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Abstract: Monitoring the start of the crop season in Sahel provides decision makers with 

valuable information for an early assessment of potential production and food security 

threats. Presently, the most common method for the estimation of sowing dates in West 

African countries consists of applying given thresholds on rainfall estimations. However, 

the coarse spatial resolution and the possible inaccuracy of these estimations are limiting 

factors. In this context, the remote sensing approach, which consists of deriving green-up 

onset dates from satellite remote sensing data, appears as an interesting alternative. 

It builds upon a novel statistic model that translates vegetation onset detections derived 

from MODIS time series into sowing probabilities at the village level. Results for Niger 

show that this approach outperforms the standard method adopted in the region based on 

rainfall thresholds. 

Keywords: green-up onset; sowing probabilities; Niger; crops; statistical model; MODIS; 

remote sensing; phenology; food security 

 

OPEN ACCESS



Remote Sens. 2014, 6 10948 

 

 

1. Introduction 

In Sahel, agricultural yields rely, among other factors, on the length of the crop season. Given millet 

photosensitivity and the limited variability of rainy season ending dates, late sowing is usually 

associated with shorter seasons [1] and consequently with lower crop yields [2–4]. Monitoring the start 

of the crop season provides decision makers with valuable information for an early assessment of 

potential production and food security threats. In such drought-prone regions, characterized by erratic 

early rainfalls, several systems to report or estimate crop progress stages (i.e., sowing dates) are 

operational, though often limited in their capacity to cover large areas with suitable precision and 

accuracy. Satellite imagery contributes to fill this gap since it potentially provides a periodical spatial 

overview of vegetation conditions and offers means for the estimation of phenological stages (see [5] 

for a review of the methods). 

Presently, the most common method for the estimation of sowing dates in West African countries 

consists in applying given thresholds on rainfall quantity which is the main, even the only  

climatic factor affecting vegetation growth in Sahel. Following this agrometeorological approach,  

the assumption is that successful sowing occurs when rainfall exceeds 20 mm in a dekad (10-day 

period) and adds up to at least 20 mm in the following two dekads [2,6]. The rationale of this rule is 

that it fairly corresponds to the behavior of farmers who usually sow after the first important rainfall 

event, but have to sow again if a dry spell jeopardizes crops at their early stages. However,  

two important drawbacks should be stressed: (i) the discrepancy between the spatial resolution of 

rainfall data (8 km) and the spatial micro-variability that characterizes rainfall in Sahel [7], and (ii) the 

possible inaccuracy of rainfall estimations [8–10]. The limited reliability of this method is evidenced 

by the substantial effort the government still puts into in loco assessments of sowing dates in  

10,557 villages (out of 27,897 villages censed in the country). 

In this context, the remote sensing approach that consists in deriving green-up onset dates from 

vegetation indices, e.g., the Normalized Difference Vegetation Index (NDVI) and the enhanced 

vegetation index (EVI), appears as an interesting alternative. Two advantages can be put forward:  

(i) a higher spatial resolution and (ii) the fact it integrates vegetation responses to various factors, 

including farmers decisions, and not only rainfall.  

However, the use of vegetation indices also has its shortcomings [5,11–14]. Their sensitivity to  

soil background is a major concern [13] in arid and semi-arid regions with low sowing densities.  

Indeed, bare soils often have spectral characteristics that induce NDVI values similar to sparse 

vegetation ones [15,16]. Moreover, NDVI suffers from noise induced by atmospheric conditions [17–19] 

and from uncorrected directional viewing effects. The use of the middle-infrared (MIR) wavelength as 

a complement to the red and NIR can guarantee a more robust and reliable image-independent 

discrimination between vegetation and non-vegetation surface types [16]. Indeed, the MIR spectral 

band is sensitive to water content in the soil and vegetation [20] and therefore improves the 

discrimination between vegetation and surrounding bare soils that are usually drier. To deal with this, 

Pekel, et al. [21] propose an innovative multi-temporal and multi-spectral image analysis method 

based on the red, NIR and MIR channels, that guarantees a more robust and reliable discrimination 

between vegetated and non-vegetated surfaces. The approach offers a good basis to identify the 

transition from bare soils to vegetation covers at an early stage.  
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A plethora of methods have been proposed in the literature for the estimation of the start of the 

season (SOS) from satellite based phenology [22–28]. Heuristics for the detection of SOS include the 

use of thresholds on remote sensing derived rainfall [24], on the ratio between NDVI increase and 

NDVI maximum on smoothed seasonal observations [25] and on fitted functional forms [26]. Curve 

fitting approaches also use the minimal point [27] or curvature-change [23,28] as a proxy for the SOS. 

However, few studies tried to explicitly tie phenological information from remotely sensed time series 

to actual sowing dates. Brown and de Beurs [22] propose a phenological model tuned specifically to 

the semi-arid, monsoonal ecosystem of West African Sahel to identify the start of the season and 

validate the results with sowing dates from field observations. The highest correlation (R2 > 0.8) 

between the derived SOS dates and the field observations were obtained with NDVI data aggregated at 

a spatial resolution of 8 km/pixel. The approach was however less efficient at a higher spatial 

resolution necessary for an assessment at the village level. Moreover, no model has been proposed to 

explicitly link satellite based phenology to ground data at the early stage of the season. Indeed, in the 

existing literature, the start of the season can only be determined when the season is completed, 

because fitting quadratic models (or other functional forms) requires observations in the growing phase 

as well as in the senescent phase, which is a major drawback for early warning assessments.  

This study proposes an innovative statistical model that attributes sowing probabilities to villages 

based on surrounding green-ups as soon as they are detected. The sowing probabilities at a given date 

inform on the effective start of the crop-growing season and are updated throughout the season.  

The model maximizes the likelihood of observing the number of villages having sown per dekad at the 

department level, as officially reported by the Ministry of Agricultural Development of Niger (see next 

section). The originality of the approach consists in linking pixel level information with ground data 

aggregated at the department level in a sound theoretical framework. The identification of vegetation 

onsets follows the methodology described in [21] applied to the Moderate Resolution Imaging 

Spectroradiometer (MODIS) time series at 250 m. Years 2008 and 2009 are used for estimation and 

cross validation purposes. Results are compared to sowing dates obtained by applying the 

agrometeorological approach proposed by Sivakumar [1] to the rainfall estimates (RFE2) of the 

Climate Prediction Center/Famine Early Warning System (FEWS NET) [29]. 

2. Material and Methods 

2.1. Data 

In an effort towards a comprehensive assessment of the agricultural season, the Ministry of 

Agricultural Development (Ministère du Développement Agricole) of Niger periodically performs,  

all over the country, field visits for crop development monitoring. Information on rainfall, sowing 

dates, phenological development, planted and harvested areas as well as on yields is thus collected by 

agricultural extension officers and reported during the agricultural season. The collection of dekadal 

information on the number of villages having sown in each of the departments of the country (there are 

36 departments in Niger with a median size of 7987 km2) takes place every year from April to July. 

The data is corrected for missed sowings due to consecutive dry-spells during subsequent field visits. 

Table 1 gives an overview of this data for the 2008 crop season, aggregated into seven regions for the 
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sake of simplicity. Please notice the distinction between regions, the aggregation unit on Table 1,  

and departments, the aggregation unit at which data is available and is the basis for the analysis.  

We take it as ground truth and use the information at the department level for both the calibration of 

the statistical model and the cross validation procedure. Although recognizing the limitations of this 

dataset for validation purposes, we believe that one of the main contributions of this work is to propose 

an innovative statistical framework (see Subsection 2.4) that ties information at different scales −250 m 

pixels, 5 km buffer around villages and department—in a sound theoretical framework.  

Table 1 shows the high heterogeneity in planting dates within regions, regardless of their size. 

Heterogeneity of similar amplitude is observed at our level of analysis (departments): in 2008,  

in Matameye (the smallest department in the country with less than 2500 km2) 23% of the villages had 

sown at the beginning of May while the last 20% of the villages had to wait until the first dekad of July 

in order to have a successful planting. 

Table 1. Cumulated number of villages having sown per dekad and per region in  

2008. The data is from [30]. 

Region Total 
April May June July

Dek1 Dek2 Dek3 Dek1 Dek2 Dek3 Dek1 Dek2 Dek3 Dek1 Dek2 Dek3
Diffa  600 0 0 0 0 0 0 0 0 170 450 600 600
Dosso 1448 0 0 6 60 337 744 798 1073 1442 1448 1448 1448

Maradi 2181 7 7 7 7 229 563 966 1391 1766 2091 2181 2181

Niamey 34 0 0 0 0 0 17 17 30 34 34 34 34

Tahoua 1495 0 0 0 1 42 224 387 673 1078 1380 1493 1495

Tillabery 1849 0 0 0 3 73 279 710 1184 1783 1830 1849 1849

Zinder 2950 0 0 22 35 87 187 406 585 2077 2847 2932 2950

Niger a 10557 7 7 35 106 768 2014 3284 4936 8350 10080 10537 10557
a except Agadez. 

From the remote sensing side, two datasets have been used: RFE 2.0 and four MODIS daily 

products from Aqua and Terra sensors. The first is a dekadal rainfall estimate at 8 km resolution 

available at the Climate Prediction Center/Famine Early Warning System. The second are the daily 

MODIS products (version 5, L2G), processed in order to maximize the number of cloud-free 

observations: the 250 m products (MYD09GQ and MOD09GQ) for the Red and the NIR bands,  

and the 500 m products (MYD09GA and MOD09GA) for the middle infrared (MIR) which is then 

resampled to 250 m.  

In addition, the location of the Nigerien villages comes from the 2001 national census (Troisième 

Recensement Général de la Population et de l’Habitat, INS, Niger) during which most villages of the 

country have been georeferenced. The data provided by the National Institute of the Statistics (INS) of 

Niger was collected between the 20th May 2001 and the 10th June 2001 and covers the whole 

territory. The census lists up to 27,897 villages of which 83% are georeferenced. The georeferenced 

villages cover 94% of the total censed population of 11,060,291 inhabitants. 

Finally, while sowing dates derived from rainfall estimates are directly attributed to the villages 

inside each 8 km pixel, vegetation onset detections are considered in buffers surrounding each village. 

In order to avoid the over-parameterization of the model, the optimal buffer has been defined a priori 
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as the one that maximizes the agreement between the resulting village buffer mask (VBM; see 

Subsection 2.2 for details) and a reference crop mask (CM) [31]. The CM spatially combines the 

cropland classes with more than 30% of crops from the Cropland Use Intensity dataset (USGS, 1988) 

and the irrigated agriculture and plantation classes from the Land Use-Land Cover dataset (LULC, 

2000), both resampled at 250 m.  

2.2. Village Buffer Mask 

As previously discussed, given the spatial variability of the sowing dates in Niger, the 250 m 

resolution of vegetation onsets derived from MODIS imagery (see next section) appears as an 

alternative to the coarse resolution of RFE 2.0 rainfall data. However, the plots of the same village are 

generally covered by several MODIS pixels so that a single MODIS pixel cannot encompass the 

dynamics of sowing in the village. The question is then how large is the area around each village 

where detected vegetation onsets carry information on the agricultural activities of the villagers. 

Instead of selecting the buffer size such as to maximize the performance of the statistical model or 

selecting a buffer size based on a subjective belief (e.g., “the plots are situated at a walking distance of 

maximum 1 h”), we have decided to rationalize the choice of the buffer by maximizing its agreement 

with a reference crop mask. This choice has the advantage of being objective while minimizing the risk 

of over-parameterization of the model, given the only two years of data available on sowing dates.  

The identification of the optimal buffer size has four steps: 

1. Exclusion of the villages outside the agricultural and agro-pastoral zones as defined by FEWS 

NET’s Niger Livelihood Profiles since sowing is not expected to happen in those; 

2. Generation of buffers of radius r in {1, 2, 3, …, 8} km around the villages located in the 

agricultural and agro-pastoral zones; 

3. Individual village buffers are merged in order to create eight so called village buffer masks (VBM), 

each one corresponding to a different buffer size; 

4. Computing the area covered by the crop mask, by each of the VBMs and the intersections between 

the crop mask and the VBMs. 

We define agreement as the difference between (i) the percentage of the crop mask covered by the 

VBM and (ii) the percentage of the VBM not covered by the crop mask (i.e., the commission errors). 

The first component expresses the capacity of the VBM to cover agricultural areas and should be 

maximized. The second component, which should be as low as possible, measures the occurrence  

of non-agricultural areas among pixels later included in the analysis. Both components have,  

by definition, a positive, but not strictly positive, derivative with respect to the buffer size. Moreover, 

since agriculture has a higher likelihood to develop in the surroundings of the villages, for small/large 

buffers the percentage of the crop mask covered by them is expected to increase faster/slower with the 

buffer size than percentage of the VBM not covered by the crop mask. In other words, the difference 

between the two curves, or agreement, is a concave function that reaches its maximum at the optimal 

buffer size. The stylized Figure 1 summarizes this idea. This approach is based on an elegant 

formulation and has the advantage of providing a rational and objective criterion for the definition of 
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an optimal buffer. Furthermore, this is a general approach and could also be used in other contexts  

and applications. 

Figure 1. Stylized representation of the expected relationship between the buffer size 

around villages and (i) the surface of the crop mask covered by the resulting village buffer 

mask (green line) and (ii) the surface of the VBM not covered by the crop mask (orange 

line). The optimal buffer size maximizes the difference between the two curves and is 

represented by the point B*. 

 

2.3. Onset Detections Derived from MODIS 

Here we define the green-up onset stage as the transition from a bare surface to a vegetation surface. 

The main challenge for the identification of this transition is the automatic discrimination between 

non-vegetated and vegetated surfaces at an early stage of development (i.e., very low vegetation 

density). The possible confusion between bare soils and vegetation in arid and semi-arid areas, gives 

rise to the need for a qualitative index based on MIR, NIR, and red spectral bands. Moreover, the index 

should ideally identify green vegetation consistently and independently from observation conditions 

(atmosphere and acquisition geometry), and of its intrinsic variations (the phenological stage).  

Pekel, et al. [21] proposes such an index by using a colorimetric approach of the signal. This index,  

called hereafter Hue index, represents the Hue component after a color transformation of the RGB 

space (with the MIR wavelength in the R channel, the NIR in the G channel, and the Red in the B 

channel) into the Hue-Saturation-Value (HSV) system. The onset vegetation detection is based on the 

combination of this new index and the NDVI. In this two-dimensional space, the empirical 

discriminant lines have been identified based on a set of thresholds derived from a large sampling of 

pixels spread both in time and space in vegetated and non-vegetated areas (respectively 1,910,597 and 

21,413,604 pixels). The approach presents four advantages that justifies its use for the dekadal 

detection of vegetation in our methodology: (i) it exploits the multi-spectral information and 

consequently avoids usual confusions between bare soils and vegetation, (ii) it synthetizes the  

multi-spectral information in one value, and (iii) it reduces the noise due to the observation conditions 

and (iv) it allows the identification of the transition from bare soils to vegetation covers at an early stage.  
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The processing chain applied on the daily MODIS images includes 5 steps. (i) For each sensor 

(i.e., Aqua and Terra), the compositing of daily images on a 10-day basis using the mean compositing 

strategy [32]. (ii) The resampling to 250 m of the MIR channel (nearest-neighbor resampling). (iii) The 

computation of two vegetation indices: the NDVI and the Hue index, using three reflectance bands, 

i.e., MIR, NIR, and red [21]. (iv) The detection of vegetation based on a set of thresholds using jointly 

the Hue and the NDVI indices [21]. (v) The identification of the green-up onset dates based on the 

vegetation detections. As several vegetation onsets may be detected for the same pixel during a single 

crop season, only the last detection, interpreted as the successful planting, is used in the analysis, while 

previous detections are considered as failed plantings (e.g., due to a dry spell at an early stages of crop 

development). The analysis covers the period between 1 April and 20 August and later detections  

are neglected. 

As a concluding remark, it is worth motivating the processing of daily images (the first step of the 

processing chain). First, it allows for the adaptation of the length of the compositing period to the user 

needs and location in order to optimize the number of cloud-free observations. In our study,  

the preparation of the 10-day composites was necessary because field data was also collected at a  

10-day frequency. Second, we demonstrate the possibility to start from the daily data instead of the 

already packaged composites, a useful approach in the period of increased computing capacity, 

including online processing solutions like the one offered by Google Earth Engine. Finally, the MC 

presents some advantages compared to algorithms used in the standard products [32] such as the Nadir 

BRDF-Adjusted Reflectance (NBAR) MODIS products: (i) the mean reduces the BRDF effects and 

also the possible perturbations remaining after atmospheric correction and cloud removal, (ii) less 

cloud-free observations are needed, a significant advantage as the vegetation starts at the cloudiest 

season, and (iii) the higher spatial resolution (250 m instead of 500 m).  

2.4. Statistical Framework 

Once detected at the pixel level, vegetation onsets are to be translated into sowing dates. The task 

presents two major challenges: (i) how to efficiently aggregate the information at 250 m resolution into 

the predefined village buffers and (ii) how vegetation onset detections relate in time with sowing dates. 

The statistical framework hereafter described has been specifically designed to address these problems 

under the constraint of the validation data which informs about the number of villages having sown by 

dekad in each of the 36 departments. First, sowing is assessed as a probability (Equation (1)) that is 

proportional to the percentage of detected pixels around villages (Equations (2) and (3)). The function 

that links the percentage of detected pixels to a probability of sowing is general enough to 

accommodate a plethora of functional forms with the estimation of only two parameters (Figure 2). 

Finally, we define the resulting distribution of the number of villages having sown in a department as a 

function of the probabilities of sowing in the villages within it (Equation (5)) and we derive the 

corresponding log-likelihood function to be maximized (Equation (9)). This flexible but parsimonious 

specification guarantees that detections are efficiently translated into a probability of sowing over dekads. 

Let us assume that the binary sowing variable si,k,t follows a Bernoulli process that equals 1 if the 

village i in department k has sown at or before time t; and 0 otherwise: 
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 (1)

where the parameter pi,k,t, the probability of a sowing having taken place, is a function of Vi,k,t,  

the percentage of pixels where a vegetation onset has been detected at or before time t in the buffer 

surrounding the village i from department k:  

(2)

with 

 (3)

where Ф and Ф−1 have been respectively defined as the cumulative density function of a normal 

distribution and its inverse. Note that Equation 3 translates the percentage Vi,k,t from the interval [0,1] 

to the interval [−∞,∞], before being introduced in Equation (2). Conversely, Equation (2) translates 

V’i,k,t back into a probability interval [0,1] after the coefficients to be estimated β0 and β1 come into 

play. This specification accommodates a vast diversity of relationships between the percentage of 

detected pixels and the probability of sowing (Figure 2).  

Then, under independence of sowing assessments between villages: 

 (4)

Let us now define Yk,t the total number of villages in the department k having sown at or before time t, 

following a Poison-Binomial distribution [33] with probabilities coming from Equation 2:  

(5)

It follows that: 

 
(6)

is the expected value of Yk,t and its variance is given by: 

 
(7)

with nk being the total number of villages in the department k. Since the condition of Lyapunov is 

fulfilled for a sum of independent Bernoulli trials, the central limit theorem can be generalized to the 

case of not identically distributed variables and Yk,t converges in distribution to a normal distribution 

when nk goes to infinity:  

 (8)

In our case, n ranging from 38 (Abalak) to 1850 (Miria), the Normal distribution has been used as a 

proxy for the Poisson-Binomial distribution (due to computational limitations) and parameters β0 and 

β1 can be found by maximizing the following log-likelihood function: 

 
(9)

As final remarks, the motivation for the statistical framework is twofold. First, it is a formal 

representation of the random process generating the available data on sowing dates: extension officers 
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assess if “the village” has sown with a probability of yes that is proportional to the share of fields in 

the surroundings where a successful sowing took place (Equation (1)); this information is then 

aggregated and reported at the department level (Equations (5) and (6)).  

Figure 2. Potential functional forms between the percentage of pixels for which a 

vegetation onset has been detected and the probability of a successful sowing. A high 

diversity of functional forms can be obtained with only two parameters. i.e., β0 and β1 in 

Equation (2). Linear, strictly positive and strictly negatives second derivatives with β1 = 1 (a); 

threshold with β1→∞ (b); and change in concavity with β1 ≠ 1 (c). Only positive values of 

β1 are considered. 

 

Second, as the functional form that ties a percentage of fields with a probability of declaring the 

sowing is unknown, we proposed a generic framework where a plethora of relationships between the 

two variables can potentially be accommodated with the estimation of only two parameters. Figure 2 

illustrates some of the cases. The first box (a) shows that, holding β1 = 1, the concavity of the 

relationship varies with the sign and the magnitude of β0. Then, in the second box (b) we see that high 

values of β1 generate a threshold approach, where sowing is declared with 100% chance when the 

percentage of fields having sown exceed a given level. Note that it can be demonstrated analytically 

that the threshold equals Ф (β0/β1). Finally, the specification is flexible enough to model relationships 

with a change in concavity, both from positive to negative second derivatives (β1 > 1) and from 

negative to positive second derivatives (β1 < 1) as illustrated in the third box (c).  

2.5. Rainfall Estimate for Sowing Dates 

The most common method for estimating sowing dates in Sahel is the one proposed by [1].  

The rationale of the method is that it fairly corresponds to the behavior of farmers who usually sow 

after the first important rainfall event occurring from May onwards. On a per pixel basis (8 km),  

a rainfall threshold criterion is applied to dekadal rainfall estimates (RFE 2.0) values. The assumption 

is that sowing happens in the first dekad (from May onwards) with at least 20 mm of rainfall. 

Moreover, a sowing is successful if and only if the aggregated rainfall during the next two dekads 

equals or exceeds 20 mm; otherwise, it is considered as a failure and the method searches for a new 
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sowing. The last point implies that a sowing that takes place in dekad t is reported as successful two 

dekads later. 

3. Results  

3.1. Village Buffer Mask  

Table 2 summarizes the results of the analysis detailed in Subsection 2.2. It shows for a series of 

buffer radius around villages (i) the percentage of the crop mask (CM) covered by village buffer mask 

(VBM), (ii) the percentage of VBM not covered by CM and (iii) the difference between both.  

The buffer that maximizes the last indicator is retained in the next steps of the analysis. As expected, 

for small buffers the percentage of CM covered by VBM increases faster than the percentage of  

VBM not covered by CM, and the opposite holds for large ones. The percentage of CM covered by 

VBM reaches values higher than 90% and for buffers superior to 5 km, a plateau zone appears,  

with increases inferior to 1%. In contrast, the increase of the percentage of VBM not covered by the 

CM is rather steady and never superior to 5%. As a result, the difference between both curves is a 

concave function and it reaches its maximum for buffers of around 5 km.  

Indeed, in Niger, the vast majority of the plots are within a radius of four to five kilometers from the 

village. In addition, a buffer of 5 km corresponds to a 1-hour walking distance, which seems to be a 

relevant choice. Farther fields are usually not cultivated. We consequently adopt the 5 km buffers as a 

benchmark for the vegetation onset detection around villages. The resulting VBM covers 97.6% of the 

CM while 59.6% of it is not covered by the CM. This apparently large commission error can be the 

due to large agricultural areas that were not included in the CM either (i) because of the difficulty of 

visual interpretation when applied to arid and semi-arid areas where natural vegetation and/or fallow 

fields are usually highly mixed with and within crop fields or (ii) because the CM was created using 

outdated Landsat images (1988). It is worth noting that natural vegetation associated with crops can 

improve the scope of the use of green-up onset detections for the estimation of sowing dates in Sahel 

given the steeper reaction to moisture of the former and the low planting densities of the later.  

Early detections are then more likely to be successful. 

Table 2. Overlaps and no-overlaps between the crop mask and village buffers mask for 

buffer sizes between 1 km and 8 km. 

Variable 
Buffer Size around Villages 

1 km 2 km 3 km 4 km 5 km 6 km 7 km 8 km

%CM Covered by the VBM 29.3 68.6 87.5 94.8 97.6 98.8 99.4 99.6 

%VBM not Covered by the CM 42.8 47.7 53.1 57.0 59.6 61.2 62.4 63.3 

Difference −13.5 20.8 34.5 37.9 38.0 37.6 37.0 36.3 
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3.2. Vegetation Onset Detections and Rainfall Thresholds 

Figure 3 shows the results of the green-up onset dates derived from MODIS using the hue index and 

the estimated sowing dates derived from RFE for the two years, i.e., 2008 and 2009 respectively on the 

left and right hand side. As expected, the main differences between the two products are: (i) a delay 

between the RFE based sowing dates and the timing of vegetation onset detections, since the latter is 

the response of the vegetation to the first rains; (ii) the spatial resolution of the products, i.e., 8 km for 

RFE as opposed to 250 m for MODIS. 

Figure 3. The dekad of the last green-up detection derived from MODIS for the whole 

country (a1) for 2008 and (a2) for 2009, and a zoom over Maradi region (see location box 

in a1) (a1’) for 2008 and (a2’) for 2009. The estimated sowing dekad derived from RFE 

for the whole country (b1) for 2008 and (b2) for 2009, and a zoom over Maradi region 

(b1’) for 2008 and (b2’) for 2009. The color white represents the areas where crops never 

started before 20 August. The black dots represent the villages. 
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More importantly, images at the national scale (Figure 3a1,a2,b1,b2) show that the differences are 

not limited to a systematic delay of the vegetation onset detections, but that the spatial dynamics of the 

methods are also different. In some areas (south-west) vegetation green-up detections happened before 

the rainfall conditions have triggered. Interesting enough, it may happen both in the drier regions of the 

north and in the relatively more humid areas of the south (see the Western Dakoro in 2009 and 

Southern Gaya 2008). Clearly enough, the two methods do not provide the same information and  

that regardless the systematic delay and the spatial scale. Conclusions drawn from the first may 

substantially differ from the one coming from the second. Consequently, it is crucial to assess their 

respective performances.  

Figure 3 zooms in Maradi (a1’, a2’, b1’, b2’), one of the most important regions for cereal 

production in the country. With the additional display of the village layer (black dots) in these images, 

the spatial discrepancy of the information on sowing dates at the village level that each product brings 

becomes evident. For instance, in the Aguié department, the RFE product almost entirely misses in 

both years the spatial variations of sowing dates captured by the vegetation onset product based on 

MODIS imagery. At this stage, it is impossible to determine if the problem is on the coarseness and 

inaccuracy of RFE data or if the spatial heterogeneity of MODIS-based green-up detections is simply 

an artifact that does not relate to the sowing practices on the ground. The next section aims at shading 

light on this question by using the number of villages that have sown at the department level for the 

calibration of the model. The MODIS-based green-up detections are then translated into actual 

(expected) sowing dates to be compared with the sowing dates derived from the 20 mm-rule.  

3.3. From Vegetation Onset to Sowing Dates 

The relationship between remotely sensed vegetation onsets and the moment of a successful sowing 

is not trivial. First because of the natural delay of few dekads from the sowing to the first detectable 

signals of vegetation emergence. Second, at the 250 m scale there is a non-negligible contribution of 

trees and shrubs on the signal. Note that non-agricultural areas are not excluded from the village buffer 

mask. However, since the statistical procedure translates percentages of detected pixels into sowing 

probabilities, no further changes in the methodology would be needed in order to accommodate the 

exclusion of non-agricultural pixels. The decision to not do so is motivated by the relative unreliability 

of available crop masks in some regions and by the general principle of parsimony in the modeling 

procedure. Third, sowing decisions are household specific and may substantially vary within a village. 

Forth, from the previous point follows that the statement “sowing took (or not) place in a village” 

relies on undetermined area/household/plot thresholds. The problem of deriving accurately the planting 

or start-of-the-season dates from satellite imagery remains challenging although the phenological 

methods have substantially improved [26,34]. However, we believe that the statistical method exposed 

in Subsection 2.4 is the way to deal with this task. The natural delay is taken into account by testing 

alternative specifications with lagged detections. It is worth noting that no tested lag is higher than the 

two dekads that the rainfall-threshold-based method requires before being able to declare that a sowing 

took place. Consequently, as long as timing is concerned, the tested lags are at worst as good as what 

one obtains from the rainfall method and at best two dekads sooner. Moreover, in the context of our 

approach, the contribution of tree and shrubs to the signal may become a solution rather than a 
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problem since they usually react to humidity faster than crops allowing early detections of favorable 

conditions for successful sowings. Finally, the sowing probabilities derived from the percentage of the 

pixels around a village where a green-up could be detected can be interpreted as the probability that an 

agricultural technician asserts an effective sowing in this village given the area, the number of plots or 

households having sown. 

A remaining issue is the fact that the relationship between sowing probabilities and remote sensed 

vegetation onsets may vary over years. Yearly variations could result from different reactions of 

natural vegetation (present in mixed pixels) and crops to rainfall temporal distribution and from 

household sowing strategies. If they are significant, the parameters to be used in the current year are 

unknown and the model would be unsuitable for operational applications. To test the model stability 

we cross validate the parameters of one year using the information available for the other year and 

assess the variations on the performance of the model.  

Table 3 summarizes the estimation of the parameters β0 and β1 from Equation (2). It shows the 

relationship between the number of villages having sown at the department level in a given dekad and 

green-up onsets detected around villages at the same dekad (Lag0) and on the following two dekads 

(Lag1 and Lag2). Yearly differences have been tested by running the estimation separately for 2008 

and 2009. Jackknifed standard deviations of both parameters are also presented. In order to compare 

the results obtained from the use of vegetation onset detections and the agrometereological approach, 

two model performance measures are reported: the traditional R-squared and the root mean aggregated 

squared errors (RMASE) that is defined by Equation (10). The parallelism between the RMASE and 

the root mean square error (RMSE) is straightforward. In order to get a national level measure, in the 

RMASE formula the sum of squared errors is divided only by the number of dekads before being 

square-rooted, while in the RMSE the sum of squared errors is divided by both the number of dekads 

and the number of departments:  

 

(10)

where T is the number of dekads (12 in our study case), d is the number of departments (34) and Yk,t 

and Ŷk,t respectively are the actual and the estimated number of villages having sown in department k 

at or before dekad t.  

Results show that the vegetation onset detection outperforms the rainfall-based approach for all 

tested lags and on the two considered years. R-squared jumps from 0.74 to [0.81–0.82] in 2008 and 

from 0.73 to [0.79–0.86] in 2009 meaning a relative improvement from the RFE methodology ranging 

from 8.22% for Lag2 to 17.81% for Lag0, both in 2009. Higher improvements are observed on the 

RMASE. It decreases 17.23% when detections 2 dekads lags are used in 2009 and 29.01% with no 

time-lag for the same year. At this point, it is worth mentioning the parsimony of the statistical 

approach. The results are obtained with the estimation of only two parameters for the whole Niger and 

may be improved with no over-fitting issues with the stratification of the villages in two or three 

groups (estimation of 4 or 6 parameters). Figure 4 shows two scatter plots of the actual number of 

villages having sown per dekad and department and the model’s predictions for the Lag0 specification 

in 2008 and 2009. 
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Table 3. Estimation of the number of villages having sown per dekad and department 

based on green-up onset detection (Lag columns) versus rainfall method (RFE) for 2008 

and 2009. Statistics followed by “cross” refer to predictions for one year based on the 

parameters estimated for the other year. 

Parameter 2008 2009 

 Lag0 Lag1 Lag2 RFE Lag0 Lag1 Lag2 RFE  

β0 0.9106 0.6286 0.3836 - 1.2020 1.0316 0.7223 - 

sd(β0) 0.0280 0.0088 0.0057 - 0.0836 0.0394 0.0050 - 

β1 0.2721 0.2375 0.2640 - 0.3787 0.4173 0.4246 - 
sd(β1) 0.0129 0.0030 0.0159 - 0.0260 0.0134 0.0030 - 

R2 0.82 0.82 0.81 0.74 0.86 0.83 0.79 0.73 
RMASE 869 860 876 1112 783 827 917 1132 

R2-cross 0.82 0.82 0.81 - 0.85 0.81 0.77 - 
RMASE-cross 860 867 884 - 831 913 1023 - 

Figure 4. Actual versus predicted (Lag0 specification) number of villages having sown by 

department and by dekad. Points’ size are proportional to the total number of villages 

within a department and months are in shades of green. Number of observations:  

34 departments multiplied by 12 periods equals 408 observations for each year.  

 

Both the intercept and the slope are statistically different from zero for all tested specifications. 

More importantly, the results reject several functional forms between probability of sowing and the 

fraction of vegetated pixel. First, linear, strictly concave and strictly convex forms are unlikely since β1 

is significantly different from 1. Second, low estimated values of β1 discard threshold forms. Third, 

functional forms with change in concavity from concave upward to concave downward can be 

excluded by the fact that, given the data, β1 is likely to be smaller than 1. The model consistently 

selects, for all tested lags and both years, a functional form that changes concavity from downward to 

upward (Figure 5). The meaning of this robust result is that a sowing is likely to have occurred at the 

very first signs of vegetation onset. In the Lag0 specification for 2008, there is a 60% probability (62% 

for 2009) for a sowing to be declared in a village if green-ups are detected in 1% of the pixels.  



Remote Sens. 2014, 6 10961 

 

 

As expected, these probabilities are lower, but still high, for the Lag2 specification: 41% for 2008 and 

40% for 2009. From this point on, the probability of sowing increases at a slower pace to reach 82% 

and 88% (Lag0; 2008 and 2009 respectively) and 65% and 76% (Lag2; 2008 and 2009 respectively) 

for a green-up detected in 50% of the pixels. Interesting enough, note that the higher is the lag and the 

more detected pixels are needed for the same sowing probability. 

Figure 5. Probability of sowing at the village level as a function of the percentage of pixels 

within a 5 km buffer where a vegetation onset has been detected, for the three tested lags 

and 2 years of data. The color surface reproduces the estimated variability (95% 

confidence intervals) of β0 and β1.  

 

An important point of concern is that, for the 3 lags, the parameters are significantly different 

between the two years. As discussed, this raises the issue of the suitability of the method for early 

warning in years where the parameters are unknown. In order to measure the impact of this difference 

on the prediction power of the model, results have been cross-validated for each year using the 

parameters estimated for the other one. The last two rows of Table 3 show cross-validated R-squares 

and RMASEs. Variations of the overall model performance are small enough to be neglected for 2008 

predictions using parameters estimated for 2009. From the other way round, even if a performance 

decrease of higher magnitude is observed, the model based on green-up onset detection still 

outperforms the approach based on rainfall thresholds. This being said, the inter-annual parameter 

variability should be further explored by including new years of data. 

Sowing probabilities at the village level can then be periodically (every dekad) produced by 

replacing the percentage of pixels in the buffer surrounding each village (Vi,k,t) in Equation (2), after 

Equation (3) conversion. Figure 6 shows an example where villages in the rainfed agricultural and 

agro-pastoral zones are depicted with their associated sowing probabilities for the 17th dekad of 2009. 
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Figure 6. Estimated sowing probabilities at the village level for the 17th dekad of 2009 

from the 2009 model with Lag0 and 20 pixels buffer.  

 

4. Conclusions 

To better monitor the start of the crop season in Sahel and provide decision makers with valuable 

information for an early assessment of yearly crop production, this study proposes an innovative 

approach that derives sowing probabilities at the village level from satellite imagery. The approach 

sequentially deals with three issues that cripple the use of vegetation indices for the estimation of 

sowing dates. First, in order to overcome the limitations in deriving green-up onset dates from 

remotely sensed vegetation indices, this study relies on a multi-spectral image analysis originally 

designed for the monitoring of the desert locust habitat. The method guarantees an early, robust and 

reliable discrimination between vegetated and non-vegetated surfaces, in accordance with the needs for 

the detection of sowings in Sahel. Second, in order to avoid over-parameterization of the system, the 

buffer through which green-up detections are associated to a given village is defined a priori such as to 

include most of the cropped land around the village without including non-cultivated land farther from 

the village. Third, an original and sound theoretical statistical framework bridges the gap between 

vegetation onset detections around villages and sowing probabilities. Its strength relies on the fact that 

the estimation of the parameters is possible with the information on the villages having sown even if 

aggregated over administrative units, as usually is the case in the Sahelian countries.  

Cross-validated results show that by the estimation of only two parameters for the whole country 

the model outperforms, both in terms of accuracy (RMASE) and in terms of timing, the method based 

on rainfall thresholds which is presently used to monitor the agricultural season in Sahel. 

This study opens new possibilities for the use of satellite remote sensing data for food security 

monitoring in the region. In operational terms, it has the advantage of providing information early in 

the season compared to other phenology-based methods that need longer periods of observations to 

derive the start-of-season dates. However, further experiments should test the methodology for a lager 

set of years and other countries in the Sub-Saharan window. Finally, other approaches to detect the 

green-up onset should be investigated in order to improve the performance of predicting sowing dates. 
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