regions, and illustrated the global extent and
sensitivity of ecosystems susceptible to climate change-induced perturbations in precipitation regimes.
In addition, Wang et al. [14] used NDVI to show that vegetation can influence climate variability through
land-atmosphere interactions over semi-arid grasslands. In general, these results indicate there is a
complex relationship between vegetation and precipitation or other climate forcings, which are highly
variable in time and space [15].

The conversion of grassland to croplands and pastures has affected the exchanges of energy, water, and
carbon, as well as ecosystem condition and function [16,17]. Not only does the vegetation-precipitation
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relationship vary in time and space, but it is also influenced by local landcover and land management
strategies. For example, there is a significantly different development and spatial distribution of land
cover and land use between eastern and western Kansas: eastern Kansas has a trend toward increasing
urbanization and increased woody encroachment [18], while in the western portion of the state the
dominant land use is agriculture, with a significant portion being irrigated [19]. These changes alter
not only the surface landscape but also regional water cycling. Under global warming conditions,
the environment may have significant responses to these hydrological changes caused by landcover;
moreover, feedbacks between landcover and the water cycle will also be influenced by many other factors
(i.e., urbanization, grazing, cropping, irrigation, etc.) across the region. Predicting the suitability of
different regions to agricultural production will depend upon the accurate determination of local versus
regional controls on the water balance.

In concert with the relationship between precipitation (or other climate forcings) and vegetation, many
studies have used correlation analysis to examine how vegetation responds to climatic variables (i.e.,
precipitation , temperature) in different temporal or spatial scales [20–22]. However, in order to further
characterize the interactions among vegetation and climatic variables, it is also important to understand
the variability of climatic variables in the hydrologic and energy cycles. For example, Mishra et al. [23]
employed an entropy-based investigation to quantify spatial and temporal variability/disorder of
precipitation in Texas. The authors indicated entropy is a desirable approach to study the variability
of precipitation based on the whole to part concept. Moreover, information theory has been used widely
in applications of assessing hydrological variability, such as the scaling behavior both in space and
in time [24]. Brunsell and Young [25] used the multiscale information theory metrics to examine
the interaction between precipitation forcing events and land surface (NDVI and surface temperature)
response, and concluded this method can determine the relative impacts of regional climate and local
land-atmosphere interactions as a function of spatial scale.

Our proposed methodology, multiscale information theory metrics, which have been developed by
Brunsell and Young [25], Brunsell [26] and Brunsell and Anderson [27], is a set of metrics to assess
the spatial and temporal variability of hydrological processes and is able to be applied to land-surface
hydrology and ecology [26]. As discussed by Stoy et al. [28] this method can quantify the appropriate
scales for observations and modeling studies. Besides, entropy could aid in distinguishing different
spatial patterns by applying it to hourly precipitation [29] and improving short-term precipitation
forecasts [30]. It was also used by Brunsell and Young [25], who assessed the spatial and temporal
interactions between precipitation, soil moisture and vegetation dynamics and indicated that the
multiscale information theory could address the wide range of spatial and temporal scales that contribute
to the observed data.

Therefore, the motivating objective of this study is to examine the relationship between vegetation
productivity and the roles of local land cover type and regional climate (i.e., precipitation). Specifically,
the major objectives are first, to understand the temporal dynamics associated with different landcover
types as a function of location along the mean precipitation gradient and, second, to assess to what extent
are different longitudes within the KRB governed by microclimatic impacts (i.e., landcover) or climate
forcing (i.e., PPT).



Remote Sens. 2013, 5 4350

2. Study Area and Data Sources

2.1. Study Area

The central US is an area of significant agricultural production, and for this study we focus on the
Kansas River Basin (KRB), which is located in northern Kansas and extends into southern Nebraska
and a portion of eastern Colorado (Figure 1). Across the KRB, there is a profound precipitation
gradient extending from dry in the west (400 mm/yr) to moist in the east (1,000 mm/yr) [31]. The
current ecosystems are highly influenced by local land use management strategies including balancing
the increasing demand of food and biofuel production, which will extend potential impacts of the
environmental changes, both in the native and agricultural lands. Most parts of the KRB are agricultural
and prairie. Short-grass prairie is in the west, mixed prairie is in the center, and tall-grass prairie is in the
east. By landcover type, croplands (40% of KRB) are primarily located in the central to west, grasslands
(41% of KRB) are distributed primarily in the east, and woodlands or forests (4% of KRB) are only
found as riparian along river valleys in the east [32]. It is an opportune area to address the questions
of ecosystem dynamics changes through time, because unlike the top corn producing areas, land in the
KRB is used for a wide variety of agricultural uses (i.e., corn, soybean, Conservation Reserve Program
(CRP), grazing, etc.) as well as natural landcover types such as C3 and C4 grassland. This basin is
likely to undergo changes from a significant number of landcover types as demand for one or two crops
(i.e., corn and soy) increases. There are additional uses competing for land surface area including woody
encroachment and urbanization.

Figure 1. (a) Averaged annual precipitation (mm) in KRB in 1982–2006; (b) Averaged
annual NDVI in 1982–2006. Points illustrate the location of the USHCN stations.
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2.2. Data Sources

2.2.1. NDVI

Currently, AVHRR is the best historical and the longest record of data for monitoring
vegetation [33,34]. Twenty-five years (1982–2006) of AVHRR satellite data was used to examine
vegetation dynamics as a function of land cover types (soybean, corn, and CRP lands, etc.). The Global
Inventory Monitoring Modeling Studies (GIMMS) data set is a maximum 15-day composite NDVI
product at 8-km spatial resolution available for a 26-year period spanning from 1981 to 2006, derived
from AVHRR onboard the afternoon-viewing National Oceanic and Atmosphere Administration’s
(NOAA) satellites series 7, 9, 11, 14, 16 and 17 [35].

2.2.2. Precipitation

Precipitation (PPT) was used as a measure of the regional climate variability because of the east-west
gradient across the KRB [36]. The daily precipitation data is from the US Historical Climate Network
(USHCN, [37]). Seventy-six stations across KRB transect were located from 93.5 to 105.5 W Longitude
and 37.5 to 42 N Latitude (Figure 1a), and whose length of the observations records is the same as the
period of NDVI (1982–2006). We aggregated the daily precipitation to 15-day totals in order to match
the same temporal resolution of the NDVI data. Instead of comparing an individual station or a group of
stations with the model output, we interpolated the precipitation to the latitudes and longitudes of these
stations using kriging [9,38].

2.2.3. Land Use and Land Cover

Despite variable crop cultivations in the central US over the time period of interest, the total factions
remained fairly constant according the USDA [39] (e.g., corn varied between 22.1% and 22.6% of the
KRB, while wheat varied between 20.4% and 21.4%) [40]. In order to assess the distribution of landcover
across the KRB, we used the 24 class, 1-km spatial resolution 2005 Kansas Land Cover Patterns Level IV
map, created by the Kansas Land Use/Land Cover Mapping Initiative [41]. We combined this with the
agricultural statistics and published Green Reports [42], which defined different landcover types from
the Advanced Very High Resolution Radiometer (AVHRR) based NDVI. For our purpose, we focused
on specific landcover types, which contributed to both food and biofuel productions since those are the
dominant landcover types. We aggregated this data to 12 primary landcover types, which are: irrigated
corn, non-irrigated corn, irrigated soybean, non-irrigated soybean, irrigated cropland (including irrigated
sorghum, winter wheat, alfalfa, fallow and double-crop), non-irrigated cropland, CRP land, C4 grassland,
C3 grassland, woodland, urban, and water (Table 1). In addition, this landcover data was resampled to
an 8-km grid to match the resolution of 8-km GIMMS NDVI data by using majority approach in the
ArcGIS 9.1 software package (Figure 2).
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Table 1. Land cover types, percentage, numbers of pixel and per-pixel fraction cover
(the average of the aggregation from the 1-km grid to the 8-km grid) of the 2005 Kansas
Land Cover Patterns Level IV map.

Land Cover Type Percentage (%) Numbers of Pixel Per-Pixel Fraction Cover (%)

Irrigated corn 6.9 213 50
Non-irrigated corn 6.12 189 55
Irrigated soybean 2.46 76 46
Non-irrigated soy bean 5.6 173 52
Irrigated cropland 24.72 763 65
Non-irrigated cropland 5.44 168 49
CRP land 2.5 77 46
C4 grassland 37.75 1165 74
C3 grassland 3.99 123 49
Woodland 2.66 82 45
Urban 1.2 37 55
Water 0.66 20 80

Total 100 3,086

Figure 2. Distribution of land cover types in the Kansas River Basin.
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3. Methodology

3.1. Wavelet Multi-Resolution Analysis

Wavelet analysis is a technique to view a data series as a function of different spatial and/or temporal
resolutions, and each different resolution can be referred to be “a level of decomposition”. It allows for
quantifying the variance contributed by each resolution and also determine when (temporally) or where
(spatially) the contribution originates from [25]. Wavelet analysis has more benefits of taking both time
and frequency into account. This is in comparison with a similar technique of Fourier transformation,
since Fourier transformation only focuses on frequency and is not capable of characterizing a signal
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whose frequency content changes in time such as precipitation [43]. Previous studies such as Brunsell
and Gillies [44] and Brunsell and Young [25] have applied wavelet analysis to assess the relationship
between water and energy cycling and vegetation in terms of spatial variability and distribution. In this
study, we followed the method of [27] and examined NDVI and PPT to ascertain temporal variabilities
of the land surface and precipitation. We quantified the variability of precipitation and landcover as a
function of temporal scale, and PPT and NDVI signals were compared at each level of decomposition.
The wavelet transform (W(m,n)) in this study was conducted using the Daubechies least-symmetric
8 wavelet as a mother wavelet ψ to achieve a high level of localization in both time and frequency
domains. This mother wavelet is then dilated (m) and translated (n) across a time-series f as a function of
time t [45]:

W(m, n) = λ
−m
2

0

∫
f(t)ψ(λ−m

0 t − nt0)dt (1)

where λ0 is the initial scale of decomposition, and the wavelet is defined by:

ψm,n(t) =
1√
λ0m

ψ(
t − nt0λm

0

λm
0

) (2)

The unique capability of wavelet multi-resolution analysis “zoom-in” allows the identification of local
brief, high-frequency signal and low-frequency variability in a time series. Windows are able to look at
different frequency signals: being wide for low-frequency while being narrow for high-frequency [46].
At each level of decomposition, the original signal (f (t)) can be reconstructed from the wavelet
coefficients Dm,n as:

f(t) =
∞∑

m=−∞

∞∑
n=−∞

Dm,nψm,n(t) (3)

Wavelet multi-resolution analysis is a dyadic (powers of two) decomposition in scale, and we have
chosen to conduct nine levels (corresponding to lengths of 2, 4, 8, 16, 32, 64, 128, 256, and 512) based
on the length of the time series. By progressively adding the finer scale details, the original dataset X at
scale m can be reconstructed from the inverse wavelet transform, using fluctuations (X ′) at each point t:

X(t) ≈ Xm(t) +
∑

m≥m0

X ′
m(t) (4)

In addition, we calculated the wavelet spectra as a function of time scale m to examine how much
each decomposition level contributed to the overall signal, which are given by:

E(m) =
1

N

m∑
i=0

|Di,n|2 (5)

3.2. Information Theory Metrics

Information theory has been previously used to examine land-atmosphere interactions [25–27].
Entropy is a measure of the statistical uncertainty of the random field X as described by the probability
density function (pdf). Lower entropy represents less uncertainty, which means the amount of
information needed to encode the signal is smaller [47]. For this study, Shannon entropy (H) [48,49] is
used as a measure of the spatial-temporal variability of precipitation and vegetation, which is defined as:

H(X) = −
n∑

i=1

p(Xi)log(p(Xi)) (6)
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where p(Xi) is the probability of variable, X , within an interval, i, of the pdf. The pdf was estimated
by using the density command in the R software package and then this discrete estimate was used as
the probability.

The relative entropy (R(X, Y )) is a measure of the distance between the two variablesX and Y given
by the pdfs p and q, respectively, and R(X,Y ) is zero if they are the same [50,51]. For example, p is the
pdf of NDVI (X), and q is the pdf of PPT (Y ), and relative entropy can measure how much PPT tells
us about NDVI (R(NDV I, PPT )) as well as how much NDVI tells us about PPT (R(PPT,NDV I)).
Relative entropy is defined as:

R(X, Y ) =
∑

i

pilog

(
pi

qi

)
(7)

There are two ways for computing the relative entropy for this study. In the first case, we
computed the relative entropy between the original data and a decomposed version data from the
wavelet multiresolution analysis. This was done to isolate the relative contributions of these timescales
to the overall signal, e.g., computing the relative entropy between seasonal precipitation and total
vegetation [26]. Therefore, we explicitly do not want to filter out temporal scales such as the annual
or seasonal scales prior to computing the information theory metrics. Secondly, the relative entropy was
computed between each decomposed scale of precipitation and NDVI. This part was for assessing how
much additional information is necessary to represent the vegetation when given a particular scale of
precipitation, and vice versa.

In order to compute the entropy and relative entropy of precipitation and NDVI, we first decomposed
the time series of precipitation and NDVI signals using the wavelet multiresolution analysis described
on the previous section. At each scale of decomposition, the pdf of the decomposed time series (X ′

m(t))
was calculated and then used to compute the Shannon entropy and the relative entropy as a function of
temporal scale of decomposition.

4. Results

4.1. General Distribution of Surface-Atmosphere Interactions Across KRB

Spatial and temporal biosphere-atmosphere interactions, such as fluxes of water and energy, are
strongly coupled to climate variability in grasslands [8]. Figure 1a shows the spatial distribution of
averaged precipitation varies from dry in the west (approximately 400 mm/yr) to more moist in the east
(up to 1,000 mm/yr). The distribution in the growing season (June, July and August) was generally
the same as the annual precipitation and the amount was from about 90 mm/yr to 270 mm/yr, which
contributed about one third of the annual amount.

Variations in climate factors, such as precipitation, have strong influences on the variation of NDVI for
a given area. Figure 1b shows that the spatial distribution of mean annual NDVI generally corresponds
to the precipitation. We also noted that along the west edge of the KRB, NDVI distribution followed
the terrain.

Figure 3a,b presents the probability density functions of precipitation and NDVI, which were
estimated using data from all grid points. They were used for calculating the entropy and relative entropy
of precipitation and NDVI. The information theory analysis was applied to examine how the temporal
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information content of vegetation and precipitation varied over the KRB. The NDVI had more variance
within the pdf than PPT and resulted in a higher entropy value (H(NDV I)=8.32, H(PPT )=7.75.
The values are the average over the period of analysis and the KRB.). Figure 3c,d shows the spatial
distributions of variability for PPT and NDVI (H(PPT ) and H(NDV I)). The values of H(PPT )

generally are higher in the west and lower in the east, however H(NDV I) gradually increased to
the east across the basin. The increasing trend of H(NDV I) corresponds to the west-east trend of
mean annual NDVI, which notes the longitudinal change in vegetation is determined by the dynamics of
landcover types.

Figure 3. The probability density functions of (a) 15-day totals PPT and (b) NDVI using
the entire record for the calculation of entropy of PPT and NDVI. Maps of per-pixel entropy
of (c) PPT and (d) NDVI; and per-pixel relative entropy between (e) PPT and NDVI and
(f) NDVI and PPT. The values of entropy and relative entropy are calculated by using the
non-transformed version of PPT and NDVI.
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The maps of the relative entropy between PPT and NDVI are shown in Figure 3e,f. R(NDV I, PPT )

illustrates how much additional information is necessary to represent vegetation given by precipitation;
and R(PPT,NDV I) indicates the reverse. Both relative entropies showed the same general variability,
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where lower values exhibited in the west and increased to the east. R(NDV I, PPT ) showed a clear
break at around 100 W longitude, however R(PPT,NDV I) did not have this spatial trend. This break
also demonstrates that the variability of landcover corresponds to the precipitation gradient, as well as the
increase in irrigation in the western part of the KRB. Besides, the further western part indicates a tightly
coupled relationship between the precipitation and vegetation until the annual amount of PPT reaches
600 mm/year (around 101 W) and then this relationship decouples as the amount of PPT increases.

We compared the proposed method and metrics with other traditional statistical analysis as well. First
is the correlation analysis: we examined the relationship between NDVI and different time lags of PPT by
calculating correlation coefficients between NDVI of the various periods and corresponding precipitation
(e.g., current period of NDVI and previous period PPT). However, the results did not show any significant
correlation between NDVI-PPT within KRB (−0.1 < r < 0.1, Figure 4a). Secondly, we have tested if
NDVI and PPT exhibited non-stationarity during the study period by linear regression analysis. Again
the results had a weak relationship between NDVI and PPT (r2 = 0.1), shown in Figure 4b with the
correlation between 15-day composited NDVI and 15-day totals PPT over the 25 years.

Figure 4. (a) Twenty-five-year (1982–2006) averaged correlation coefficients between
NDVI and different time lags of PPT; (b) The scatter plot between 15-day composited
GIMMS NDVI and 15-day totals PPT in 25-years (1982–2006).
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4.2. Distribution of Landcover Types

In addition to the gradients of vegetation and precipitation across KRB, we examined the
spatial-temporal distributions within each landcover type (Figure 5a). In order to clearly distinguish
NDVI values among ten landcover types, we used the maximum NDVI to show the relationship between
landcover types and precipitation. Generally, high NDVI values corresponded to high PPT, with soybean
and CRP land being two noticeable exceptions. Among these landcover types, the maximum NDVI value
of each landcover type was slightly different, while the difference in the annual precipitation for each
landcover type was up to 137 mm. This contrast between NDVI and PPT illustrates that irrigation
management leads to vegetation productivity independent of the larger scale precipitation gradient.
Non-irrigated landcover types are primarily located in the more mesic eastern region, whereas irrigated
land use dominates in the more arid west.
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Figure 5. (a) Mean of maximum NDVI and PPT of 1982–2006 as a function of landcover
type; (b) Entropy of PPT and NDVI as a function of landcover type; (c) Relative entropy
between NDVI and PPT for each landcover type. The values of entropy and relative entropy
are calculated by using the non-transformed version of PPT and NDVI, and each error bar is
one standard deviation.
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We examined the variability of the entropy of PPT and NDVI as a function of landcover type
(Figure 5b). The variability showed a similar distribution as NDVI for each landcover type compared
with Figure 5a, but did not present as much difference among landcover types with reduced standard
deviation of entropy in NDVI spectra for each type. H(PPT ) slightly varied by landcover as well. We
also calculated how much of the information in the vegetation distribution was related to the precipitation
variability within each landcover type (Figure 5c). Clearly the R(NDV I, PPT ) values of ten landcover
types were all lower than R(PPT,NDV I), which implies less additional information is needed to
represent vegetation by the given precipitation rather than predict the PPT from the NDVI. Fluctuations
of R(PPT,NDV I) and R(NDV I, PPT ) among all landcover types were also approximately equal.
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4.3. Temporal Structure of Precipitation and Vegetation

We calculated the wavelet spectra to quantify how much variance of PPT and NDVI is contributed by
different temporal scales. This was conducted at selected longitudes along the KRB and as a function of
landcover type.

Figure 6a shows that for NDVI there were clear variations in the peaks in the wavelet spectra as a
function of longitude. For entire KRB signals, the overall wavelet variance was highest at 96 W, while
the other longitudes showed approximately the same curves but variances decreased from 98 W to 102 W,
which could reflect less heterogeneity in the western part of region. The dominant time scale (largest
peak) of 96 W was on the scale of 64-day. However, at the other longitudes they did not exhibit this peak.

Figure 6. Wavelet variances of NDVI (left) and PPT (right) as a function of temporal scale
in (a) entire KRB; (b) whole KRB; (c,d) irrigated corn; (e,f) C4 grassland; for selected
longitudes: 102 W (green line with star), 100 W (red line with triangle), 98 W (purple line
with rectangle) and 96 W (blue line with dot).
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Differences in landcover types induce minor variations across longitudes. Due to managed irrigation,
irrigated corn (Figure 6c) exhibited almost the same curves across KRB with a slight peak at the 64-day
scale. For C4 grassland (Figure 6e), the peak was at the same scale as the entire basin (64-day) but
longitudes exhibited different order of magnitudes of variance.

Precipitation within the KRB (Figure 6b) showed the dominant scale was at the monthly scale, which
surprising did not vary across longitudes. Moreover, in this monthly scale, irrigated corn variances
were increasing as a function of easterly position along the gradient (Figure 6d). For C4 grassland
(Figure 6f), there were also west-east increasing variances though much less distinct (in magnitude) than
irrigated corn.

4.4. Multi-Resolution Entropy Metrics of Precipitation and Vegetation

Next, we conducted a wavelet multi-resolution analysis to calculate the multiscale entropy for the
PPT and NDVI. The general behavior was increasing entropy with increasing time-scale. The marked
increase of NDVI was in the 128-day (seasonal) scale and slowly went up through longer time-scales.
More variance was found up to the seasonal scale for the entire basin and selected landcover types
(irrigated corn and C4 grassland). Within the seasonal scale for the entire basin (Figure 7a), NDVI
spectra showed that there was a decreasing trend from west to east. Irrigated corn varied more in the east
region (96 W) (Figure 7c), while C4 grassland in the far west and east regions exhibited less variation
than the central part (Figure 7e).

The entropy of PPT had the greatest increasing trend at the 512-day time scale. This increasing
trend was consistent across the entire KRB (Figure 7b), with slight variances at 64-day (bimonthly) and
128-day (seasonal) time scales. The same distribution was seen in C4 grassland (Figure 7f), however
few differences between longitudes were observed, except at the 512-day and 1024-day time scales.
Irrigated corn illustrated more fluctuations among longitudes at shorter time-scales and then converged
at the 512-day scale (Figure 7d). In addition, the distribution of woodland was a good example to indicate
differences between west and east because of similar behaviors at both 98 W and 96 W, which matched
the distributions of irrigated corn and C4 grassland at the eastern region (not shown).

4.5. Multi-Resolution Relative Entropy of Precipitation and Vegetation

In order to determine how much information is contributed to the total signal of PPT and NDVI
by certain time scales, we calculated the relative entropy between the original PPT and NDVI and
decomposed PPT and NDVI at each individual scale. For the entire KRB (Figure 8a), the relative
entropy between NDVI and its decomposed version showed that higher values and variations across
longitudes were at shorter (monthly and bi-monthly) time scales, while smaller, approximately constant
values were at time scales greater than the 256-day. Similar distributions of spectra were found in the
different landcover types. For irrigated corn (Figure 8c), a clear variation of westerly information was
seen at the shorter time-scales. C4 grassland (Figure 8e) also showed higher values at the shortest time
scales, but there was no consistent variation with longitude. This implies that at monthly and bi-monthly
scales NDVI contained less information about the total signal of NDVI, while the annual scale was the
one that was contributed the highest amount.
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Figure 7. Multi-resolution entropy of NDVI (left) and PPT (right) as a function of temporal
scale in (a) entire KRB; (b) whole KRB; (c,d) irrigated corn; (e,f) C4 grassland for selected
longitudes: 102 W (green line with star), 100 W (red line with triangle), 98 W (purple line
with rectangle) and 96 W (blue line with dot).
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The results of PPT for the entire KRB showed reduced values with increasing time scale with a
particularly high R value at 96 W and 100 W at the bi-monthly scale (Figure 8b). However, different
landcover types showed variation across scales in the multi-scale relative entropy. Irrigated corn
(Figure 8d) showed relative entropy values approximately twice as large in eastern region of KRB
(96 W) at the 64-day (bi-monthly) time-scale. The other longitudes varied with different temporal
scales, with perhaps a slight reduction with increasing time scale. The C4 grassland exhibited similar
variation across longitudes (Figure 8f): the eastern part (96 W and 98 W) exhibited the highest peak at
64-day (bi-monthly) time-scale while the western part (100 W and 102 W) showed a peak at 128-day
(seasonal) time-scale. These peaks indicated that these scales were particularly less informative in
comparison with other time scales. Generally, the relative entropy for the individual landcover type
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varied more at relatively shorter time scales. These results illustrated how different land cover types
from west to east along the precipitation gradient respond to climate forcing as shown in the results of
multi-resolution entropy.

Figure 8. Multi-resolution relative entropy of NDVI (left) and PPT (right) as a function of
temporal scale in (a) entire KRB, (b) whole KRB, (c,d) irrigated corn, (e,f) C4 grassland
for selected longitudes: 102 W (green line with star), 100 W (red line with triangle), 98 W
(purple line with rectangle) and 96 W (blue line with dot).
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In addition, we also calculated the relative entropy between NDVI and PPT as a function of scale
to examine how informative different time scales of the PPT signal were at determining the NDVI
data and vice versa. The results of R(PPT,NDV I) showed that the 32-day (monthly) scale was
contributed the least information (had the highestR value). Two distributions were noted across the basin
(Figure 9a): (1) at 98 W and 102 W, there were really high R values at the 32-day (monthly)
time-scale and decreased as a function of time scale; (2) two peaks showed at 32-day and 2,048-day
time-scale, at 96 W and 100 W, respectively. Longitudinal distributions of irrigated corn (Figure 9c) were
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approximately the same but not consistent at the 64-day (bi-monthly) time scale and longer time-scales.
Irrigated corn also showed slightly higher R(PPT,NDV I) at the 256-day and 1,024-day time scales.
C4 grassland looked similar across the whole basin (Figure 9e) with higher values in 32-day (monthly)
and 64-day (bi-monthly) time scales.

Figure 9. Multi-resolution relative entropy between NDVI and PPT as a function of temporal
scale in (a,b) entire KRB; (c,d) irrigated corn; (e,f) C4 grassland for selected longitudes:
102 W (green line with star), 100 W (red line with triangle), 98 W (purple line with rectangle)
and 96 W (blue line with dot).
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The distributions of R(NDV I, PPT ) for the whole KRB were almost the same as the results of
R(PPT,NDV I) (Figure 9b), with only reduced values on the monthly time scale at 98 W and 102 W.
With regard to the individual land cover type, the highest value was at the shortest (monthly) time scale
and showed little variation across longitude. For irrigated corn (Figure 9d), there was clear variation
by longitude (except 96 W) at the seasonal time scale. C4 grassland (Figure 9f) was relatively constant
across all time scales but had a slight variation at the bi-monthly time-scale.
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5. Discussion

Climatic controls are the primary influence on grasslands with the possible exception of irrigation [8].
The relationship between vegetation and climate variables is generally obvious but is highly variable
in time and space. The spatial distribution of vegetation generally corresponded to the precipitation
increase (Figure 1).

Compared with the proposed method and metrics, other traditional statistical analysis like the
correlation analysis and linear regression analysis have shown no significant results. This agrees with
a study of the assessment of spatial-temporal variability of daily precipitation across the continent [26],
which had almost identical spectra across all longitudes and therefore concluded that correlation may
not be a useful metric for assessing the spatial or temporal variability of precipitation. Besides,
this non-significant relationship also demonstrated that other factors, such as soil moisture and soil
reflectivity may have an influence on the vegetation response [52].

As the information theory metrics used in this study are qualitative rather than quantitative, and are
computed at each time scale from the estimated pdfs, the values of entropy and relative entropy are
conveniently used to interpret the variability of precipitation and vegetation.

Entropy metrics can show the spatial gradient of precipitation and vegetation (Figure 3c,d) and
moreover be able to assess their temporal/spatial variability. The higher H(PPT ) was in the western
part of KRB, and this high variation could indicate that some extreme events such as drought happened
during the study period. This agrees with a study in Texas [23] where disorder in precipitation amount
and a strong spatial gradient of rainfall days might relate to significant historical drought periods. Since
vegetation was largely impacted by precipitation, lower H(NDV I) in the western KRB indicated only
drought tolerant land cover types (e.g., C4 grassland) could adapt to this varied climate condition; while
with increasing PPT, landcover becomes more diversified to the east. Relative entropy is another useful
means for our study to assess the amount of additional information that is needed to represent vegetation
given PPT or vice versa. In Figure 3f, different amounts of information of PPT were needed to represent
vegetation. The precipitation and vegetation dynamics were tightly coupled until mean annual PPT
reached approximately 600 mm/year (at 100 W) with decreased coupling occurring with increased PPT.

One objective of this study was to understand the temporal dynamics associated with different
landcover types as a function of location along the mean precipitation gradient. Overall, regional
precipitation was the main control for vegetation, and can be a good predictor of vegetation
productivity [1], shown in Figure 1b. Though vegetation changes all corresponded with the regional
precipitation gradient, they showed different levels of tightness with precipitation. (Figure 5c).
Meanwhile, the impact of varying different landcover types has been clearly shown in the comparison
of entropy of PPT between irrigated corn and C4 grassland at 102 W ((Figures 7d,f). The results
of their different spectra at the bi-monthly time scale conclude that grassland corresponded to
precipitation more than cropland in the KRB. However, as we have noted that among landcover
types there was not much difference, so the issue of misclassification in the landcover dataset due
to sub-pixel heterogeneity that could impact our results may need to be considered. The changes
among landcover types in the KRB followed a seasonal cycle (Figure 8a,c,e), which was also found
by Yang [7] who concluded that seasonal precipitation, not annual rainfall, was the dominant control
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for vegetation. In addition, the temporal dynamics of vegetation varied not only by landcover
types but also by location along the precipitation gradient. For natural landcover, such as C4
grassland and woodland (not shown), changes followed the seasonal cycle, which appeared in the
center of the precipitation gradient. However, no obvious cycle was found in the moistest (east)
area (Figure 6e), which may imply less response to climate forcing. The same results existed
in irrigated corn across longitudes (Figure 7c). Due to different microclimatic conditions (i.e., soil
moisture, topography, land management, etc.), the same landcover type in different locations along
the precipitation gradient contained similar amounts of information at different scales. This was also
observed in other landcover classes, e.g., non-irrigated soybean.

Next we examined how different longitudes within the KRB were governed by microclimatic impacts
(i.e., landcover) or climate forcing (i.e., PPT). Vegetation in the KRB was affected by the local
environment as indicated by diverse landcover types, though PPT was the main control for vegetation.
It was evidenced at some locations in the western portion (shown in a range between 102 W and 100 W)
of the KRB by having relatively same NDVI values (Figure 1b), but also an obvious precipitation gradient
(range was from 450 mm to 650 mm). This indicates the presence of large-scale irrigation, mentioned
in the study of the impact of irrigation on the US High Plains [19]. Rain-fed corn areas have been
converted to irrigation (about 60% of the total corn producing area) and also show a cooling effect that
causes a decreasing trend in mean and maximum air temperature in the irrigated region. Furthermore,
even though the general west-to-east increasing trend in vegetation is a function of location along the
precipitation gradient, local vegetation does not always match this distribution. Figure 6c has presented
the variance of the mean NDVI of irrigated corn that was approximately the same across the entire basin,
presumably due to the fact that the water deficit is offset by the increase in irrigation.

The distribution of land cover in KRB clearly indicated the impact of the local microclimate. Irrigated
landcover types i.e., irrigated corn, soybean and cropland had approximately the same NDVI values
(Figure 5a), but they were located in different portions of the KRB; corn was located in the western part
of KRB while soybean was in the central KRB. Based on their locations, soybean generally received
more precipitation, therefore any deficient water support in the western regions for corn should be from
other supplied sources. This was also found in (Figure 5c), where in different level of tightness with PPT
varied according to landcover type. Relatively higher R(NDV I, PPT ) of irrigated corn indicated that
the PPT was not particularly informative of the vegetation dynamics, which must then be determined by
other local factors. However, CRP land exhibited the lowest R(NDV I, PPT ), implying that the PPT
contributed significant information to the total signal of NDVI (Figure 5c) and should be due to other
anthropogenic causes.

Human manipulation is another strong forcing on vegetation in KRB. For example, removing the
water limitation resulted in the same NDVI spectra (Figure 7c). The wavelet variance indicated that
the dominant scale for PPT was at monthly scale, while for NDVI it was at the bi-monthly time-scale
(64-day). This is a reflection of the crop rotation strategies in the region. In addition, the relative
entropy of NDVI with its decomposed version in irrigated corn and C4 grassland consistently had the
lowest values at the annual scale, implying that this scale was the most informative about the vegetation
dynamics. These two landcover types had the same responses to precipitation across the entire basin and,
therefore, the climate forcing for KRB may not be the primary determinant for vegetation productivity
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compared with local microclimate factors. Nevertheless on CRP land, which is taking highly erodible
land out of crop production to reduce erosion [53], there was a smaller amount of precipitation than in
other landcover types, lower NDVI is expected but due to converted strategies it has a higher NDVI.

Meanwhile, land-use conversion may alter the vegetation-precipitation relationship. For instance, if
the C4 grassland in KRB is converted to an irrigated corn field, an obvious west-east covariability with
precipitation could be informed by the relative entropy between NDVI and PPT at the monthly scale
(Figure 9d,f). This type of landcover change effect was also suggested by Twine et al. [16] where the
results from landcover conversion, water and energy balance changes would depend on season, crop and
natural vegetation types, and management. Due to the increasing demand for food and biofuel, land
cover conversion may also impact the decisions of where and what types of crops are produced.

6. Conclusions

This study demonstrated the variation in vegetation across temporal scale as a function of landcover
types in the KRB. We examined how the different regions in this basin were governed by microclimatic
impacts of land cover type (i.e., landcover types, land management practices) versus regional climate
forcings (i.e., precipitation). We used wavelet multiresolution analysis and information theory metrics
to ascertain the temporal variability of landcover and precipitation over the region for twenty-five
years (1982–2006). Specifically, we have combined the information theory metrics with the wavelet
decomposition to assess variability across time scales. The wavelet-based information theory approach
allows for the comparison of the information content of different time-scales of NDVI or PPT (multiscale
entropy), and the assessment of the general contribution of different time scales to the overall NDVI or
PPT signal (multiscale relative entropy).

The general trend in the mean vegetation and precipitation showed an increasing trend from west
to east, indicating an obvious response of vegetation to the dominant climate forcing in the region.
However, it is known that crop management practices, i.e., the conversion of landcover, crop rotation and
irrigation, alter the way vegetation responds to climate forcings [31]. Due to the increasing demand for
food and biofuel, these human impacts became another important factor secondary to the climate forcing.

We have also found that the relationship between NDVI and PPT varied with different landcover
types. Despite the lack of significant results from other traditional statistic analyses, such as correlation
coefficient and linear regression analyses, our proposed method have shown remarkable results in the
relative entropy between NDVI and PPT (R(NDV I ,PPT )). High relative entropy between NDVI
and PPT indicated vegetation (irrigated corn and C4 grassland) were impacted not only by PPT spatial
distribution, but also by other factors, such as irrigation. Further analysis showed that vegetation in
KRB was more governed by this microclimatic impact. The relative entropy between NDVI and its
decomposed version of these two landcover types indicated that these two landcover types had the same
responses (at annual scale) to regional climatic forcing across KRB. However, the results of PPT showed
that variations were dependent upon landcover types and their spatial locations. This implies that the
regional climate forcing is the primary control on vegetation in this region, but it is not the only one.

This microclimatic influence can impact the responses to global and regional climate change. Human
manipulations have been able to impact regional climate change, i.e., in Kansas both natural ecosystem
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and agricultural use could increase winter temperature and decrease precipitation in the summer [9].
In this study, we examined how the landscape was impacted by microclimatic factors in addition to
the climate forcing of precipitation. These spatial-temporal interactions are not only associated with
environmental changes but also linked to social and economic issues. Given the economic importance
of grasslands as agricultural producing areas, it is essential to understand how biosphere-atmosphere
interactions can potentially mitigate the regional impacts of global climate change.
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