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Abstract: Diatoms are the major marine primary producers on the global scale and, 

recently, several methods have been developed to retrieve their abundance or dominance 

from satellite remote sensing data. In this work, we highlight the importance of the 

Southern Ocean (SO) in developing a global algorithm for diatom using an Abundance 

Based Approach (ABA). A large global in situ data set of phytoplankton pigments was 

compiled, particularly with more samples collected in the SO. We revised the ABA to take 

account of the information on the penetration depth (Zpd) and to improve the relationship 

between diatoms and total chlorophyll-a (TChla). The results showed that there is a distinct 

relationship between diatoms and TChla in the SO, and a new global model (ABAZpd) 

improved the estimation of diatoms abundance by 28% in the SO compared with the 
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original ABA model. In addition, we developed a regional model for the SO which further 

improved the retrieval of diatoms by 17% compared with the global ABAZpd model. As a 

result, we found that diatom may be more abundant in the SO than previously thought. 

Linear trend analysis of diatom abundance using the regional model for the SO showed that 

there are statistically significant trends, both increasing and decreasing, in diatom 

abundance over the past eleven years in the region. 

Keywords: ocean colour; phytoplankton functional types; diatom; remote sensing; 

chlorophyll-a 

 

1. Introduction 

Phytoplankton is the basis of the marine food web and a key component in the marine ecosystem. 

The term phytoplankton functional type (PFT, see Table 1 for a list of abbreviations and symbols) is 

used to distinguish the different roles of the phytoplankton in the biogeochemical cycle of the 

oceans [1]. Of special interest are the diatoms, which are the major contributors to the oceanic primary 

production [2] and carbon export [3] and, together with dinoflagellates, the most diverse PFT [4,5]. 

Diatoms are also one of the largest PFTs in terms of size, ranging from micrometers to a few 

millimeters [4]. They tend to dominate the phytoplankton community in coastal, polar and upwelling 

regions, where waters are typically rich in nutrients. In the Southern Ocean (SO), they represent 89% of the 

primary production [2] and are found in high concentrations in stratified waters near ice edge-zones [6,7], 

but also frequently form blooms at the Polar Front [8]. 

Given the biogeochemical and ecological importance of diatoms, it is necessary to understand how 

they respond to climate variability on global and regional scales, a task that cannot be achieved without 

knowledge of their temporal and spatial distribution. In the last decade, considerable effort has been 

invested in developing and improving approaches to retrieve the global distribution of diatoms from 

satellite data. Examples of these are PHYSAT [9], PhytoDOAS [10] and the Abundance Based Approach 

(ABA) [1,11–13]. PHYSAT determines dominance of diatoms (in addition to nano-eukaryotes, 

Prochlorococcus, Synechocococus-like and Phaeocystis-like) by identifying their specific spectral 

signatures from the normalized water-leaving radiance. Like PHYSAT, PhytoDOAS is based on 

analyzing optical (hyperspectral) information of satellite data and retrieves diatoms (as well as 

cyanobacteria, dinoflagellates and coccolithophores) by identifying their specific absorption in the 

backscattered solar radiation. The ABA, such as that by Hirata et al. [1], in contrast, is an ecological 

approach which applies satellite-measured chlorophyll-a (Chla) to empirical relationships between 

TChla and diatoms (as well as dinoflagellates, green algae, haptophytes, prokaryotes, pico-eukaryotes 

and Prochlorococcus sp.) derived from in situ measurements. However, unlike PHYSAT, both 

PhytoDOAS and ABA provide a quantitative estimation of the diatom abundance instead of 

its dominance.  

Compared to optically based approaches, a great advantage of the ABA is the smaller 

computational effort; even if the satellite data volume becomes larger with higher temporal and spatial 

resolutions, the data processing load is not heavy and re-processing can also be done relatively easily. 
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The ABA can be applied to global level-2 or level-3 products of TChla, which are freely available to 

the scientific community, as opposed to, for example, PhytoDOAS method that uses the top of 

atmosphere radiance data (i.e., level-1 product). In addition, the ABA has better global coverage of 

in situ data for model development and validation. Because ABA is an empirical model, its refinement 

is needed in the light of additional data to improve the retrieval of diatoms for both global and  

under-sampled oceans. 

This paper focus on the retrieval of diatom abundance of Hirata et al. [1] based on two premises: 

(i) Diatoms are the major primary producers in the SO [2] and (ii) 90% of the diffusely reflected 

irradiance measured by ocean color sensors originates from the first optical depth, also referred to as 

the penetration depth (Zpd) [14]. These premises are also general limitations of the existing ABA. 

Although Hirata et al. [1] used a large global data set of phytoplankton pigments, new measurements, 

particularly in the SO (defined here as the region south of 50°S), have become available since then. 

Main objectives of this paper are: 

(1). Compilation of a new and larger global data set of in situ phytoplankton pigment profiles, 

including more measurements in the SO (Figure 1) which was not well covered previously, and to 

investigate the relationship between fractional contribution of diatoms and TChla using the new data 

set in comparison to previous findings. 

(2). Refinement of the ABA to account for the pigment information in the Zpd (ABAZpd). In ABA [1], 

the fractional contribution of diatoms to TChla was estimated based on the previous work of 

Uitz et al. [15], who used the phytoplankton pigment concentration integrated over the euphotic 

depth (Zeu). However, the pigment concentration estimated by the satellite sensor is an optically-weighted 

concentration in the Zpd, which is approximately 4.6 times shallower than the Zeu [16]. 

(3). Evaluation of the performance of the ABA (i.e., ABAZpd) for global oceans and for the 

SO region. 

Table 1. Abbreviations and symbols used in this study and their meaning. 

Abbreviations and Symbols Meaning 

 partial coefficients from multiple regression analysis 

ABA Abundance Based Approach 

ABAZpd modified ABA 

ABA* original model of Hirata et al. [1] parameterized with the DPZpd data set 

ABA** original model and fitting parameters of Hirata et al. [1] 

Allo alloxanthin, in mg/m3 

Butfuco 19’-butanoyloxyfucoxanthin, in mg/m3 

c vector containing the partial coefficients corresponding to each DPZpd on log scale 

Chla chlorophyll-a concentration, in mg/m3 

DiatomZpd concentration of TChlaZpd that is attributed to diatoms, in mg/m3 

DP concentration of the diagnostic pigments, in mg/m3 

DPZpd DP weighted in the Zpd, in mg/m3 

DPw estimated TChla, in mg/m3 

f Fraction 

f-Diatom fraction of TChla attributed to diatoms 

f-DiatomZpd same as f-Diatom, but calculated from DPZpd 
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Table 1. Cont. 

Abbreviations and Symbols Meaning 

f-PFT fraction of TChla attributed to a phytoplankton functional type 

Fuco fucoxanthin, in mg/m3 

Hexfuco 19’-hexanoyloxyfucoxanthin, in mg/m3 

HPLC High-Performance Liquid Chromatography 

MZpd matrix containing the seven DPZpd 

MODIS Moderate Resolution Imaging Spectroradiometer 

Perid peridinin, in mg/m3 

PFT Phytoplankton Functional Type 

SO Southern Ocean, in this study defined as the region south of 50°S 

TACC sum of the concentration of all accessory pigments, in mg/m3 

TACCZpd TACC weighted in the Zpd, in mg/m3 

TChla 
sum of the concentration of monovinyl Chla, divinyl Chla, Chla allomers, Chla 

epimers and chlorophyllidae, in mg/m3 

TChlaZpd TChla weighted in the Zpd, in mg/m3 

TChlb sum of monovinyl chlorophyll-b and divinyl chlorophyll-b, in mg/m3 

Zeu euphotic depth, given in m 

Zpd penetration depth, given in m 

Zea zeaxanthin, in mg/m3 

Figure 1. Distribution of the quality controlled in situ measurements. The SO, region south 

of 50°S, is the portion of the global ocean presented in blue. 

 

The Theoretical Basis of the ABA 

The ABA calculates the fraction (f) of Chla attributed to a specific PFT (f-PFT) using concentrations 

of diagnostic pigments of phytoplankton (i.e., Diagnostic Pigment Analysis–DPA, [15,17]). 

According to Uitz et al. [15], the Chla can be expressed by the sum of seven diagnostic pigments as: 
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DPw= aiDPi

7

i=1

 (1)

where DPw is the estimated Chla, a are the partial coefficients and DP are the concentration of the 

diagnostic pigments: Fucoxantin (Fuco), peridinin (Perid), 19’-hexanoyloxyfucoxanthin (Hexfuco),  

19’-butanoyloxyfucoxanthin (Butfuco), alloxanthin (Allo), monovinyl chlorophyll-b + divinyl 

chlorophyll-b (TChlb) and zeaxanthin (Zea). These diagnostic pigments represent the main 

PFTs (Table 2). 

For example, the fraction of Chla that is attributed to diatoms (f-Diatom) is derived as: 

f-Diatom= a1Fuco DPw⁄  (2)

f-Diatom values lower than 0 and greater than 1 are set to 0 and 1, respectively. 

Table 2. Phytoplankton pigments and their respective PFT (adapted from Vidussi et al. [17]). 

Phytoplankton Pigments PFT 

Fuco Diatoms 
Perid Dinoflagellates  

Hexfuco Prymensiophytes and chrysophytes 
Butfuco Prymensiophytes and chrysophytes 

Allo Cryptophytes 
TChlb Green algae and prochlorophytes 

Zea Cyanobacteria and prochlorophytes 

Once the f-PFT has been determined, the relationship between f-PFT and Chla can be represented 

by a model or fit function and quantified, where the relationship varies according to the PFT. The 

model for f-Diatoms was previously shown [1] as: 

f-Diatom = [ a0 + exp(a1x + a2)]-1 (3)

where x represents log10(Chla) and a0, a1, a2 are the fitting parameters with values of 1.3272, −3.9828 

and 0.1953, respectively.  

With the knowledge of the fit function, its parameters and Chla, it is possible to retrieve the  

f-Diatom, once Chla, which is operationally produced as a satellite product, is known. To retrieve the 

diatom abundance in terms of Chla (mg/m3), the f-Diatom is multiplied by the Chla value of 

each sample. 

2. Data and Methods 

2.1. In Situ Measurements of Phytoplankton Pigments 

A data set of phytoplankton pigment profiles measured with the High-Performance Liquid 

Chromatography (HPLC) technique was supplemented with data obtained from the SeaWiFS  

Bio-optical Archive and Storage System (SeaBASS, [18]), Marine Ecosystem Data 

(MAREDAT, [19]), and from the individual cruises KEOPS ([20]), Bonus Good Hope, ANT-XVIII/2 

(EisenEx), ANTXXI/3 (EIFEX, [3]), ANT XXVI/3, ANT XXVIII/3, Sonne SO218 [21], Merian 18-3, 
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Meteor 55 and Meteor 60. The pigments from the cruises Meteor 55, Meteor 60, ANT XXVI/3 and 

ANT-XVIII/2 were measured in accordance with the method described in Hoffmann et al. [22] and for 

the cruises Merian 18-3 and ANT XXVIII/3 in accordance with that in Taylor et al. [23]. 

The data were quality controlled in a way similar to the method used by Uitz et al. [15] and 

Peloquin et al. [19]: (i) Samples with accessory pigment concentrations below 0.001 mg/m3 were set to 

zero, (ii) samples with TChla below 0.001 mg/m3 and fewer than 4 accessory pigments were excluded. 

The TChla was defined as the sum of monovinyl Chla, divinyl Chla, Chla allomers, Chla epimers and 

chlorophyllidae. To ensure that the profiles had a minimum vertical resolution, we restricted the data 

set to profiles with at least (i) one sample at the surface (0 to 12 m), (ii) one sample below the surface, 

(iii) samples collected at four or more different depths, and (iv) with one sample within the Zpd. The 

last quality control measure was based on the log10-linear relationship between TChlaZpd and the sum 

of all accessory pigments in the Zpd (TACCZpd). Data that fell outside the 95% confidence interval 

were removed. 
In addition, samples located in coastal waters (<200 m) were excluded using the ETOPO1 

bathymetry [24]. The final data set contained 3988 samples, which were randomly split into work 

(~70% of the data) and validation (~30% of the data) subsets (Figure 1). While the whole data set was 

used to calculate the partial coefficients used for estimating f-DiatomZpd, the work and validation 

subsets were used for model development and validation of the ABAZpd, respectively.  

2.2. Satellite Data 

Eleven years (2003–2013) of MODIS Aqua Level 3 4 km binned Chla data (R2013.0) were used. 

MODIS is a multispectral sensor on board of the Aqua satellite and with global coverage. The data 

were obtained from the OceanColor website [25] at daily temporal resolution. Monthly averages of 

diatom abundance were calculated onto a 10 minute grid and used to derive climatological maps of 

diatom abundance. To avoid coastal waters, where the retrieval of the ABA was not intended, we 

removed grid cells located in waters shallower than 200 m using the ETOPO1 bathymetry [24]. 

2.3. An Improved Abundance Based Approach 

In previous approach [1], the f-Diatom was calculated using the coefficients of Uitz et al. [15], 

which take account of the phytoplankton pigment integrated over the Zeu. Here, we extended the ABA 

to take account of the information in the Zpd. For this purpose, we recalculated the coefficients a 

(Equation (1)) using an updated global data set of HPLC phytoplankton pigment profiles (N = 3988). 

The weighted pigment concentration in the Zpd (DPZpd) was calculated as described in 

Gordon & Clark [26], with the diffusive attenuation coefficient at 490 nm derived from the profiles of 

TChla as described in Morel & Maritorena [27]. The Zpd was computed as Zpd = Zeu/4.6, and Zeu was 

derived from the surface TChla as Zeu	=	34	×	TChla−0.39 (Morel, in Lee et al. [28]). Profiles were 

interpolated with 1-m increments from the deepest sample to the sample closest to the surface before 

the calculation of DPZpd.  

A limitation of retrieving PFTs from HPLC pigments is the presence of a DP in more than one 

PFT [1,15]. The quality controlled data set was corrected for Fuco to account for its co-existence in 

other PFTs, in accordance with Hirata et al. [1]. 
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Nonlinear minimization was used to retrieve the partial coefficients, which represent the estimates 

of the TChla to the DP ratios [15]. The function to be minimized is expressed as: 

ǁexp c  MZpdǁ→min (4)

where c is a vector containing the seven coefficients which each correspond to each DPZpd on the log 

scale, and MZpd a matrix containing the seven DPZpd. The nonlinear minimization method requires an 

initial guess of c, which was obtained from the multiple linear regression analysis. The standard 

deviation of the coefficients is given by the square root of the diagonal elements of the inverse of the 

Hessian matrix. 

Using the new coefficients, the f-DiatomZpd was calculated for each sample of the work and 

validation subsets. The work subset was then sorted according to the TChlaZpd and smoothed with a  

5-point running mean filter to improve the signal-to-noise ratio [1,12]. Next, the relationship between 

f-DiatomZpd and TChlaZpd was quantified using a nonlinear least-square fit applied to the work subset 

and represented by a model and its fitting parameters. Once the model has been defined, satellite-derived 

TChla data was applied to the model to obtain the global distribution of f-DiatomZpd. Diatom 

abundance (DiatomZpd, mg/m3) is then obtained by multiplying f-DiatomZpd by TChlaZpd.  

The accuracy of the new model was tested using the validation subset. The uncertainties were 

estimated by the mean absolute error (MAE, [29]) and maximum absolute error (Max. Abs. Error) 

between the modeled and the measured (in situ) DiatomZpd. The models were compared by the 

difference between the MAE of the original model and the new model, relative to the original model, 

and expressed in percent (%). The data were log transformed prior to the calculation of the validation 

statistics. We used log10(data + λ) where λ = 0.00003, approximately one half of the smallest non-zero 

value of the in situ DiatomZpd validation data, since the data set contained zeroes. In addition, to 

investigate whether using different partial coefficients results in significant changes in f-Diatom, we 

estimated f-Diatom using the coefficients of Uitz et al. [15] and Brewin et al. [30] and compared the 

results based on the coefficient of determination. 

A Regional Model for the SO 

The main difference between the SO model and the global model is that the relationship between 

DiatomZpd and TChlaZpd is investigated not in terms of f-DiatomZpd, but instead in terms of the 

concentration of TChlaZpd that is attributed to diatoms, similar to the approach adopted by 

Brewin et al. [13] to retrieve phytoplankton size classes. As in Brewin et al. [13], the fit function was 

applied to log10-transformed data. To develop the regional model for the SO, we selected the samples 

of the global work and validation data sets that were located in the SO, creating a SO work and a 

validation data set with 1069 and 460 samples, respectively. The relationship between DiatomZpd and 

TChlaZpd was investigated and validated. Note that for the work data set we applied the running mean 

exclusively to the SO data.  

2.4. Statistical Analysis of Trends  

Linear trends were computed for February from monthly standardized anomalies over the 2003–2013 

period in the SO using the regional model. To remove the seasonal cycle we calculated the monthly 
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anomalies in diatom abundance for each grid cell by subtracting the climatological mean from the 

corresponding monthly mean (e.g., February 2003–climatology of February). The monthly anomalies 

were divided by the corresponding climatological standard deviation (e.g., standard deviation of 

February) to enable the direct comparison of trends between different regions (grid cells). The trends 

were computed using the non-parametric Kendall’s tau test with Sen’s method at the 95% confidence 

level and in grid cells with 100% temporal coverage.  

3. Results and Discussion 

3.1. The ABAZpd 

Table 3 shows the partial regression coefficients, and their respective standard deviation, calculated 

with Equation (3). For comparison, we also present the partial coefficients estimated by 

Uitz et al. [15], Brewin et al. [30] and Fujiwara et al. [31]. Comparing our coefficients with those from 

Uitz et al. [15], there is a notable difference, except for the coefficients of Fuco and TChlb. These 

differences result from the inclusion of more profiles, their geographical distribution, the adjustment of 

Fuco prior to the DPA analysis, and because we used the pigment concentration weighted in the Zpd, 

while Uitz et al. [15] integrated the pigments over Zeu. When compared to the two other studies, where 

the partial coefficients were derived from surface measurements, our coefficients are more similar to 

those described in Brewin et al. [30]. Brewin et al. [30] included measurements of five Atlantic 

Meridional Transect (AMT) cruises in the Atlantic Ocean, while Fujiwara et al. [31] used 

measurements from three cruises in the Western Arctic Ocean. Although our data set includes 

measurements from these regions, the number of samples in the Arctic region is fewer than that from 

the Atlantic (Figure 1). 

Table 3. The partial regression coefficients and standard deviation (in brackets) where 

available. The number of samples is indicated by N. The empty fields indicate that the 

coefficient is not statistically significant. 

Coefficients Ocean N Fuco Perid Hexfuco Butfuco Allo TChlb Zea 

Present study Global 3988 
1.554 

(0.010)
0.413 

(0.568)
0.855 

(0.068) 
1.174 

(0.145) 
2.387 

(0.099) 
1.062 

(0.070)
2.037 

(0.040) 

Uitz et al. [15] Global 2419 
1.41 

(0.02) 
1.41 

(0.10) 
1.27 

(0.02) 
0.35 

(0.15) 
0.60 

(0.16) 
1.01 

(0.10) 
0.86 

(0.09) 
Brewin et al. [30] Atlantic 466 1.72 1.27 0.68 1.42 4.96 0.81 1.28 

Fujiwara et al. [31] * Arctic 76 1.85 1.49 1.74  5.88 1.31 3.54 

* standard errors are less than 1. 

Moreover, we have re-run the analysis taking into consideration the surface samples (<12 m) from 

our profiles and observed only a slight difference in the coefficient of Fuco (1.531) as compared to the 

weighted Zpd concentrations. Except for Perid and Hexfuco, the standard deviation of our coefficients 

are much lower than, or similar to, the ones obtained by Uitz et al. [15].  

Nonetheless, we observed very similar f-Diatom values when using the partial coefficients of 

Uitz et al. [15], Brewin et al. [30] and ours. The coefficients of determination are higher than 0.98, 

suggesting the choice of partial coefficients has no influence on the retrievals of f-Diatom, which is 
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consistent with Brewin et al. [30]. Brewin et al. [30] compared size-fractionated chlorophyll (SFC) 

estimated from phytoplankton pigment data and calculated using Uitz et al. [15] partial coefficients 

and their own, with size-fractionated filtration (SFF) measurements. They observed biases between 

SFC and SFF for nanoplankton and picoplankton size classes; however, the variations in the partial 

coefficients did not influence the results significantly. The high correlation between the TChlaZpd and 

DPw, with DPw calculated using Equation (4) (r2 = 0.85, DPw = 0.86 TChlaZpd + 0.074, N = 3988, 

p < 0.001), gives us confidence to use the partial coefficients to determine the f-Diatom. 

Figure 2 shows the change in the f-DiatomZpd with increasing TChlaZpd. The green and blue lines 

represent the new model (ABAZpd) and the model of Hirata et al. [1] (ABA*), respectively, 

parameterized with the DPZpd data set. The red line represents the original model and fitting parameters 

of Hirata et al. [1] (ABA**). It can be seen that diatoms are dominant at high TChlaZpd (Figures 2a,b), 

which is consistent with previous studies [1] even if a significant number of new samples were added 

in our dataset. Moreover, we also observed unusually high f-DiatomZpd in low TChlaZpd waters 

(<0.1 mg/m3, N = 670). Taking a closer look at the profiles, in which FucoZpd corresponded to at least 

50% of the TACCZpd, we observed that most of the data sets (12 out of 16) are from samples taken in 

Antarctic, in the East Antarctic marginal ice zone (BROKE cruise, [6]). On average, the ratio of 

FucoZpd to TChlaZpd is 0.165 for the entire DPZpd data set, 0.071 excluding the SO data, but 0.317 for 

the SO data, indicating higher f-DiatomZpd values in low TChlaZpd waters in the SO. 

Figure 2. Relationship between TChlaZpd and f-DiatomZpd: (a) Global data set (N = 2806), 

(b) global data set excluding SO data (N = 1737) and (c) SO data (N = 1069). The data sets 

were smoothed with a 5 point running mean to improve the signal-to-noise ratio [1]. The 

green and blue lines represent the new model (ABAZpd) and the model of Hirata et al. [1] 

(ABA*) parameterized with the DPZpd data set. The red line represents the original model and 

fitting parameters of Hirata et al. [1] (ABA**). The fitting parameters are presented in Table 4. 

The MAE values refer to the errors in terms of f-DiatomZpd. Note that we could not fit the 

global models to the SO data set exclusively. The cyan and green lines in (c) represent the 

regional model for the SO and the ABAZpd plotted with the global fitting parameters 

as reference. 
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Figure 2. Cont. 

 

 

Table 4. Models of f-DiatomZpd as a function of TChlaZpd and their respective fitting 

parameters used to plot the lines in Figure 2a,b. Note that we could not fit the global models 

to the SO data exclusively. The fitting parameters of the original ABA model of 

Hirata et al. [1] (ABA**) do not change and therefore they are presented only once in 

the table. 

 f-DiatomZpd Model a0 a1 a2 a3 

 ABAZpd a0 + a1sin(a2(x + a3))  0.4629 0.3921 1.2214 −0.01412 
Global data set ABA* [a0 + exp(a1x + a2)]

−1 1.0733 −2.0484 0.1314 - 
 ABA** [a0 + exp(a1x + a2)]

−1 1.3272 −3.9828 0.1953 - 

Global data set  ABAZpd a0 + a1sin(a2(x + a3))  0.3909 0.4131 1.3763 −0.0114 
excluding SO 

data 
ABA* [a0 + exp(a1x + a2)]

−1 1.5890 −4.3778 −0.1521 - 

x=log10(TChla); * model of Hirata et al. [1] parameterized with the DPZpd data set; ** original model and 

fitting parameters of Hirata et al. [1]. 
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Considering our newer and larger data set, Hirata et al. [1] considerably underestimates f-DiatomZpd 

in almost the entire TChlaZpd range (Figure 2a-red line). This is partly due to the difference in the data 

set used. When we fit their model to the new data set, the model is found to fit well to the data, as 

indicated by the low errors (Table 5 and Figure 2a-blue line). However, it fails when predicting  

f-DiatomZpd in very low TChlaZpd waters, mostly for the SO. Thus, we test a new model, a sinusoidal 

function to better fit this observed trend in the SO (Table 4, Figure 2-green line). The ABAZpd and 

ABA* produce almost identical curves for TChlaZpd above 0.065 mg/m3 and similar fitting and 

validation statistics. The ABA** model provides accurate retrieval of diatoms globally. However, it 

produces larger errors than the ABAZpd and the ABA* do for the SO. The ABAZpd improves the MAE 

by 27.96% for the SO (Table 6 and Figure S1). 

Table 5. Statistical results of the fits for the global data set and global excluding SO data using 

the fitting parameters of Table 4. Note that we could not fit the global models to the SO data 

exclusively. The fitting statistics for the SO data set refer to the regional SO model (Figure S2 

in the Supplementary Information). The MAE and Max. Abs. Error are given in f-DiatomZpd 

for the global models and for the regional model in mg/m3 (log10-transformed data). 

(a) Fit  N r2 p-value MAE  Max. Abs. Error 
 ABAZpd 2806 0.71 =0 0.085 0.474 

Global data set ABA* 2806 0.70 =0 0.087 0.559 
 ABA** 2806 0.66 =0 0.118 0.609 

Global data set  ABAZpd 1737 0.89 <0.001 0.036 0.216 
excluding SO data ABA* 1737 0.88 <0.001 0.037 0.249 

 ABA** 1737 0.88 <0.001 0.038 0.246 
SO data set Regional model 1069 0.95 <0.001 0.104 0.695 

* model of Hirata et al. [1] parameterized with the DPZpd data set; ** original model and fitting parameters of 

Hirata et al. [1]. 

Table 6. Statistical results of the validation in terms of diatoms abundance. Note that we 

could not fit the global models to the SO data exclusively. The results for the SO data set 

correspond to the global models using the global fitting parameters and the regional model. 

The MAE and Max. Abs. Error are given in mg/m3. The statistics were calculated with  

log10-transformed data (e.g., log10(y + 0.00003)).  

Validation  N r2 p-value MAE  Max. Abs. Error 
 ABAZpd 1182 0.57 <0.001 1.219 4.048 

Global data set ABA* 1182 0.55 <0.001 1.217 4.044 
 ABA** 1182 0.57 <0.001 1.035 3.945 

Global data set  ABAZpd 722 0.59 <0.001 0.883 3.160 
excluding SO data ABA* 722 0.68 <0.001 1.195 3.068 

 ABA** 722 0.69 <0.001 1.200 3.024 
 ABAZpd 460 0.40 <0.001 0.559 4.048 

SO data set ABA* 460 0.39 <0.001 0.562 4.044 
 ABA** 460 0.39 <0.001 0.776 3.945 
 Regional model 460 0.39 <0.001 0.465 4.128 

* model of Hirata et al. [1] parameterized with the DPZpd data set; ** original model and fitting parameters of 

Hirata et al. [1]. 
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To further investigate the influence of the SO data, we removed these data from the work data set 

(38% of the data), recalculated f-DiatomZpd, and fitted the models (Figure 2b and Table 4). The 

comparison of Figure 2a,b shows clearly the influence of the SO data, which is responsible for most of 

the data spread in Figure 2a as well as for the high f-DiatomZpd in low TChlaZpd waters. When we 

exclude the SO data from the analysis, the fits improve greatly the MAE decrease to values close to 

0.04 (Table 5). In addition, it leads to a better representation of the diatom abundance in oligotrophic 

waters, as well as to an underestimation of the actual f-DiatomZpd in the SO, as shown in Figure 3. The 

advantage of including the SO data is a more realistic retrieval of diatoms in the SO, but an 

overestimation in other regions of low TChlaZpd. While the in situ data show that the f-DiatomZpd might 

be very low (~0) at very low TChlaZpd (e.g., in oligotrophic gyres), the predicted f-DiatomZpd presents 

values higher than zero, overestimating f-DiatomZpd in the oligotrophic gyres.  

Figure 3. Monthly mean TChlaZpd (mg/m3) of diatoms for February 2003 using the 

ABAZpd model parameterized with: (a) Global data set (average = 0.060 mg/m3) and 

(b) global data set excluding SO data (average = 0.041 mg/m3). White areas correspond to 

waters with depths shallower than 200 m or without satellite information. 

 

It should be noted that the model used to retrieve f-DiatomZpd as a function of TChlaZpd was 

empirically built upon in situ data sets, which showed that diatoms tend to be the dominant PFT at 

high TChla. However, this may not be the case of blooms of mixed PFTs occur, or with a different 

PFT (e.g., coccolithophores close to New Zealand [32]), as pointed out by Brewin et al. [13]. In such 

cases, additional information on PFTs derived from methods that do not depend on this assumption 

(e.g., PhytoDOAS) may improve the knowledge on the diatom abundance and the distribution pattern. 

Moreover, we did not obtain significant results in fitting the two global models to the SO data 

exclusively (Figure 2c, ABAZpd plotted as reference). The diatoms in the SO exhibit a variability which 

is different from other oceanic regions (e.g., the North Pacific and the North Atlantic), and there is a 

need for a regional SO model. Thus, we developed a regional model for the SO, and the relationship 

between TChlaZpd and DiatomZpd in the SO can be expressed as: log10(y) = 1.1559log10(x) + (−0.2901) 

(Figure S2 in the Supplementary Information). The validation results of the SO model show that the 

regional model is consistent and more appropriate than the global ABAZpd model for retrieving diatoms 

in the SO (Table 6 and Figure S2 in the Supplementary Information). The regional model improved by 

17% the retrieval of diatoms abundance in the SO compared with the ABAZpd. 
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The ideal global retrieval of diatoms should apply the ABAZpd model parameterized with the global 

data set excluding SO data (Figure 2b green line) to the region north of 50°S, and regional SO model 

for waters south of 50°S. These two models presented overall the lowest fitting and validation errors 

for the corresponding regions. This approach would not only provide more accurate retrievals of 

diatoms in the SO, but also overcome the overestimation of the global ABAZpd model in oligotrophic 

waters. However, applying two models generated a non-negligible offset between the SO and adjacent 

oceans (result not shown). 

3.2. Satellite Retrieval of Diatoms Using ABAZpd 

Acknowledging the uncertainties of the satellite Chla product, we first assessed the difference 

between the satellite retrievals of diatom abundance using the ABAZpd and the original ABA, for the 

SO and global oceans. As expected from the previous findings (Figure 2a), we observed that, on 

average, higher abundances of diatoms were retrieved with the ABAZpd than with the original ABA for 

the entire 2003–2013 period. For the SO, the concentration of diatoms calculated using the global 

ABAZpd is 0.074 mg/m3 and for the global oceans 0.070 mg/m3. In contrast, estimates of diatoms with 

the original ABA are 0.049 and 0.050 mg/m3, respectively. For comparison, the concentration of 

diatoms using the regional SO model is larger, 0.117 mg/m3. This evidence of the enhanced abundance 

of diatoms retrieved from the global ABAZpd model and from the regional SO model suggests that the 

production and export of carbon to the deep ocean might be larger than previously expected in the SO. 

The new global climatology of diatom abundance is presented in Figure 4. The climatology for the 

SO is presented in the Supplementary Information (Figure S3). The general distribution of the global 

diatom abundance is in line with current knowledge on the distribution of diatoms, i.e., higher 

concentrations of diatoms in the upwelling and coastal regions. Low concentrations of diatoms are 

observed in oligotrophic waters of the subtropical gyres and in high-nutrient low-chlorophyll (HNLC) 

waters, such as regions in the SO where waters are rich in macronutrients but are lacking in iron. There 

is also a clear seasonal cycle in the polar regions, with diatoms reaching the highest concentrations 

during their respective summer months, which is also observed in the climatology for the SO. Among 

other important patterns is the increase in diatom concentration from December to February and in 

September in the Arabian Sea. These observed patterns are associated with the Northeast (NE) and 

Southwest (SW) monsoons, respectively. According to Garrison et al. [33], the monsoon seasons are 

generally characterized by increased concentrations of diatoms, thus our result shows a consistency 

with the previous in situ study too.  

The climatology mostly covers the spatial variability, within a limited temporal range, whereas the 

trend gives information for a longer period, and both are important information for the understanding 

of ocean biogeochemistry. The spatial variability of the linear trends of diatom abundance in the SO is 

high, and no significant trend was observed for most of the sub regions of the SO (results not shown). 

The overall the trend for the SO was 0.036 (dimensionless) (standard deviation = 12.84,  

p-value = 0.019). Clearly, a more detailed analysis is needed to investigate the main driving forces 

behind these trends.  
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Figure 4. Climatology of TChlaZpd of diatoms (mg/m3) for the months of January to 

December based on the period 2003–2013 retrieved using the ABAZpd model. White areas 

correspond to waters with depths shallower than 200 m or without satellite information. 

 

4. Conclusions 

In conclusion, we have shown that the original ABA underestimates the diatom abundance in the 

Southern Ocean (SO). Our investigation revealed that diatoms in the SO might be more abundant than 

previous thought, possibly because (1) the lack of in situ phytoplankton pigment data, and that (2) the 

relationship between TChla and the f-Diatom in the SO is distinct from the global relationship. 

We have developed a new global and regional ABAZpd that significantly improve the 

representativeness of the retrievals in the SO. The mean absolute error (MAE) declined from 0.776 to 

0.559 using the global ABAZpd, improving by 28% the estimation of diatoms in the SO. The regional 

model further improved the MAE by 17% (MAE = 0.465) compared with the global ABAZpd model. 

This was achieved by re-evaluating the ABA using a large data set of global phytoplankton pigment 

profiles spanning 24 years (1988–2012). Additionally, the ABA was further improved by considering 

the information in the Zpd.  
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We have shown that the ideal global retrieval of diatoms combines the ABAZpd model fitted to the 

data set (excluding SO data, MAE = 0.883) with the regional SO model. However, applying two 

models generates an offset between the oceans, thus selective use of the global and the SO algorithms 

may be necessary depending on the objective of the application. 

Satellite retrievals of PFTs are a useful tool for identifying and quantifying their presence in the 

oceans and in this study we have advanced our knowledge on the retrieval of diatoms from space by 

identifying limitations and developing improvements. Future studies should focus on optimizing the 

ABA method also for other PFTs. 
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