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Abstract: The development of low-cost unmanned aerial vehicles (UAVs) and light
weight imaging sensors has resulted in significant interest in their use for remote sensing
applications. While significant attention has been paid to the collection, calibration,
registration and mosaicking of data collected from small UAVs, the interpretation of these
data into semantically meaningful information can still be a laborious task. A standard
data collection and classification work-flow requires significant manual effort for segment
size tuning, feature selection and rule-based classifier design. In this paper, we propose
an alternative learning-based approach using feature learning to minimise the manual effort
required. We apply this system to the classification of invasive weed species. Small UAVs
are suited to this application, as they can collect data at high spatial resolutions, which is
essential for the classification of small or localised weed outbreaks. In this paper, we apply
feature learning to generate a bank of image filters that allows for the extraction of features
that discriminate between the weeds of interest and background objects. These features are
pooled to summarise the image statistics and form the input to a texton-based linear classifier
that classifies an image patch as weed or background. We evaluated our approach to weed
classification on three weeds of significance in Australia: water hyacinth, tropical soda apple
and serrated tussock. Our results showed that collecting images at 5–10 m resulted in the
highest classifier accuracy, indicated by F1 scores of up to 94%.
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1. Introduction

The development of low-cost unmanned air vehicles (UAVs) and light-weight imaging sensors
in the past decade has resulted in significant interest in their use for remote sensing applications.
These applications include vegetation mapping [1–5], archeology [6–8], meteorology [9] and high risk
activities, such as volcano monitoring [10] and forest fire mapping [11]. This interest arises due a number
of advantages of small UAVs over other remote sensing platforms. Firstly, small UAVs require minimal
infrastructure and can thus be operated from remote or rugged locations. Secondly, small UAVs can be
low cost, allowing them to be used as disposable data collection platforms in high risk environments.
Further, they can be operated frequently (weather permitting) at low altitudes, allowing the collection of
data at high spatial and temporal resolutions.

While significant attention has been paid to the collection, calibration, registration and mosaicking
of remote sensing data, the interpretation of these data into useful information for the above-mentioned
scientific, ecological management and other activities can still be a laborious task. Common approaches
use the object-based image analysis (OBIA) framework [12–14]. The use of OBIA for any given
application requires an extensive manual design process, comprising segment size tuning, feature
selection and rule-based classifier design. Though this rule set can be re-used for different datasets,
the process must be repeated for each new application.

Conventional approaches to image analysis require the selection of appropriate features to deliver
high classification accuracy. These features can be the spectral bands at which data are collected and
analysed or derivatives of these data. This feature selection process is a laborious process, as it is highly
dependent on the application (e.g., vegetation classification and geological mapping) and the types of
data being used (e.g., multi-spectral and hyper-spectral).

Features can be either designed by experts or learned from the imagery itself via feature learning
algorithms. In practice, the design and selection process requires a large amount of experience from
experts in the field and an understanding of the physical process that governs how light is reflected from
the materials. Examples of designed features commonly used in remote sensing applications include
spectral indices (for example, NDVI [15], EVI [16] and NDWI [17]), spatial features (for example,
texture and shape [18], wavelets [19] and Gabor texture features [20]. While hand-designed features are
a proven approach to the feature selection problem, there are two disadvantages to the designed approach.
Firstly, the feature design process can be time consuming and application dependent. Secondly, a given
feature may be parameterised on a large set of tuning parameters, each of which may be application
specific and, thus, difficult to generalise. Classification performance has been shown to be sensitive to
these parameters [21].

In this paper, we propose an alternative approach to minimise the effort in feature design by coupling
a remote sensing UAV with feature learning (via the sparse autoencoder [22–24]). Feature learning has
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been applied successfully in computer vision; the technique has achieved state-of-the-art performance
in object detection [25], image classification [26] and object recognition [27] tasks. We demonstrate the
utility and generality of such a system by using it for automated classification of three invasive weed
species on the north-west slopes of New South Wales, Australia.

Invasive weeds species have major economic and environmental impacts in Australia and around
the world, including competition with native plant species, choking irrigation infrastructure, reducing
agricultural yields and affecting the health of livestock. The targets of this study are three weeds
of national significance in Australia: (1) water hyacinth [28]; (2) tropical soda apple [29]; and
(3) serrated tussock [30]. We study the use of small UAVs for the classification of these weeds, as
UAVs provide capabilities that are complementary to both traditional remote sensing assets, such as
satellites and manned aircraft, on one end, and field work, on the other. In contrast to satellites and
manned aircraft, small UAVs can operate at lower altitudes, allowing end users to collect higher spatial
resolution data, which is critical in the classification of small or localised weed presence. Further, small
UAVs are typically cheaper and easier to own and operate, making their use more available to local
organisations that manage these weeds. While their ability to cover large areas is limited when compared
against manned aircraft or satellites, small UAVs can cover larger areas in less time than ground-based
field work.

While work-flows for the collection, calibration and mosaicking of aerial imagery from small UAVs
are well established, a human expert is still required to examine the data products in order to find the
weeds of interest. On the other hand, in an automated weed classification pipeline, an expert provides
positive examples of the weed to train a computer vision algorithm. The algorithm then assigns semantic
meaning to patches in the image: either a weed of interest or not. The computer vision algorithm
applies feature learning to generate a bank of image filters that allows for the extraction of features
that discriminate between the weeds of interest and background objects. These features are pooled to
summarise the image statistics and form the input to a texton-based linear classifier that classifies an
image patch as weed or background.

There are two major contributions of this paper:

1. Theoretical: We develop a general semi-supervised approach for weed classification using remote
sensing data. The approach couples feature learning, the use of filter banks and the use of textons
for weed classification.

2. Experimental: We contribute a comprehensive evaluation of the proposed approach using real data.
We analysed the performance of the classification results as a function of a key tuning parameter,
the classifier window size, for each altitude. This is useful in defining the requirements of sensor
resolution and flight altitude for future studies.

2. Methodology

Our methodology can be decomposed into three steps: (1) data collection; (2) image pre-processing;
and (3) weed classification. In the data collection step, aerial imagery and geo-registration data are
gathered at each site. The aerial imagery for each site is then mosaicked and geo-registered into a single
ortho-photo. The mathematical parameters for projecting each aerial image into the ortho-photo are also
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determined. In parallel, a weed classifier has been developed and tested in this paper. In this study, we
have experimented with different altitude and patch window size settings for water hyacinth, tropical
soda apple and serrated tussock. Our methodology is summarised in Figure 1.

Figure 1. Overview of our methodology. A multi-rotor UAV was used to collect aerial
images. The images were mosaicked and registered into an ortho-photo. Further, a weed
classifier has been developed to classify patches of water hyacinth, serrated tussock and
tropical soda apple.
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2.1. Data Collection

A multi-rotor UAV (Mikrokopter Hexacopter) was used to gather all of the imagery used in this study.
The UAV is illustrated in Figure 1, and its technical specifications are presented in Table 1. We collected
aerial images with a downward pointing, off-the-shelf camera (Sony NEX-7). The specifications of this
camera are presented in Table 2. The UAV was flown over sites of interest at various altitudes between 5
and 30 m and captured an image approximately every 6 s.

Table 1. UAV technical characteristics.

Make, Model Mikrokopter Hexacopter

Gross weight 1.5 kg
Dimensions 80 cm × 80 cm
Endurance 6 min

Typical speed 1.0 m/s
Typical operating altitude 20 m

Typical range <100 m
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Table 2. Camera technical characteristics.

Make, Model Sony NEX 7

Resolution 6000× 4000 pixels
Lens 16 mm f2.8

Angular field of view 76 × 55 deg.
Typical foot-print size (at 20 m altitude) 30× 20 m

Typical spatial resolution (at 20 m altitude) 5 mm/pixel

2.2. Data Pre-Processing

In the data pre-processing step, we mosaic the aerial images to form a coherent picture of the survey
sites. We also estimate the altitude at which each image frame was captured to support subsequent
analysis on the effect of altitude on classifier performance.

2.2.1. Mosaicking

In the data pre-processing stage, we mosaic and geo-register the images into a single ortho-photo.
The aerial images were geo-registered using ground control points. In this study, the markers were laid
out around the weed(s) of interest, such that there is typically at least one marker visible in each image
frame. The positions of these makers were surveyed using a hand-held GPS receiver.

Image mosaicking and geo-registration was performed using off-the-shelf software, Agisoft
PhotoScan. The geo-registration used information from: (1) the ground control point locations; and
(2) the scale provided by the (known) size of the ground control point markers.

2.2.2. Altitude Estimation

Individual image frames were also grouped by the altitude at which they were taken. While the
UAV was equipped with GPS localisation, the relative inaccuracy of GPS (±20 m) compared against
the altitude at which the missions were flown (5–30 m) means the GPS altitude cannot be used for the
purposes of this study. Instead, we used the known size of the ground control point markers (1 × 1 m)
and their size in the image frames to estimate the slant range at which the image was taken. We use the
slant range as a proxy for the altitude in this study, as the roll and pitch angles of the UAV were small.
For example, a marker that is 750 pixels wide indicated that Figure 2 was taken at 5.1-m altitude.

Not all image frames included a visible ground control point marker. To estimate the altitude of the
UAV for these frames, we applied first order interpolation between the altitudes of the previous and
subsequent frames. This interpolation assumes that the altitude of the UAV changes linearly between
each frame.

With an altitude estimate per image, the images were then grouped into different altitude brackets for
further analysis. The altitude brackets are listed in Table 3.
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Figure 2. Estimating the altitude of the UAV using the dimensions of a ground control point
marker. Knowing the dimensions of the marker and the optical parameters of the camera
allowed us to estimate the altitude at which each image was captured.

Table 3. In this study, we grouped the images in the following altitude brackets.

Altitude Group Range Corresponding Pixel Size

5 m 2.5–7.5 m 1.3 mm
10 m 7.5–15 m 2.6 mm
20 m 15–25 m 5.2 mm
30 m 25–35 m 7.8 mm

2.3. Classification

In this paper, we extracted patches containing either weeds and non-weed background from the
collected images to evaluate the weed classifier. Feature learning was applied to generate the filter bank,
followed by pooling to summarise the image statistics before passing to the texton-based linear classifier.

2.3.1. Feature Learning and Pooling

It has been shown that in classification problems, the algorithms perform better on meaningful features
instead of classifying the raw (noisy) data. For example, in RGB image segmentation problems, it is
standard to perform classification using colour, texture and shape features.

The state-of-the-art approach to generating representative features for image classification is via
feature learning. Feature learning is a type of deep learning [23,24,31,32] in which a set of trainable
modules implementing complex non-linear functions are stacked together to capture the underlying
patterns in unlabelled data. These patterns are represented as filter banks, which are convolved with
the image to extract feature responses.

In this paper, we use a standard approach for learning the filter banks. In this approach, a sparse
autoencoder learns the filter bank from an established training dataset, CIFAR10 [33]. The sparse
autoencoder is an algorithm based on neural networks that minimises the squared reconstruction error
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with an extra sparsity constraint [23]. Examples of the learned features used in this paper is shown
in Figure 3.

Figure 3. Filter bank obtained using feature learning. The learning algorithm has
automatically generated filters that extract edge information (the grey-scale filters), colour
information (the coloured filters) and texture information.

While feature responses can be used with the classifier directly, this approach can be computationally
expensive. In the paper, we use the standard practice of pooling [34,35] to summarise the feature
responses before applying the classifier. Pooling is an operation that divides an image into regions and
collects statistics for each region. In this paper, we use max-pooling, which summarises each region by
the maximum feature response. The feature learning, feature extraction and pooling pipeline are shown
in Figure 4.

Figure 4. Feature extraction is performed by convolving the learned feature bank over
the image. The high dimensional feature responses are then summarised using pooling
before classification.
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2.3.2. Classification

We applied the texton approach to classifying feature responses, as it has been shown to result in a
high accuracy for image classification tasks [36,37]. During the training phase, K-means clustering is
performed over the pooled feature responses from both the weed and non-weed class. The centroids of
each cluster are called textons. A class is modelled by one or more textons. Examples of textons that
model the water hyacinth class and non-weed class are shown in Figure 5. The histograms are visually
distinct, demonstrating that the classes are easily separable. During the prediction stage, the input feature
responses are compared against the texton(s) modelling each class. The most similar model becomes the
predicted class.

Figure 5. The histogram of the texton representing the water hyacinth and non-weed class.
The histograms are visually distinct, indicating that the classes are easily separable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120
Histogram for Water Hyacinth

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120
Histogram for Non-Weed

Fr
eq

ue
n

cy
 

Fr
eq

ue
n

cy
 

Pooled Feature Responses Pooled Feature Responses 

3. Experimental Setup

The experimental setup is defined by four components: (1) the survey sites; (2) the approach used
to extract training and evaluation data; (3) the classification algorithm parameter selection; and (4) the
definition of the accuracy metric.

3.1. Survey Sites

The survey sites were concentrated around northern-inland New South Wales, Australia. Multiple
flights were performed at the sites to collect data at different times of the day. The water hyacinth
sites were at Moree (29◦14′33.647′′S 149◦17′51.552′′E). The total survey area was approximately
1500 m2, of which 300 m2 was infested with water hyacinth. The serrated tussock site was at Armidale
(30◦36′44.881′′S 151◦42′2.845′′E). The total survey area was approximately 2400 m2, and 16 serrated
tussock plants at different growth stages were discovered on this site. The tropical soda apple sites
were at Carrai (30◦45′50.434′′S 152◦20′25.250′′E) and comprised a total survey area of approximately
4800 m2 in which 18 tropical soda plants were discovered.
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3.2. Training and Evaluation Data

The image collection was divided into patches, and each patch was labelled as either weed or
non-weed. The labelling process was done visually for weed species that were easily distinguishable
from the background, for example water hyacinth and serrated tussock.

Tropical soda apple plants were more difficult to distinguish visually. To provide reliable ground truth
data, we performed two flights for each site. The first flight was used to collect the raw image data used
for evaluating the classification algorithm. Weed experts then marked tropical soda apple plants with red
tape. A second flight was performed to collect aerial images with these markings. An example of the
raw and marked images is shown in Figure 6. The class labelling was guided by these markings. The
images from the second flight were not used as part of the evaluation, as we did not want to bias the
classifier by associating the unnatural red tape markings with tropical soda apple plants.

Figure 6. Two flights were performed at the tropical soda apple sites. The first flight was
used to collect the raw image data for algorithm evaluation (left) and the second flight to
identify the tropical soda apple plants, which had been marked by weed experts (right).

Raw Image Labelled Image 

Note that there were replications in the sampled plants, because some were observed across different
images; we assume the variations (different orientations, view angles, lighting condition and flight
altitudes) between each observation were adequate for us to treat them as individual samples. On average,
100 image patches of positive and negative examples were collected for each species at each altitude
setting for training and evaluation.

3.3. Algorithm Parameters

For feature learning, the size of the filter bank was 50. For pooling, each image was divided into
9 regions (3× 3). Thus, the final feature vector has 450 dimensions. For classification, 5 textons were
used to model each class (weed and non-weed).

3.4. Accuracy Metric

Two-fold cross-validation was used to evaluate the classification algorithm. In two-fold
cross-validation, half of the patches were randomly selected as the training set and the remainder as
the test set. The classification accuracy was measured with precision, recall and F1 score. Precision
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is the ratio between the number of accurately classified weeds and the total number of image patches
(including false positives). Recall is the ratio between the number of accurately classified weeds and the
total number of weeds that should have been correctly classified. The F1 score is the harmonic mean of
precision and recall.

Experiments were performed for 4 different altitudes and 4 different window size settings. For each
setting, 20 runs were performed and the accuracy metric was averaged. The F1 scores are shown for each
setting, and the detailed precision and recall breakdowns are shown for the best window size setting.

4. Results

Mosaics of the three survey sites are shown in Figure 7. The quantitative classifier performance with
different pixel and window sizes for each weed species and the performance scores for the best window
size are also shown in Table 4. Examples of correctly classified weed, non-weed and misclassified
patches are shown in Figure 8.

4.1. Water Hyacinth

Our results showed that the classification accuracy improved with larger window sizes.
We hypothesise that this is because water hyacinth grows in large patches at this site. A larger window
size increases the area of observation, which leads to more consistent colour and texture features.
This consistency, in turn, leads to higher classification accuracies. Further, we found that the accuracy
did not change significantly with increasing altitude. The algorithm was able to distinguish water
hyacinth from other classes at different altitudes with F1 scores greater than 90%. The main reason
is that these data are amenable to classification; most of the green area was infested by water hyacinth.

4.2. Serrated Tussock

The classification accuracy improved with increasing the window size up to 384 × 384 pixels.
Interestingly, this is the dimension at which most of the serrated tussock plants can be fully observed
(shown in Figure 9). The classification accuracy reduced slightly with increasing altitude, as fewer
details of the serrated tussock plant could be resolved.

4.3. Tropical Soda Apple

The results showed that the window size did not affect the classification performance significantly.
Further, our results showed that the altitude had a significant impact on the classification accuracy; the
best results were obtained at 10 m. Figure 8 shows that only images collected below 10 m had enough
resolution to see the prickly leaves. We hypothesise that the ability to resolve this distinctive feature
aids classification performance. It becomes increasingly difficult to resolve the distinctive leaves of the
tropical soda apple from above 10 m.
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Figure 7. Image mosaic of the surveyed weed sites. Images taken from different flight
altitudes were mosaicked, with images captured at higher altitudes providing coverage,
whereas images captured at lower altitudes had higher resolution.
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Figure 8. Qualitative results: examples of correctly classified weeds, non-weeds and
mis-classification for water hyacinth, serrated tussock and tropical soda apple at different
pixel size.
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The classification results in Table 4 showed that the classifier did not perform as well as for
the other weed species. The reason was that the current feature bank is populated with mostly
colour and texture filters. While these cues were useful for water hyacinth and serrated tussock,
they were not enough to describe the subtle differences between tropical soda apple and other plants
of similar appearance. Further developments of a specialist classifier to incorporate the extra shape
information of the leaves similar to the work on flower classification [38] can potentially improve the
classifier performance.
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Table 4. Quantitative results: classification performance at different window pixel sizes
for each weed species. The precision and recall values for the best window size setting
are also shown. These results show that window size is more important than altitude in
determining classifier performance for water hyacinth, while both window size and altitude
were important for serrated tussock and tropical soda apple.

Pixel Size/Window Size 128 256 384 512 Precision Recall

Water hyacinth

1.3 mm 80.28 82.39 92.17 91.77 88.59 95.19
2.6 mm 81.33 81.24 90.90 94.31 91.79 96.98
5.2 mm 80.00 81.63 89.90 91.45 86.59 96.89
7.8 mm 79.98 80.59 87.99 90.00 84.39 96.42

Serrated Tussock

1.3 mm 91.73 91.86 92.90 87.60 93.02 92.79
2.6 mm 87.46 89.21 92.08 92.98 93.13 91.07
5.2 mm 84.35 87.49 90.70 90.01 92.02 89.42
7.8 mm 83.95 82.54 87.23 88.54 88.24 86.25

Tropical Soda Apple

1.3 mm 65.95 62.74 62.91 60.85 63.09 62.39
2.6 mm 71.33 72.19 71.54 72.05 70.18 74.31
5.2 mm 69.29 69.82 69.54 68.20 67.26 72.59
7.8 mm 68.17 69.29 68.86 69.10 68.42 70.17

Figure 9. Serrated tussock patches sampled with different window sizes. The classification
accuracy improved with increasing the window size up to 384 pixels. This is the dimension
at which most of the serrated tussock plants can be fully observed.

128 256 384 512

5. Discussion

The two objectives of this study are to demonstrate the effectiveness of the proposed feature
learning-based weed detection algorithm and to determine the minimal flight altitude (and the
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corresponding image resolution) that resulted in the highest classifier performance for three
weed species.

Identical algorithm settings were used for all three weed species, without segment size tuning,
feature selection and rule-based classifier design, typically required in the standard approach [12–14].
The models learned from the data and training labels, thus minimising the manual effort in algorithm
design across different applications. The results showed that the proposed feature learning weed
classification algorithm was effective over different weed species, with a classification accuracy of 94.3%
for water hyacinth, 92.9% for serrated tussock and 72.2% for tropical soda apple.

This study has also established the resolution that resulted in the highest classifier performance for
three weed species. For area infestations, such as water hyacinth, the classification algorithm was
less sensitive to the altitude setting and more sensitive to the window size. The large window size
allows a large area of observation, and the more consistent colour and texture features leads to higher
classification accuracies.

For the classification of individual plants, such as serrated tussock and tropical soda apple, both
the window size and altitude settings are important. The altitude dictates the amount of detail that
can be resolved in the images, which is important, because certain species can appear similar without
those details. It can also be important if additional features that describe the specified properties of
the plants (such as leaf shape and spikes of tropical soda apple) are incorporated. The window size
should be selected according to the physical size of the target plants; it should be large enough to include
the entire plant, but not too large to introduce noise from the neighbouring plants. Interestingly, the
scale dependency of the classification performance has also been observed in OBIA studies [39], where
different performances were achieved with different segmentation sizes.

Our results showed that classification accuracy depended highly on how distinguishable the weed was
from its surroundings. Thus, the survey strategy is as important as the classification algorithm. There are
three strategies that can be applied to maximise the distinction between the weeds and its surroundings.
The first (and potentially best) approach is to time the survey to coincide with seasonal changes that
maximise the difference in appearance, for example during the flowering season. Secondly, we can
perform the survey at lower altitudes to obtain more detail at the cost of lower coverage. The third
approach is to use sensors with higher resolution to obtain the same amount of detail at higher altitudes.
One disadvantage of flying at higher altitudes is that the observations become more sensitive to
the vehicle’s motion. Any perturbations in the platform pose at higher altitudes will cause large
displacements in the sensor’s orientation and may cause motion blur. Therefore, to obtain the same
amount of detail at higher altitudes will require a higher resolution sensor and a more stable vehicle.

5.1. Limitations and Future Work

This paper presented a proof-of-concept and feasibility study in weed detection using the ultra-high
resolution aerial images processed by the proposed image analysis pipeline. There are two main
limitations needed to be addressed in future studies for the system to become operational.

The first limitation relates to the UAV platform. While the light-weight Hexacopter is a useful
platform for concept studies, it has a short flight duration and is unable to cover large areas. In our
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future work, we envision collecting data with a larger fixed-wing UAV that has a longer flight duration
and is able to cover larger areas.

The second limitation relates to the algorithm. Two simplifications were made in this study. The first
simplification was that we performed patch classification on the pre-selected example patches instead of
having the algorithm search the entire image. A truly automated image processing pipeline requires a
vegetation/background segmentation algorithm to automate this task. The second simplification was that
the training/evaluation dataset was balanced in the sense that it contained an equal number of positive
and negative examples. In reality, the dataset is more likely to be dominated by the non-weed class.
This simplification was made because this study focused on validating the effectiveness of the patch
classifier. In our future work, we will collect additional training data to address this imbalance.
Our future work will revolve around relaxing some of the simplifications made in this study.

6. Conclusions

In this paper, we developed a learning-based algorithm for weed classification. While work-flows
for the collection, calibration and mosaicking of aerial imagery from small UAVs are well established
in the field of remote sensing, the amount of manual effort required to select features and design
rule-sets remains a significant bottleneck in the data processing pipeline. In this paper, we addressed
this bottleneck by applying a learning-based algorithm that was trained using positive and negative
examples of weed images. This algorithm applied feature learning to generate a bank of image filters
that allowed the extraction of relevant features that discriminate between weeds of interest and the
background objects. These features were pooled to summarise the image statistics and formed the input
to a texton-based linear classifier that classified each image patch as weed or background. This learning
approach minimised the manual effort required in algorithm design for different weed species.

We demonstrated that this image classification algorithm was able to correctly classify weeds of
interest from remote sensing data collected from a Sony Nex-7 digital camera mounted on a small UAV.
This system was evaluated on three different weed species: water hyacinth, serrated tussock and tropical
soda apple. As part of this evaluation, we collected data from altitudes of 5–30 m and experimented with
classifier parameters to determine the best altitude and classifier tuning. Our results showed that for area
infestations, such as water hyacinth, the classifier worked well at all altitudes and that larger classifier
window sizes resulted in more accurate results. With the best window size, F1 scores in excess of 90%
were achieved. For individual plants, such as serrated tussock and tropical soda apple, both altitude and
window size settings were important. With the best window size, a F1 score of more than 90% was
achieved for serrated tussock. A lower F1 score of 70% was achieved for the tropical soda apple dataset
because of the similarity between the weed and surrounding plants.

This study is unique because: (1) it is the first study to use a feature learning-based approach on weed
classification; and (2) we have performed a comprehensive evaluation of the algorithm using real data.
Our findings are useful in defining the requirements of sensor resolution and flight altitude for future
studies. For future work, we would like to extend this study to additional weed species to improve the
robustness of the learning algorithm.
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