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Abstract: Shadows in high resolution imagery create significant problems for urban land 

cover classification and environmental application. We first investigated whether shadows 

were intrinsically different and hypothetically possible to separate from each other with 

ground spectral measurements. Both pixel-based and object-oriented methods were used to 

evaluate the effects of shadow detection on QuickBird image classification and 

spectroradiometric restoration. In each method, shadows were detected and separated either 

with or without histogram thresholding, and subsequently corrected with a k-nearest 

neighbor algorithm and a linear correlation correction. The results showed that shadows 

had distinct spectroradiometric characteristics, thus, could be detected with an optimal 

brightness threshold and further differentiated with a scene-based near infrared ratio. The 

pixel-based methods generally recognized more shadow areas and with statistically higher 

accuracy than the object-oriented methods. The effects of the prior shadow thresholding 

were not statistically significant. The accuracy of the final land cover classification, after 

accounting for the shadow detection and separation, was significantly higher for the  

pixel-based methods than for the object-oriented methods, although both achieved similar 

accuracy for the non-shadow classes. Both radiometric restoration algorithms significantly 

reduced shadow areas in the original satellite images.  
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1. Introduction 

Detailed and accurate land use and land cover information is essential to document the current state 

of urban environment, to evaluate what and where changes have been made on the landscape, and to 

examine the possible impacts on ecological processes and climate. It has been widely recognized for 

decades that satellite observations of the Earth’s surface can be used to map land use and land cover. 

However, until recently, satellite imagery has been limited in quantifying urban landscape patterns 

because of its low resolution in relation to the high spatial heterogeneity of urban land surfaces.  

The availability of high spatial resolution satellite imagery (e.g., IKONOS, QuickBird, and 

WorldView-2) provides new opportunities for better resolving the spatial details of urban landscapes at 

fine scales. However, the analysis of these images also requires sophisticated digital image processing 

techniques to deal with new challenges such as the problem of shadows [1]. While shadows may 

provide geometric information of casting ground features, such as the shape and height of buildings, 

shadows often cause ambiguity in image interpretation. Extensive shadows, cast by elevated ground 

objects such as trees and buildings, regularly exist in high resolution images largely due to the narrow 

field of view of satellite sensors as well as the low solar elevation at the time of image acquisition. In 

urban areas, the problem of shadows is further aggravated by the dramatic changes in surface elevation 

over a short distance. As a result, a significant proportion of high spatial resolution imagery in urban 

areas can be affected by shadows; this creates great difficulty in directly applying imagery data to 

analyze urban land use and land cover [2]. 

Shadows in high resolution imagery often lead to the reduction or total loss of spectroradiometric 

information, on which the interpretation of land cover and the evaluation of ground condition depend [1]. 

Reduction or loss of spectroradiometric information could potentially lead to misclassification, 

inaccurate derivation of biophysical parameters, and erroneous interpretation [3–5]. Thus, shadows 

pose an enormous challenge for applying high resolution satellite imagery to urban land use and land 

cover classification, change detection, and environmental analysis. Shadowed areas have been 

traditionally left unclassified or simply classified as shadows [6]. However, the class of shadows is not 

informational and consequently, the real land cover beneath shadows remains unknown and a 

significant portion of land cover is lost in image classification and urban environment studies. 

Resolving the shadow problem is two-fold: shadow detection and shadow removal. The former 

refers to the process of identifying pixels that are contaminated by shadows in remotely sensed 

imagery, whereas the latter is to restore the spectroradiometric information of those pixels to obtain a 

shadow-free image [1]. Thus, resolving shadows usually includes two stages in succession: shadow 

detection and removal in remotely sensed imagery and subsequently in the land use and land cover 

classification map. That is to say, shadows are often first identified in remotely sensed images and the 

spectroradiometric responses are restored for shadowed areas before image classification.  

A number of studies have investigated the problems in the first stage, i.e., shadow detection and 

removal in either high resolution satellite imagery (e.g., [1,7,8]) or aerial photography (e.g., [9–14]). 

An invariant color space based non-linear transformation was proposed [7], while histogram 

thresholding was used [1,8] to discriminate shadows from non-shadow areas in QuickBird and 

IKONOS images. Similar approaches have also been used to detect shadows in aerial photography, 

such as invariant color space based transformations [9] and models [10,11], and histogram 
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thresholding [12]. Additionally, three-dimensional models have been developed if the a priori 

knowledge of the sensor, the illumination, and the 3-D geometry of the scene are available [13,14].  

To remove shadow areas in the original satellite imagery, several radiometric restoration methods 

were compared [7], including gamma correction, linear correlation correction [8], and histogram 

matching [1,10,13], and the authors found that the linear correlation correction method restituted pixel 

values of shadow areas better than the other two techniques. In [14], a different approach was 

presented for removing shadows with neighboring area intensity mapping based on histogram analysis. 

Multisource data fusion has also been used to simply replace shadow pixels in one image with  

non-shadow pixels of the same area from another image [1,15]. The application of multisource data 

fusion to high spatial resolution images, however, is very challenging because spatial misregistration 

among different sources of imagery data may lead to significant errors [1]. In addition, shadow free 

imagery data of the same area with the same spectroradiometric characteristics are not always 

available; the lack of ancillary data makes it difficult to apply this technique in practice. 

Little research has been done on the second stage of shadow resolving, i.e., classification of 

detected shadow areas and evaluation of the effect of shadow detection on the accuracy of overall 

image classification. Three methods for land cover classification of shadow areas in an aerial photo 

were compared and the results showed that the classification achieved the best accuracy with the aid of 

data fusion if the ancillary data are available [12]. Considering most spectroradiometric restoration 

algorithms were not designed to optimize classification performance [16], a support vector machine 

approach was implemented to classify shadows before applying spectroradiometric restoration for 

shadow pixels in QuickBird and IKONOS imagery [17]. 

Most of these studies in the literature have conducted shadow detection at the pixel level.  

Pixel-based methods are generally limited in extracting meaningful objects of interest, thus, often 

produce inconsistent “salt-and-pepper” classification. In contrast, object-oriented methods arguably 

produce better classifications because of its capacity of subdividing images into individual 

homogeneous regions (i.e., image objects) at scales that are appropriate to the inherent landscape, and 

establishing the context information and topological network of these image objects for accurate 

classification [18].  

Only a few studies have examined if object-oriented image analysis provides an effective way to 

improve shadow detection or classification. Shadows on impervious surfaces in a QuickBird image 

were classified based on class-related adjacency relations, i.e., relative border of shadow objects to 

other image objects [2]. A similar rule-based classification process, which also relied on the additional 

information provided by LiDAR data, was employed to detect shadows in an aerial photo [12]. Based 

on the segmentation of a panchromatic image and a measured radiance ratio between the shaded and 

sunlit areas, shadow areas were extracted from the QuickBird imagery [19].  

This study proposes an alternative procedure to examine shadows in the high resolution QuickBird 

imagery of urban-suburban areas as well as in the derived land use and land cover classification with 

methods that do not require additional ancillary data for shadow restoration. We reversed the common 

order of the two-stage shadow resolving process to allow customized compensation for different types 

of shadows. That is to say, shadows were first detected and removed in land use and land cover 

classification with both the pixel-based and object-oriented methods, followed by the 

spectroradiometric restoration of shadow pixels in the original satellite imagery with the k-nearest 
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neighbor and the linear correlation correction methods, and the information returned by the shadow 

detection and classification. The specific objectives included detecting shadows with and without 

histogram thresholding prior to image classification, separating different types of shadows based on 

the ground feature upon which shadows were cast, reclassifying shadowed areas into informational 

land cover types, and restoring spectroradiometric information for the pixels that were contaminated 

by shadows. 

2. Methods 

2.1. Study Area and Data Collection  

The study area is a suburban residential neighborhood (15.5 km2), located in Falcon Heights and 

Roseville, Minnesota, USA (Figure 1).  

Figure 1. The geographical location of the study site, which includes the University of 

Minnesota Saint Paul campus, and the near infrared false color composite QuickBird 

imagery (acquired on 18 August 2003) of the suburban area in the Twin Cities 

Metropolitan Area, MN, USA. 

 

Land use and land cover of the study area is dominated by high-density residential development, 

but also includes commercial and institutional land development such as industrial buildings, parking 

lots, roadways, trees, and grass. The QuickBird multispectral imagery of the study area was acquired 

on 18 August 2003 under clear sky conditions. The sensor, with 11-bit radiometric resolution, has 

three visible bands (0.45–0.52, 0.52–0.60, and 0.63–0.69 µm) and one near infrared (NIR) band  

(0.76–0.90 µm). The spatial resolution of the image is 2.8 m, taken at a sun elevation angle of 54.5° 

and an off-nadir view angle of 12.1°. The image was geometrically rectified as described in [20]. 

Ramsey County color aerial orthophotography (spatial resolution, 0.15 m) collected on 8 April 2003 

was used as ancillary data to aid in shadow detection and land cover classification. 
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In this study and for most of unban conditions, we were more interested in the land cover shaded by 

shadows (e.g., grass and impervious surfaces) than the land cover that casts the shadows  

(e.g., buildings and trees). Thus, shadowed surfaces were simply grouped into two types: shadows on 

grass (SOG) and shadows on impervious surfaces (SOI), regardless of being cast by buildings or by 

trees. SOG and SOI directly define the land cover beneath shadows and they do differ spectrally as 

found in the field measurements described below. 

Spectral reflectances of SOG and SOI were measured with a 16-band multispectral radiometer 

(CROPSCAN MSR-16R, 0.46–1.72 µm) to investigate whether shadows were intrinsically different in 

terms of spectroradiometric properties and were hypothetically possible to separate from each other. 

The four multispectral bands of QuickBird data were simulated with the appropriate CROPSCAN 

bands as weighted averages [5]. The band widths of the spectroradiometer vary from 6.8 nm to 12 nm 

in the visible and from 11 nm to 13 nm in the near infrared. Thirty seven shadowed plots were selected 

in the study area, in which 19 were SOG plots and 18 were SOI plots. Each type of shadow (i.e., SOG 

and SOI) was further divided into shadows cast by buildings (7 for SOG and 8 for SOI) and shadows 

cast by trees (12 for SOG and 10 for SOI), respectively. Three random sampling areas were selected 

within each shadowed plot. Measurements were then averaged for each plot to estimate multispectral 

reflectance values for each type of shadow. All measurements were taken within one hour of the solar 

noon to minimize the effect of diurnal changes in solar elevation angle.  

2.2. Shadow Detection and Removal in the Image Classification 

Multi-stage pixel-based and object-oriented image classification methods were developed to 

classify land use and land cover. Shadow areas were either first detected by thresholding shadow 

pixels or image objects from non-shadow ones based on histogram analysis, or simply treated as one of 

the classes in the classification scheme. In both cases, shadows were separated into different types  

(i.e., SOG and SOI) based on the land cover shaded by shadows and subsequently removed by 

reclassifying them into corresponding informational classes, i.e., grass and impervious surfaces, 

respectively. The classification procedures applied to the non-shadow areas were similar with or 

without shadow thresholding for both the pixel-based and the object-oriented methods. Each method, 

however, classified the shadow areas differently. 

Six land use and land cover types were identified for the study area: trees, grass, impervious 

surfaces, bare soil, crops, and water. Agricultural research fields of the University of Minnesota, 

located in the study area, were masked because the land use is not typical of those in urban-suburban 

environments (Figure 1). QuickBird imagery does not have a middle infrared band, which is useful for 

water classification. With the use of only near infrared and visible bands, it is hardly possible to 

distinguish water from shadows [14]. To reduce the spectral confusion between water and shadows, 

water in the QuickBird imagery was masked with the Ramsey County open water outlines, which were 

derived from 2003 aerial orthophotography utilizing stereo processing techniques. 

2.2.1. Pixel-Based Methods 

The pixel-based methods were implemented in the software of ERDAS Imagine (version 9.3). We 

chose the unsupervised ISODATA (Iterative Self-Organizing Data Analysis Technique) clustering 
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algorithm over the supervised maximum likelihood because the imagery data of heterogeneous 

suburban landscape were not normally distributed, which violates the normality assumption. In 

addition, we found that the complex distribution of imagery data led to a large number of unclassified 

pixels in the supervised classification. In contrast, ISODATA does not rely on the normal probability 

distribution of the entire dataset and all pixels are clustered through a large number of merging and 

splitting iterations. 

A. Without Shadow Thresholding  

The commonly used ISODATA clustering algorithm was applied directly to the QuickBird imagery 

data. Thirty spectrally distinct clusters were identified through the iterative merging and splitting 

process. Each of these clusters was then examined and assigned to a meaningful information class 

(e.g., impervious surfaces, bare soil, trees, and grass). However, a number of spectral clusters were 

inevitably shadows. ISODATA clustering was applied again but only to these “shadow clusters” to 

separate shadows into two types: SOG and SOI. Lastly, SOG and SOI pixels were reclassified to 

information classes, i.e., grass and impervious surfaces, respectively. 

B. With Shadow Thresholding 

The first step in this method was to determine the threshold value for the separation of shadow 

pixels and non-shadow pixels. The optimal threshold was determined from the histogram of arithmetic 

image brightness value ( , ). , 14 ,  (1)

where ,  is the digital number of an image pixel at column i and row j in spectral band λ. 
Shadows pixels with low ,  are located at the lower end of the histogram. However, the bimodal 

histogram distribution of the QuickBird satellite imagery was not as obvious as those reported in the 

early studies of aerial imagery data [12]. Therefore, instead of selecting the threshold value at the 

valley between the two peaks in the histogram, we identified the threshold for shadow and non-shadow 

at the point where the lower part of the histogram started not to follow the bell-shaped curve. 

Individual pixels in the image were recognized as shadow pixels if their brightness value was less than 

the threshold value.  

For the shadow areas, 65 shadow pixels were extracted from the QuickBird imagery to compare 

with field measurements and determine the spectroradiometric differences between SOG and SOI. 

Based on the comparison and the analysis, the ratio of the pixel value to the scene average for the NIR 

band ( , ) was used to distinguish SOG and SOI, and the threshold value of ,  was 

determined from the training samples. , ,
 (2)

where ,  is the digital number of the NIR band for an image pixel at column i and row j.  

is the mean NIR value of the whole scene. All image pixels darker than the threshold value of ,  were identified as SOI; otherwise they were identified as SOG. Both were then reclassified 
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to information classes, i.e., impervious surfaces and grass, respectively. For the non-shadow pixels, the 

ISODATA clustering algorithm was applied to classify the image into information classes for the 

restoration of spectroradiometric information of shadow pixels (Section 2.3). 

2.2.2. Object-Based Methods 

The object-based methods were implemented in Definiens Professional (version 5.0) which 

supports multiple image segmentation and classification procedures [21]. Two segmentation 

approaches were integrated to create image objects. The agricultural fields and water bodies were 

segmented with the chessboard segmentation, while the rest of the image area was segmented with the 

multi-resolution segmentation to generate locally homogeneous objects and to keep the global 

heterogeneity of the whole image. 

Segmentation parameters are usually data and scene specific. Multiple segmentations with different 

parameters were tested until the result was satisfying at a very fine scale with the following 

parameters: scale, 22; color, 0.9 (shape, 0.1); and compactness, 0.5 (smoothness, 0.5). The desired 

objects of interest (i.e., shadows) have their own inherent scale. Scale determines the occurrence or 

non-occurrence of shadow objects. We selected the segmentation parameters based on the rule of 

thumb that optimal objects are as large as possible, yet small enough to be used as homogenous 

building blocks for the objects to be detected in the imagery [22]. Following the image segmentation, 

each of the objects was classified into one of the land cover classes with or without prior shadow 

thresholding, respectively. 

A. Without Shadow Thresholding 

The classification was conducted with fuzzy logic defined by the nearest neighbor classifier. For the 

high heterogeneous urban landscape, the use of nearest neighbor as classifier is advisable because a 

larger number of features would otherwise have to be used to separate different land use and land 

cover classes [21]. In particular, the nearest neighbor classifier does not rely on a continuous Gaussian 

distribution and is able to detect complexly shaped distributions in the feature space exactly. Fuzzy 

rule sets were automatically generated for each class including shadow classes (i.e., SOG and SOI) in 

the optimized multidimensional feature space. The degree of fuzzy membership of image objects to the 

specific class was computed from the hierarchy class description. An image object was assigned to the 

class whose evaluation returns the highest membership value. The SOG and SOI objects were further 

reclassified to information classes, i.e., grass and impervious surfaces, respectively. 

Training of the nearest neighbor classifier was performed by manually selecting labeled samples, 

which are the representative image objects of individual classes. The number of samples varied with 

classes (e.g., 3 for SOG vs. 10 for impervious surfaces). However, overall only a few training samples 

were required since one sample object already covers many typical pixel samples and their variations. 

B. With Shadow Thresholding 

Fuzzy rule sets, defined by membership functions of object features, were developed to detect 

shadow and separate it into subclasses (i.e., SOG and SOI) while other land use and land cover classes 
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were classified with the same nearest neighbor classifier as described above. Training samples were 

selected for all non-shadow classes. 

Based on the knowledge of image content and the rationale similar to the pixel-based shadow 

thresholding, the brightness ( ) and the ratio of the object value to the scene average for the NIR 

band ( ) were calculated for each image object. 14  (3)

 (4)

where  is the mean digital number of an image object k in spectral band λ.  becomes 

 for the NIR band. The same threshold values derived for BV(i,j) and Qnir(i,j) were used for 

 and  but applied at the object level this time. All image objects darker than the  

threshold value were detected as shadow objects, which were further differentiated to SOI and SOG 

based on the  value. Individual image objects were identified as SOI if their  value was 

less than the threshold value; otherwise, they were identified as SOG. All shadow image objects were 

further reclassified to information classes: impervious surfaces and grass. 

2.3. Shadow Detection and Restoration in the QuickBird Imagery  

Two steps are essentially involved in detecting and removing shadows in the original QuickBird 

imagery: extracting shadow pixels in the satellite image and restoring the spectroradiometric 

information of the shadowed pixels. We extracted shadow pixels simply by overlaying the land cover 

maps containing SOG and SOI with the QuickBird imagery. Each of the four land cover maps 

generated in Section 2.2 was used separately in the overlay thus resulting in four multispectral shadow 

images whose pixels were potentially contaminated by shadows.  

Two different methods were used to restore the spectroradiometric information of the detected 

shadowed pixels: the k-nearest neighbor algorithm [23] and the linear correlation correction 

algorithm [7]. Both were applied separately to each of the four spectral bands of the QuickBird 

imagery where shadow areas were identified by one of the four shadow detections. 

2.3.1. k-Nearest Neighbor Algorithm  

Because a particular shadow area is usually covered by the same land cover as its immediately 

adjacent surface, we chose k = 1 in the algorithm and simply assigned the digital number of the nearest 

neighbor to the shadow pixel. However, this nearest neighbor cannot be another shadow pixel and 

must have the same land cover as the shadow pixel. In other words, it was reasonably assumed that the 

surface texture of a shadow pixel was not radically different from its nearest non-shadow neighbor. 

Therefore, when implementing the algorithm, the neighborhood of the shadowed pixels was confined 

to one of two information classes, grass or impervious surfaces for SOG and SOI, respectively. 

Through this resampling process, the digital number of the closest pixel within the confined 

neighborhood was used to replace the original value of the corresponding shadow pixel.  
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2.3.2. Linear Correlation Correction 

For comparison, the linear correlation correction method, referred to as the mean and variance 

transformation, was also employed to predict the uncontaminated values of shadow pixels according to 

the statistical characteristics of the corresponding non-shadow areas.  , ,  (5)

where ,  and ,  are the original and corrected digital numbers of shadow pixels, 

respectively. ,  and ,  are the mean and standard deviation of shadow and non-shadow areas, 

respectively. These parameters were derived corresponding to each of the four shadow detections. For 

 and , we further modified the algorithm to account for the significant difference between two 

types of shadows by estimating both parameters for SOG and SOI separately. 

2.4. Accuracy Assessment of Shadow Detection, Image Classification, and 

Spectroradiometric Restoration 

Assessment of thematic accuracy was performed separately for each of the four shadow detections 

and classifications. Ramsey County 2003 very high spatial resolution (0.15 m) color aerial 

orthophotography (spatial resolution, 0.15 m) was used as the reference image to assess the accuracy 

of shadow detection and removal in the classification. Google Earth 7.0 imagery and ground surveyed 

data of the study area were also used as ancillary data to aid in the evaluation of shadow detection and 

thematic accuracy.  

A stratified random sampling method was used to generate the random points in ERDAS Imagine 

software (version 9.3). A total number of 300 random points were sampled, with at least 50 random 

points for each class, including SOG and SOI [24]. Although objects could be used as the sampling 

unit for the object-oriented classifications [25], no specific method for object sampling has been 

standardized in the literature. Thus, the accuracy assessment was conducted with the same set of 

random points in order to systematically compare the thematic accuracy of four different shadow 

detections and image classifications. Error matrices that describe the patterns of land use and land 

cover classes relative to the reference data were generated, from which the overall accuracy, user’s and 

producer’s accuracy, and Kappa statistics were derived.  

The Z statistical test was used to determine whether the shadow detections and image classifications 

were significantly better than random chance [24]. Pairwise comparison of Z-scores, reflecting the 

difference of Kappa statistics between two methods, was further conducted to test whether one shadow 

detection method was significantly more accurate than another. The Z-scores of the non-shadow 

classifications and overall classifications after accounting for shadow detections were also calculated 

and compared for the same purpose.  

)ˆr(âv)ˆr(âv

ˆˆ

21

21
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KK
Z

+

−
=  (6)

where var  and var  are the estimated variances of the Kappa statistics,  and , respectively. 
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The performance of the shadow detection and spectroradiometric restoration in the original 

QuickBird image was inspected by visual analysis. Shadow resolved images were compared with each 

other and with the original satellite imagery and the aerial orthophotography to evaluate the 

effectiveness of each shadow removal method. The comparison was also made to evaluate how each of 

the four different shadow detection methods affected the overall appearance of the QuickBird imagery 

and the success of spectroradiometric restoration. 

3. Results  

3.1. Shadow Spectral Characteristics 

The brightness histogram of the QuickBird satellite imagery did not show a typical bimodal 

distribution as reported in the previous studies of aerial photography which has higher spatial 

resolution [12]. But clearly, the shadow areas mainly contributed to the lower part of the histogram 

that did not follow the bell-shaped curve (Figure 2). A threshold value of 213 was selected graphically 

for separating shadow and non-shadow areas based on the interpretation of the brightness histogram. 

We examined the histogram of object brightness based on the image segmentation, however, did not 

find an obvious threshold value between shadow and non-shadow objects. 

Figure 2. The histogram of image brightness and the optimal threshold value (213) for 

separating shadow pixels from non-shadow pixels.  

 

For the shadow pixels, the analysis indicated that different types of shadow (i.e., SOG and SOI) had 

distinct spectroradiometric characteristics even though both had an overall low brightness (Table 1). 

Welch’s t-test showed that the spectral reflectances of SOG and SOI were significantly different in 

QuickBird’s four spectral bands. It was found from the field measurements that the spectral 

reflectances of SOG and SOI largely depended on the spectral characteristics of the object (either grass 

or impervious surfaces) upon which shadows were cast. 

The ratios of the pixel value to the scene average for the three visible bands of SOI were consistently 

higher than those of SOG (Figure 3). Average Qnir(i,j) of SOI, however, was lower than that of SOG. 

Furthermore, NIR was the only band that the variability (one standard deviation) of the average ratio did 
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not cause overlap between SOG and SOI. Therefore, Qnir(i,j) was used as a fuzzy feature in separating 

SOG and SOI, and a threshold value of 0.435 was determined from the training samples. 

Table 1. Welch’s t-test of measured multispectral reflectances of shadow areas in the 

QuickBird blue, green, red, and near infrared (NIR) bands a. 

Band Blue Green Red NIR 

 (%) −7.58 −8.57 −13.47 23.93 
d.f. 19 20 19 34 

t * −6.57 −4.96 −6.69 7.59 
a  refers to the reflectance differences between shadows on grass (SOG) and shadows on impervious surfaces 

(SOI). d.f. is the degree of freedom. t * indicates that  is significant at the 0.001 probability level. 

Figure 3. The spectroradiometric differences between shadows on grass (SOG) and 

shadows on impervious surfaces (SOI) shown in scene-based band ratios derived from the 

digital numbers of sampled shadow pixels (n = 65). The vertical lines indicate the range of 

variability in the blue, green, red, and near infrared (NIR) bands of QuickBird imagery. 

 

3.2. Shadow Detection and Classification 

The results showed that shadows (i.e., the sum of SOG and SOI) accounted for 6.9%–9.1% of total 

land cover in the QuickBird imagery (Table 2). The exact proportions of the identified shadow areas 

depended on whether the detection was carried out at the pixel or object level and whether a prior 

shadow thresholding was applied. The pixel-based methods generally detected more shadow areas than 

their object-based counterparts. The prior thresholding augmented shadow areas in the pixel-based 

method but lessened shadow areas in the object-oriented method. With the shadow thresholding, the 

pixel-based ISODATA detected the most shadow areas (9.1%) among the four methods, while the 

object-oriented method detected the least shadow areas (6.9%). Shadows detected by the other two 

methods without shadow thresholding had similar area coverage although the pixel-based method 

detected a slightly higher proportion (7.7% vs. 7.4% with the object-oriented method). 

The detected shadow areas varied from 5.9% to 7.0% for SOG and 1.0%–2.1% for SOI. All four 

methods detected more SOG than SOI. The proportions of SOG and SOI followed the same overall 

patterns as the total shadow areas. The pixel-based method identified slightly more SOG and SOI if the 

prior shadow thresholding was not applied. With the prior shadow thresholding, however, the 
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proportions of SOG and SOI detected with the pixel-based method were much higher than those with 

the object-oriented method. The pixel-based method identified the highest proportions of SOG and 

SOI (7.0% and 2.1%, respectively) while the object-oriented method identified the lowest proportions 

(5.9% and 1.0%, respectively).  

Table 2. Proportions (%) of shadow areas and land cover by type before and after the 

shadows were detected and removed with the pixel-based and object-oriented methods a. 

Classification Class Before Shadow Removal After Shadow Removal

Pixel-based 

Without Thresholding 

Shadow 
SOG 6.1 0 

SOI 1.6 0 

Non-shadow

Grass 31.9 38.0 

Trees 21.6 21.6 

Impervious 30.7 32.3 

Bare Soil 0.5 0.5 

With Thresholding 

Shadow 
SOG 7.0 0 

SOI 2.1 0 

Non-shadow

Grass 29.5 36.5 

Trees 22.5 22.5 

Impervious 30.6 32.7 

Bare Soil 0.5 0.5 

Object-oriented 

Without Thresholding 

Shadow 
SOG 6.0 0 

SOI 1.4 0 

Non-shadow

Grass 27.4 33.4 

Trees 23.5 23.5 

Impervious 33.6 35.0 

Bare Soil 0.5 0.5 

With Thresholding 

Shadow 
SOG 5.9 0 

SOI 1.0 0 

Non-shadow

Grass 27.8 33.7 

Trees 22.5 22.5 

Impervious 34.9 35.9 

Bare Soil 0.4 0.4 
a SOG and SOI refer to shadows on grass and shadows on impervious surfaces, respectively. 

Figure 4 shows a portion of the University of Minnesota Saint Paul Campus, located in the study 

area, where shadows were detected and separated in the image classification. Most of the isolated 

pixels that were identified as SOG or SOI with the pixel-based methods were detected as non-shadow 

by the object-oriented methods. In other words, many isolated shadows were not able to be detected 

with the object-oriented methods. The figure also shows the final land use and land cover classification 

when all shadow areas were reclassified to information classes. By reclassifying shadows to 

corresponding information classes, 6.9%–9.1% of land cover was recovered in the final classification. 
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Figure 4. Shadow areas detected and classified in the land use and land cover map of a 

portion of the University of Minnesota Saint Paul Campus with two pixel-based (panels (a) 

and (b), without and with shadow thresholding, respectively.) and two object-oriented 

methods (panels (c) and (d), without and with shadow thresholding, respectively). Shadow 

on grass (SOG) and shadows on impervious surfaces (SOI) were reclassified to grass and 

impervious surfaces, respectively, in panels (e–h) corresponding to panels (a–d), respectively. 

Panel (i) shows the color aerial imagery (acquired on 8 April 2003) of the same area. 

 
(a) (b) (c) (d)  

 
(e) (f) (g) (h) (i) 

3.3. Image Classification before and after Shadow Removal 

Depending on the shadow detection and image classification methods, the percentages of grass, 

trees, impervious surfaces, and bare soil for the non-shadow areas were 27.4%–31.9%, 21.6%–23.5%, 

30.6%–34.9%, and 0.4%–0.5%, respectively (Table 2). Compared with the pixel-based methods, more 

areas were classified as impervious surfaces and fewer areas were classified as grass with the  

object-oriented methods, with and without the prior shadow thresholding. The object-oriented methods 

classified 33.6%–34.9% and 27.4%–27.8% of the land as impervious surfaces and grass, respectively; 

the pixel-based methods classified only 30.6%–30.7% of the land as impervious surfaces but  

29.5%–31.9% of the land as grass. The object-oriented method also classified more tree areas than the 

pixel-based method without the prior shadow thresholding (23.5% vs. 21.6%), but classified the same 

tree coverage with the prior shadow thresholding (22.5%). The amount of bare soil was insignificant 

and relatively constant with different methods. 

After SOG and SOI were removed, the proportions of grass areas and impervious surfaces increased 

as anticipated, by 5.9%–7.0% and 1.0%–2.1%, respectively. The increases were larger for the 
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classifications derived from the pixel-based methods than those from the object-oriented methods. As a 

result, the differences of the grass areas between the pixel-based and object-oriented methods 

increased further in the final classifications. On average, the pixel-based methods classified 3.7% more 

land as grass than the object-oriented methods. After removing shadows, the proportions of impervious 

surfaces with the pixel-based methods were closer to, but were still less than those with the  

object-oriented methods (by 3.0%) due to the relatively small area coverage of SOI. 

The results also indicated that the pixel-based and object-oriented methods without the prior 

shadow thresholding had very different effects on the final land cover classification, although both 

detected similar amount of shadows. The largest grass areas (38%) and smallest tree areas (21.6%) 

were classified with the pixel-based method while the smallest grass areas (33.4%) and the largest tree 

areas (23.5%) were classified with the object-oriented method. The pixel-based method also resulted in 

the smallest impervious surfaces (32.3%) while the object-oriented method produced the second 

largest impervious surfaces (35%).  

The prior shadow thresholding slightly increased the classification of impervious surfaces for both 

the pixel-based and the object-oriented methods. However, the effects of the prior shadow thresholding 

on the classification of grass and trees were inconsistent between the two methods. It decreased grass 

areas and slightly increased tree areas in the pixel-based method but slightly increased grass areas and 

decreased tree areas in the object-oriented method. 

3.4. Thematic Accuracy of Shadow Detection and Image Classification 

The overall accuracy of shadow detection and Kappa statistics of the pixel-based methods  

(86.7%–89.4% and 0.75–0.79, respectively) were much higher than those of the object-oriented 

methods (60.7%–68.5% and 0.35–0.47, respectively) (Table 3). 

Table 3. Summary of the accuracy of shadow detection and image classification with the 

pixel-based and object-oriented methods a.  

  Pixel-Based Object-Oriented 
  Without Thresholding With Thresholding Without Thresholding With Thresholding

Shadow  
Detection 

OA (%) 86.7 89.4 68.5 60.7 
 0.75 0.79 0.47 0.35 

Z * 8.1 8.5 4.6 3.4 

Non-shadow  
Classification 

OA (%) 93.5 91.6 92.1 92.9 
 0.91 0.88 0.89 0.90 

Z * 32.3 31.2 31.2 35.2 

Overall  
Classification 

OA (%) 92.2 91.2 85.2 85.5 
 0.91 0.89 0.81 0.82 

Z * 38.6 37.7 29.8 30.3 
a OA is the overall accuracy (%). Z * indicates that Kappa statistic. ( ) is significant at the 0.001 probability level. 

The pairwise Z-score test indicated that the differences between the pixel-based and the object-oriented 

shadow detections, with and without the prior shadow thresholding, were statistically significant 

(Table 4). The prior shadow thresholding increased the overall accuracy of shadow detection in the 

pixel-based methods but decreased the overall accuracy in the object-oriented methods. The change of 

accuracy, however, was not statistically significant according to the pairwise Z-score test. 
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Table 4. Pairwise Z-score test of the effect of pixel-based vs. object-oriented methods and 

shadow thresholding on the accuracy of shadow detection (lower left) and overall image 

classification (upper right). 

  Pixel-Based  Object-Oriented 

  Without Thresholding With Thresholding  Without Thresholding With Thresholding

Pixel-based 
Without Thresholding - 0.60  2.78 ++ 2.51 ++ 

With Thresholding 0.31 -  2.22 + 1.95 + 

Object-oriented 
Without Thresholding 2.04 + 2.33 ++  - 0.26 

With Thresholding 2.87 ++ 3.16 ++  0.83 - 
+ Indicates that the difference between two methods is significant at the 0.05 probability level. ++ Indicates that the 

difference is significant at the 0.01 probability level. 

Table 5. The producer’s accuracy (PA), user’s accuracy (UA), and Kappa statistic ( ) of 

detected shadow and classified land cover with the pixel-based and object-oriented 

methods a. 

Classification Class PA (%) UA (%)  

Pixel-based 

Without  

Thresholding 

Shadow 
SOG 94.7 75.0 0.73 

SOI 80.8 91.3 0.90 

Non-shadow 

Grass 96.2 98.0 0.97 

Trees 97.5 95.1 0.94 

Impervious 89.2 98.3 0.98 

Bare Soil 94.6 81.8 0.80 

With  

Thresholding 

Shadow 
SOG 95.5 80.8 0.79 

SOI 81.3 81.3 0.80 

Non-shadow 

Grass 91.1 92.7 0.91 

Trees 96.4 91.4 0.89 

Impervious 90.2 97.4 0.96 

Bare Soil 80.0 88.9 0.88 

Object-oriented 

Without  

Thresholding 

Shadow 
SOG 73.9 56.7 0.52 

SOI 64.5 95.2 0.98 

Non-shadow 

Grass 90.9 86.2 0.83 

Trees 92.4 89.7 0.86 

Impervious 93.8 92.6 0.89 

Bare Soil 86.7 92.9 0.98 

With  

Thresholding 

Shadow 
SOG 73.1 57.6 0.53 

SOI 50.0 93.8 0.97 

Non-shadow 

Grass 94.7 90.0 0.87 

Trees 91.7 90.2 0.87 

Impervious 97.6 92.1 0.89 

Bare Soil 92.9 92.9 0.97 
a SOG and SOI refer to shadows on grass and shadows on impervious surfaces, respectively. 

For each method with or without shadow thresholding, SOG was detected with high producer’s 

accuracy (73.1%–95.5%) while SOI was detected with high user’s accuracy (81.3%–95.2%) (Table 5). 
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After accounting for chance agreement, however, SOI was identified more accurately than SOG with 

higher Kappa statistics (0.80–0.98). In particular, the object-oriented methods achieved much higher 

accuracy for SOI than that for SOG (Kappa statistics: 0.97–0.98 for SOI vs. 0.52–0.53 for SOG), 

although the overall shadow detection accuracy of the object-oriented methods was not as satisfactory 

as that of the pixel-based methods. 

For the non-shadow land cover classes, it appeared that all methods achieved high and comparable 

overall accuracy (91.6%–93.5%) and Kappa statistics (0.88–0.91) with statically significant Z values 

(Table 3). The pixel-based method without the prior shadow thresholding achieved the highest Kappa 

statistics for grass, trees, and impervious surfaces (Table 5). This method also produced the best 

producer’s and user’s accuracy for grass and tree classes, and the best users’ accuracy for impervious 

surfaces. The object-oriented method with the prior shadow thresholding achieved the highest 

producers’ accuracy for impervious surfaces. Bare soil was generally classified more accurately with 

the object-oriented methods.  

In contrast to shadow detection, the prior shadow thresholding slightly decreased the overall 

accuracy of non-shadow classification in the pixel-based methods, but slightly increased the overall 

accuracy of non-shadow classification in the object-oriented methods. However, there was no 

statistically significant change of accuracy. 

After accounting for the accuracy of shadow detection and separation, the overall accuracy and Kappa 

statistics of the final image classification were higher for the pixel-based methods (91.2%–92.2% and 

0.89–0.91, respectively) than for the object-oriented methods (85.2%–85.5% and 0.81–0.82, 

respectively) (Table 3). The pairwise Z-score test indicated that the differences between the  

pixel-based and the object-oriented methods, with and without the prior shadow thresholding, were 

statistically significant (Table 4). The effect of the prior shadow thresholding on the overall accuracy 

of the final image classification was minimal and not statistically significant for both the pixel-based 

methods and the object-oriented methods.  

3.5. Spectroradiometric Restoration of Shadow Areas 

Compared with the k-nearest neighbor algorithm, the linear correlation correction method needed 

more input parameters (i.e., the means and standard deviations of different shadow and non-shadow 

areas) corresponding to each of the four shadow detections. Overall, both the k-nearest neighbor 

algorithm and the linear correlation correction generated visually appealing images, but it was difficult 

to assess the radiometric accuracy of shadow restoration. The visual contrast of the shadow resolved 

images increased slightly because the low brightness of shadow pixels had been replaced with higher 

digital numbers. When comparing with the original QuickBird imagery, it appeared that most 

shadowed areas were either removed or significantly reduced. However, imagery corrected with the  

k-nearest neighbor algorithm apparently had smoother transitions from adjusted shadow areas to  

non-shadow areas. A large amount of “salt and pepper” speckles revealed clearly in the imagery when 

the linear correlation correction was applied, particularly to the shadows detected at the pixel level 

since most of the isolated SOG and SOI pixels were not identified at the object level. 
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4. Discussion 

The shadows were extensive in the QuickBird imagery, but the signals recorded in shadow areas 

were still relatively weak. The success of separating SOG and SOI can be attributed to the high 

radiometric resolution of the imagery data and the intrinsic radiometric differences of the two shadow 

types. The large dynamic range (11 bits) potentially makes the detection and separation of shadows 

much easier than would be the case with low radiometric resolutions (e.g., 8 bits) [1]. 

As described earlier, we concentrated our effort on the shadow detection and removal with 

information derived from the image itself and by not using other data sources, e.g., LiDAR data. 

However, ancillary LiDAR data may be useful to aid in shadow detection if the data are acquired at the 

same time as the satellite imagery and spatial misregistration is carefully avoided. For example, 

LiDAR data could be used to separate ground shadows (e.g., shadows on grass) and non-ground 

shadows (e.g., shadows on building and trees). The latter can be further differentiated with the same 

method used in this study for separating SOI from SOG. 

Shadows were detected with reasonable accuracy with both the pixel-based and object-oriented 

methods. In particular, SOI was detected more accurately than SOG, probably due to the less varied 

spectral characteristics of SOI compared with those of SOG [5]. We found that the spectral reflectance 

of SOG changed with the objects that cast shadows, especially in the NIR band, while that of SOI 

remained largely unchanged. This result is different from an early study that achieved better accuracy 

for SOG than SOI when applying the object-oriented approach to an aerial photography [12].  

It should be cautioned, however, that independent assessment of the accuracy of shadow detection 

and particularly shadow removal, beyond visual analysis, is difficult to achieve [17]. Shadows that 

existed on the day of acquisition will not exist again unless imaging conditions are identical. Most 

likely, the reference image for validating the performance of shadow detection and removal such as the 

aerial photography used in this study was acquired under different sun-view illumination geometry. 

The ground surveyed data, even collected on the same date when the satellite image was acquired 

cannot be used to verify estimated pixel values for shadowed areas because the ground was covered by 

shadows at the time of data collection. If possible, the ground data should be collected immediately 

before or after image acquisition; otherwise ground features and shadows could have changed.  

Among the four methods used in this study, the ones with the prior shadow thresholding and 

separation usually improved the efficiency of shadow detection and classification processes. The prior 

shadow thresholding, however, had varied effects on the amount of shadows being detected and the 

accuracy of detection. With the prior thresholding, the pixel-based method detected more shadow areas 

and with higher overall accuracy while the object-oriented method detected fewer shadow areas and 

with lower overall accuracy, although the changes of accuracy were not statistically significant. The 

differences could be caused by the fact that the same optimal threshold determined from the histogram 

of pixel brightness was applied to both the pixel and object level shadow thresholding. The object level 

shadow thresholding remains to be investigated. The statistical continuity of histogram distribution 

needs to be further analyzed to reduce the possible subjectivity in determining the threshold value for 

separating shadows from non-shadow areas. 
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5. Conclusions  

We presented a comparison study of both pixel-based and object-oriented methods for detecting and 

removing shadows in the land cover classification and in the original QuickBird imagery of a suburban 

area. The methods were further divided by whether a prior shadow histogram thresholding and 

separation was used. The spectroradiometric numbers of the identified shadow areas corresponding to 

different shadow detection methods were subsequently corrected with the k-nearest neighbor algorithm 

and the linear correlation correction method, respectively. 

The results indicated that different types of shadows (i.e., shadows on grass and shadows on 

impervious surfaces) had distinct spectroradiometric characteristics, which largely depended on the 

object upon which shadows were cast, even though they all had an overall low brightness. Based on 

this finding, shadows in the QuickBird imagery were detected with an optimal brightness threshold, 

and a scene-based near infrared ratio was developed to further differentiate different types of shadows.  

It was found that shadows accounted for 6.9%–9.1% of total land cover in the QuickBird imagery. 

But the exact proportion of shadows and the accuracy of detection depended on whether shadows were 

identified at the pixel or object level and whether the prior shadow thresholding was applied. Without 

the prior shadow thresholding, the pixel-based and object-oriented methods recognized similar amount 

of shadow areas (7.4%–7.7%) although the former achieved higher overall accuracy (86.7% vs. 

68.5%). With the prior thresholding, more shadow areas (9.1%) were detected with the pixel-based 

method and with higher overall accuracy (89.4%) while fewer shadow areas (6.9%) were detected with 

the object-oriented method and with lower overall accuracy (60.7%). Whereas the pixel-based methods 

were significantly more accurate than the object-oriented methods, the accuracy differences resulted 

from the prior thresholding were not statistically significant. 

The different performance of shadow detections had substantial effects on image classification and 

spectroradiometric restoration. After accounting for the accuracy of shadow detection and separation, 

the overall accuracy of the final land cover classification was significantly higher for the pixel-based 

methods (91.2%–92.2%) than for the object-oriented methods (85.2%–85.5%), although both achieved 

similar overall accuracy for the non-shadow classes (91.6%–93.5%). In other words, the accuracy of 

the final land cover classification was largely dependent upon shadow detection and separation, instead 

of the classification of non-shadow classes.  

The results showed that corrected shadow areas changed smoothly to non-shadow areas in the 

shadow free imagery produced with the k-nearest neighbor algorithm. The imagery with the linear 

correlation correction, however, displayed a large amount of “salt and pepper” speckles, particularly if 

the shadows were detected at the pixel level. Quantitative approaches involving ground measurement 

of shadow areas immediately before or after image acquisition remain to be developed to further assess 

the radiometric accuracy of shadow restoration.  
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