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Abstract: Grassland biomass is essential for maintaining grassland ecosystems. Moreover, 

biomass is an important characteristic of grassland. In this study, we combined field 

sampling with remote sensing data and calculated five vegetation indices (VIs). Using this 

combined information, we quantified a remote sensing estimation model and estimated 

biomass in a temperate grassland of northern China. We also explored the dynamic  

spatio-temporal variation of biomass from 2006 to 2012. Our results indicated that all VIs 

investigated in the study were strongly correlated with biomass (α < 0.01). The precision of 

the model for estimating biomass based on ground data and remote sensing was greater 

than 73%. Additionally, the results of our analysis indicated that the annual average 

biomass was 11.86 million tons and that the average yield was 604.5 kg/ha. The 

distribution of biomass exhibited substantial spatial heterogeneity, and the biomass 

decreased from the eastern portion of the study area to the western portion. The interannual 

biomass exhibited strong fluctuations during 2006–2012, with a coefficient of variation of 
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26.95%. The coefficient of variation of biomass differed among the grassland types.  

The highest coefficient of variation was found for the desert steppe, followed by the typical 

steppe and the meadow steppe. 

Keywords: biomass; vegetation index; MODIS; temperate grassland; Xilingol 

 

1. Introduction 

Grassland ecosystems represent 40.5% of the land surface of the Earth [1], and their net primary 

productivity represents approximately 20% of total terrestrial productivity [2]. Accordingly, grasslands 

play an important role in global carbon cycling. As an important component of the terrestrial 

ecosystem of China, grassland ecosystems are not only one of the major ecosystems but also an 

important contributor to energy exchange, carbon pools and biogeochemical cycles [3]. Grasslands 

occupy 41.7% of the country’s territory [4]. Biomass is a core component of the terrestrial ecosystem 

and the foundation of grassland, forest, cropland and other terrestrial ecosystems. Numerous case 

studies of grassland biomass have documented the increasingly prominent role of grassland 

ecosystems [5–8]. However, grasslands in arid and semi-arid regions are facing desertification or 

degradation caused by human activities and climate change. Accurate measurements of grassland 

biomass and its temporal and spatial variation are important for the utilization and protection of 

grassland resources.  

The use of remote sensing technology has become the most effective approach to biomass 

estimation [9,10]. Vegetation indices (VIs) calculated from the reflectances measured by remote 

sensing can reflect the photosynthetic activity of the vegetation and are therefore increasingly used to 

monitor grassland biomass [11]. Grassland biomass has been successfully estimated based on the 

normalized difference vegetation index (NDVI), which is a very widely used indicator [9,11–15].  

Piao et al. [11] estimated the distribution of carbon stocks in China’s grasslands between 1982 and 

1999. They established a satellite-based statistical model using national grassland resource inventory 

data and AVHRR-NDVI data. In addition, biomass was measured as annual peak standing mass during 

the period from 1981 to 1988, and NDVI dataset was determined as a 7-year (from 1982 to 1988) 

averaged growing season NDVI (8 × 8 km). Gaitán et al. [9] used a linear regression to assess the 

relationships between field data and remote sensing data in Patagonian steppes. The field data were 

obtained between 2008 and 2012 during the growing season. The remote sensing data included several VIs 

(e.g., NDVI, difference vegetation index (DVI) and enhanced vegetation index (EVI)) that were averaged 

based on MOD13Q1 reflectance data (250 m × 250 m) for the full growing season. Gao et al. [16] 

estimated the aboveground biomass using MODIS time series data and field survey data in Inner 

Mongolia. The MODIS-NDVI, which represented a 16-day composite with 500 m spatial resolution, 

was calculated using the average NDVI during July and August. However, the estimation of grassland 

biomass is restricted by multiple factors, such as the biomass sampling time and the spatial resolution 

of the remote sensing data. Field sampling data are insufficient, and the stability of models remains 

limited due to the small number of sampling years. The use of multi-temporal satellite data for 

measuring interannual changes of grassland biomass in semi-arid steppe environments is common, 
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although the selection of appropriate dates for image acquisition is problematic for estimating 

grassland biomass [17]. The disparity between remote sensing acquisition dates and field data 

collection dates can influence the success with which a model can be transferred [18]. Due to 

differences in the sampling times among various steppe types, the temporal resolution of the time 

series may be an important consideration in terms of the availability of satellite data for modeling field 

measurements. Additionally, Mutanga and Skidmore [19] noted that the NDVI is limited by its  

non-linear response, making it insensitive to differences at very low and high densities. Other VIs have 

been widely used to estimate vegetation biomass based on remote sensing data, e.g., the EVI [17,20], soil 

adjusted vegetation index (SAVI) [21,22] and modified soil adjusted vegetation index (MSAVI) [21–23]. 

In addition, the high spatial heterogeneity of biomass among different grassland types affects the 

estimation accuracy of biomass if the same model is used in multiple regions. Thus, biomass estimates 

should be based on the most suitable remote sensing estimation model for particular grassland types. 

VIs, the size of partitions and the spatial and temporal matching of ground and remote sensing data 

are the important factors affecting the monitoring of grassland biomass by remote sensing. Temperate 

grassland is sensitive to climate change and shows strong interannual variations [24]. Temperate 

grassland is one of the most representative grassland types in China and is primarily found in the 

Xilingol League area of northern China. In this study, we selected the temperate grassland in Xilingol 

as the study area because of its natural pastures, which are among the highest in quality in northern 

China [25]. The objectives of this study are: (1) To improve the accuracy of grassland biomass 

estimates based on abundant field-based biomass samples and various VIs, and establish estimation 

models for biomass in three sub-regions; (2) To discuss the temporal and spatial distribution of biomass. 

2. Materials and Methods 

2.1. Study Area 

Xilingol League is located in the central part of Inner Mongolia, between 41°35' and 46°46'N and 

111°09' and 119°58'E. This area comprises natural pastures that are among the highest in quality in 

northern China. Xilingol is dominated by natural grasslands, and the total grassland area is 192,512 km
2
, 

representing 95.03% of the total area of the region. The study area is a typical temperate continental 

semi-arid climate. The mean annual temperature ranges from 1.3 °C to 4.8 °C, and the mean annual 

precipitation is approximately 150–400 mm, with a strong increasing gradient from the west to the 

east. The Xilingol grassland is primarily dominated by temperate meadow steppe, temperate steppe 

and temperate desert steppe (Figure 1).  

2.2. Field data and Preprocessing 

Field samples from this study area were obtained from the authors’ multi-year field survey data as 

well as the large-scale field campaign organized by the Grassland Monitoring and Supervision Center 

Ministry of Agriculture of China (GMSC), primarily in August from 2006 to 2012, when the green 

vegetation was at its peak. The sampling sites, each with an area of at least 1 km
2
, were chosen to 

represent typical vegetation communities. Each sampling site was homogeneous in terms of vegetation 

type and land type. For most sites, three plots were selected, with a distance greater than 250 m 
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between plots. For herb or stunted brushwood plots (1 × 1 m), all plants were harvested to measure 

their fresh weight. For shrub plots (10 × 10 m), we sorted the plants into three groups according to 

their size (large, medium and small) and sampled the green parts along with the branches of the same 

year. The fresh weight of representative plant for a shrub clump was then multiplied by the number of 

shrub clumps to estimate the total fresh weight. For all sampling plots, the geographic coordinates, 

altitude, fresh weight, community coverage and plant height were recorded. The primary herb and 

shrub species included Leymus chinensis Trin., Stipa grandis P. Smirn., Achnatherum splendens Trin., 

Artemisia frigida Willd., Reaumuria soongorica Pall. and Lespedeza bicolor Turcz. Finally, we 

averaged the fresh weight of the three plots at the sampling site to produce the field sampling dataset. 

Figure 1. Spatial distribution of grassland types and sampling sites for three regions of 

Xilingol in Inner Mongolia, China. Region I is the meadow steppe region, Region II is the 

typical steppe region and Region III is the desert steppe region. The numbers of model 

points are 921 samples, and the numbers of verification points are 213 samples. 

 

The field sampling plots could respond to the growth conditions of the vegetation and represent the 

different grassland types to the greatest possible extent. In addition, we considered the topographic 

features of the plots and the ease of human access to the plots. Because the quality of the field 

sampling data could affect the accuracy of biomass estimation [26], we strictly examined and verified 

the sampling data by comparing the sampling values to the average biomass for different grassland 
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types over several years. We eliminated abnormal samples that were not representative [16], and 

obtained a total of 1,134 biomass field samples (Figure 1). 

The field sampling data were expressed in terms of wet weight. We converted the wet weights to 

air-dried weights using conversion coefficients for different grassland types [4,8,16,27] (Table 1) and 

further converted the air-dried weights to dry weights with 15% water content [28]. 

Table 1. Conversion coefficients of grassland types. 

Grassland Types Conversion Coefficients Grassland Types Conversion Coefficients 

Lowland meadow 1/3.5 Temperate steppe 1/3.0 

Improved grassland 1/3.2 Temperate desert-steppe 1/2.7 

Montane meadow 1/3.5 Temperate desert 1/2.5 

Temperate meadow-steppe 1/3.2 Marsh 1/4.0 

Temperate steppe-desert 1/2.5   

2.3. Remote Sensing Dataset and Preprocessing 

MODIS products have been useful in regional- and global-scale grassland biomass estimation due 

to their wide viewing swath and high frequency of data acquisition [29]. MODIS reflectance data 

(MOD09Q1) were obtained from the US National Aeronautics and Space Administration. The data 

represented 8-day composites with 250-m spatial resolution corresponding to the time of field 

sampling. We obtained reflectance datasets (red and near-infrared bands) for 2006–2012 by applying 

reprojection, format conversion and mosaic using MODIS Reprojection Tools (MRT) software. The 

five VIs, which included the NDVI, DVI, EVI2, SAVI and MSAVI, were calculated using ENVI 

software with Equations (1)–(5) [30–34] as follows: 
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where ρNIR and ρR correspond to the reflectance in the near-infrared and red wavelengths, respectively. 

L = 0.5 [33] and is the accommodation coefficient of the soil background. 

Based on the sampling time and geographic coordinates of the field samples, we calculated the 

mean VI values within a circular area of each plot (in general, there were three to four pixels per mean 

value) using Geographic Information System (GIS) technology; subsequently, we established a 

database of VI versus biomass values within the corresponding period. 
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2.4. Development and Verification of Estimation Models 

Because the Xilingol grassland includes nine different grassland types, it is difficult to characterize 

the precise biomass in the various grasslands using a single model [8,16]. Therefore, in view of the 

spatial distribution of grassland types and hydrothermal conditions, we divided the grassland of 

Xilingol into three regions to establish a different biomass estimation model for each region.  

These three regions were the meadow steppe region (I), the typical steppe region (II) and the desert 

steppe region (III). 

Based on the correlation between the VIs and biomass in each region, we established regression 

models (linear function model, power function model, exponential function model and logarithm 

function model) in the three regions based on a random selection of 80% of the field data. We then 

calculated the root mean squared error (RMSE) and the mean relative estimation error (REE) to 

evaluate the precision of the estimation models using the reserved data (20% of the total samples). 

Finally, we selected a good model for each of the three regions based on the coefficient of 

determination (R
2
) and precision. All statistical analyses were performed using SPSS 17.0 and EXCEL 

2010 software. The RMSE, REE and precision were calculated as follows Equations (6)–(8): 
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 Precision 1 REE 100%  

 
(8) 

where Yi is the actual biomass of the field samples, Yi
'
 is the estimated grass yield and N is the sample size. 

3. Results 

3.1. Relationship between Biomass and VIs 

To understand the relationships between biomass and the VIs, we performed a correlation analysis 

between biomass and the five VIs in the three regions (Table 2). The results indicated that the biomass 

and the five VIs exhibited significant correlations (α < 0.01). Due to the variability of vegetation and 

hydrothermal conditions in the different grassland types, different VIs were applicable to different 

steppe regions. The correlation coefficients between biomass and VIs in the meadow steppe and 

typical steppe regions were higher than those in the desert steppe region. The correlation coefficients 

between biomass and NDVI in the meadow steppe and typical steppe regions were higher than those of 

the other VIs. The sequence of correlation coefficients in these two regions, ranked from high to low, 

was as follows: NDVI, SAVI, EVI2, MSAVI and DVI. However, in the desert steppe region, the 

correlation coefficients between biomass and EVI2, SAVI and MSAVI were higher than that between 

biomass and NDVI. 
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Table 2. Relationship between biomass and VIs in various regions. All relationships 

exhibit significant correlations. The correlation coefficients are calculated using all field 

samples (including model samples and verification samples) in different steppe regions. 

Biomass NDVI DVI EVI2 SAVI MSAVI 

I Meadow steppe region (n = 214) 0.731 0.664 0.709 0.711 0.708 

II Typical steppe region (n = 766) 0.791 0.641 0.736 0.743 0.728 

III Desert steppe region (n = 154) 0.686 0.693 0.702 0.702 0.702 

3.2. Development and Validation of Estimation Models 

Among the established statistical models for biomass estimation (Table 3, Figures 2 and 3), 

the power function model relating NDVI to biomass showed the best performance for the meadow 

steppe region, with R
2
 = 0.604. The model precision was 73.6%, whereas the precision of the models 

using other VIs was less than 70%. Thus, we selected the power function model based on NDVI as the 

remote sensing monitoring model for the meadow steppe region. The statistical models for the typical 

steppe region were similar to the models for the meadow steppe region. We selected the power 

function model based on NDVI as the remote sensing monitoring model for the typical steppe region. 

The model precision for the relationship between biomass and NDVI was 73.9%. The correlation 

coefficient between biomass and VIs in the desert steppe region was lower than those in the other two 

regions, with R
2
 for the desert steppe ranging from 0.45 to 0.5. The linear functions with a precision 

greater than 73% for each VI were applied to the estimation of biomass in the desert steppe region. 

However, based on the R
2
 value, F value and precision, we ultimately selected the model given by a 

linear function of SAVI as the remote sensing monitoring model in the desert steppe region. 

Table 3. Statistical models of the estimated biomass and precision for the three regions. 

Vegetation Index Model R
2
 

F 

Value 

RMSE 

(kg/ha) 
REE 

Precision 

(%) 

I Meadow steppe region  

(n = 173, test_n = 41) 

NDVI 
560.2949.1477 xy   0.604 261.096 1141.45 0.264 73.6 

DVI 408.1240ln373.507  xy  0.464 148.016 1544.24 0.346 65.4 

EVI2 167.182819.1711  xy  0.515 181.910 1376.94 0.316 68.4 

SAVI 148.235285.1829  xy  0.518 183.889 1370.66 0.313 68.7 

MSAVI 114.160413.1721  xy  0.515 181.423 1379.73 0.318 68.2 

II Typical steppe region  

(n = 629, test_n = 137) 

NDVI 
627.1202.910 xy   0.568 825.644 673.88 0.261 73.9 

DVI 397.98410.2073  xy  0.387 396.641 1027.50 0.403 59.7 

EVI2 769.110033.1344  xy  0.513 611.698 843.02 0.321 67.9 

SAVI 048.140755.1403  xy  0.523 687.838 826.64 0.325 67.5 

MSAVI 273.104324.1379  xy  0.502 631.358 862.30 0.331 66.9 

III Desert steppe region  

(n = 119, test_n = 35) 

NDVI 719.27989.486  xy  0.484 109.625 281.91 0.267 73.3 

DVI 273.33067.978  xy  0.475 105.913 255.29 0.266 73.4 

EVI2 493.28344.677  xy  0.491 113.082 256.68 0.260 74.0 

SAVI 712.33730.671  xy  0.493 113.708 258.96 0.261 73.9 

MSAVI 412.30893.706  xy  0.490 112.399 255.45 0.261 73.9 

Note: n indicates the number of model samples; test_n indicates the number of verification samples; x indicates 

vegetation index; y indicates fresh biomass (g/m2). 
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Figure 2. Relationship between VI and biomass: Region I, Region II and Region III. 

Region I and Region II selected the power function model based on NDVI; Region III 

selected the linear function model based on SAVI. 

 

Figure 3. Relationship between the estimated and actual biomass values: Region I, 

Region II and Region III. The model precision for the relationship between the estimated 

biomass and the actual biomass was above 73%. 

 

3.3. Spatial Distribution of Biomass in Xilingol 

Based on the best estimation model for each of the three regions, we estimated the annual grassland 

biomass for each pixel using the VI at the peak period of the vegetation growing season from 2006 to 

2012. We calculated the annual mean grassland biomass as the 7-year-average grassland biomass in 

Xilingol. As shown in Figure 4, the biomass in Xilingol exhibited substantial spatial heterogeneity and 

decreased from the eastern part to the western part of the study area. We then overlaid the 1:1,000,000 

grassland type vector diagram on the biomass distribution for each grassland type.  

According to the estimate of biomass in Xilingol from 2006 to 2012, the 7-year-average wet weight 

yield of biomass was 43.33 million tons, corresponding to biomass yield (dry weight) of approximately 

11.86 million tons (Table 4). The average biomass was 604.5 kg/ha. The annual average yield of 

biomass was the highest at approximately 3.70 million tons in Dong Ujimqin Banner, representing 

32.1% of the total biomass in Xilingol. The annual average yield of biomass in Xi Ujimqin Banner was 

2.32 million tons. Because the biomass of those two Banners represented more than one-half of the 

total biomass, the two Banners had an important role in pasture management and the protection of 

grassland resources in Xilingol. The biomass was higher in southern Xilingol, including Duolun county 
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and Taibus Banner. In addition, the highest densities of biomass in Xilingol, at more than 800 kg/ha, 

occurred primarily in the northeastern and southern Banners, which had better vegetation growth 

conditions and abundant grassland resources relative to the other areas. 

Figure 4. The 7-year-average grassland biomass between 2006 and 2012 in the 

Xilingol grassland. 

 

Table 4. The annual biomass of different Banners. 

Banner * 
Grassland Area  

(km
2
) 

Wet Weight of Biomass  

(t) 

Yield of Biomass  

(t) 

Biomass  

(kg/ha) 

Abag Banner 27,325 5,085,442 1,428,672 522.84 

Dong Ujimqin Banner 43,861 13,929,648 3,701,216 843.85 

Duolun County 2,996 1,124,055 300,395 1,002.65 

Erenhot 174 9,618 3,028 174.02 

Sonid Left Banner 34,618 2,985,264 895,988 258.82 

Sonid Right Banner 25,148 2,089,824 614,094 244.19 

Xilinhot 15,713 4,175,067 1,152,669 733.58 

Xi Ujimqin Banner 23,587 8,736,553 2,323,326 985.00 

Xianghuang Banner 4,885 744,731 208,519 426.86 

Zhenglan Banner 10,142 2,689,253 743,844 733.43 

Zhengxiangbai Banner 6,084 1,170,427 325,048 534.27 

Taibus Banner 1,652 590,210 162,600 984.26 

Total 196,185 43,330,094 1,1859,399 604.50 

Note: * The Xilingol league includes twelve counties. 
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According to the estimates of biomass for the different grassland types (Table 5), the temperate 

steppe area, which was the more extensive type representing 55.24% of the Xilingol grassland, had an 

annual biomass yield of 6.42 million tons. The values for the biomass yield of the temperate  

meadow-steppe and lowland meadow were the second highest of the various grassland types. The 

combined biomass yield of these three grassland types represented 90.7% of the total biomass yield in 

Xilingol. The biomass of the meadow steppe region was more than 1,000 kg/ha, whereas the highest 

biomass was associated with montane meadow at approximately 1,474.64 kg/ha. The biomass ranged 

from 500 to 1,000 kg/ha for the typical steppe region, and the biomass was estimated at less than  

500 kg/ha in the desert steppe region, including temperate desert-steppe, temperate steppe-desert and 

temperate desert. 

Table 5. The annual biomass of various grassland types. 

Grassland Types 
Grassland Area 

(km
2
) 

Wet Weight of Biomass 

(t) 

Yield of Biomass  

(t) 

Biomass  

(kg/ha) 

Lowland meadow 25,955 7,041,867 1,710,168 658.90 

Montane meadow 1,593 967,275 234,910 1,474.64 

Temperate meadow-steppe 24,658 9,883,646 2,625,343 1,064.70 

Temperate steppe 108,370 2,266,8551 6,422,757 592.67 

Temperate steppe-desert 5,082 321,088 109,170 214.82 

Temperate desert-steppe 29,576 2,255,945 710,205 240.13 

Temperate desert 140 8,855 3,011 215.04 

Improved grassland 473 93,678 24,883 526.07 

Marsh 338 89,189 18,953 560.73 

3.4. Interannual Variation of Biomass 

Biomass in Xilingol exhibited obvious fluctuations (coefficient of variation (CV) = 26.95%), with 

the standard deviation (SD) of 162.94 kg/ha. These values were calculated from the annual variation in 

the entire average biomass of Xilingol. The lowest biomass occurred in 2009 at 415.38 kg/ha and was 

approximately 31% lower than the mean annual average biomass. The highest biomass was 849.26 kg/ha 

in 2012. This value was 40% higher than the mean annual average biomass and more than twice that of 

2009. To analyze the interannual variations of biomass, we developed the categories Harvest Year, 

Lean Year and Common Year: a Harvest Year means that the biomass in the current year is more than 

20% higher than the mean annual average biomass; a Lean Year means that the biomass in the current 

year is more than 20% lower than the mean annual average biomass; a Common Year falls between 

these values. As shown in Figure 5, the only Harvest Year occurred in 2012. The Lean Years were 

2007, 2009 and 2010, for which the average biomass was 443.62 kg/ha. The Common Years were 

2006, 2008 and 2011, for which the average biomass was 623.93 kg/ha.  

The biomass of different grassland types appeared to fluctuate from 2006 to 2012 (Figure 6). The 

SD and CV values, which were calculated from annual variation in the entire average biomass of 

grassland types, responded to the fluctuations of biomass in different grassland types. The montane 

meadow showed the highest fluctuations of biomass, with an SD of 481.68 kg/ha. The highest biomass 

occurred in 2006 at 1,980.13 kg/ha, and the lowest biomass, at 919.03 kg/ha, occurred in 2009. The 
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biomass in 2006 was 2.15 times that in 2009, with a CV of 27.8%. The fluctuations of biomass in 

temperate meadow-steppe were also high, with an SD of 382.0 kg/ha. The highest biomass for this 

vegetation type occurred in 2011, at 1,377.83 kg/ha, and the lowest biomass, at 624.74 kg/ha, occurred 

in 2007. The biomass in 2011 was 2.21 times that in 2007, and the CV was 30.5%. Additionally, the 

SD for lowland meadow was 207.85 kg/ha. The highest biomass for lowland meadow occurred in 2012 

at 876.42 kg/ha, and the lowest biomass occurred in 2007, with a value of 455.14 kg/ha. The biomass 

in 2012 was 1.93 times that in 2007, and the CV was 26.8%. 

Figure 5. Biomass variation in Xilingol grassland from 2006 to 2012. The green line is the 

Harvest Year threshold, and the red line is the Lean Year threshold. The black line is the 

interannual variation of biomass estimation.  

 

Figure 6. The interannual variation of biomass in different grassland types. 
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The SD of temperate steppe was 195.84 kg/ha. The highest biomass occurred in 2012, at 868.92 kg/ha, 

and the lowest occurred in 2009 at 379.97 kg/ha. The biomass in 2012 was 2.29 times that in 2009, and 

the CV was 28.1%. 

The magnitude of the fluctuations of biomass in temperate desert-steppe was lower than that in the 

other vegetation types, and the SD was only 83.08 kg/ha. The highest biomass of temperate  

desert-steppe occurred in 2012 at 361.76 kg/ha, and the lowest biomass, at 155.78 kg/ha, occurred in 

2010. The biomass in 2012 was 2.3 times that in 2010, and the CV was 29.4%. The fluctuation pattern 

of temperate steppe-desert was the same as that of temperate desert-steppe, and the SD was 84.38 kg/ha. 

The highest and lowest biomass values were estimated in 2012 and 2010, respectively. The biomass in 

2012 was 2.6 times that in 2010, and the CV was 33.4%. Because the areas of improved grassland, 

marsh and temperate desert represented less than 1% of the total grassland area, the fluctuations in 

these grassland types contributed minimally toward the total biomass yield of the study area. 

4. Discussion 

4.1. Model Development and Precision Validation 

We selected five VIs (NDVI, DVI, EVI2, SAVI and MSAVI) for use in our study. NDVI is one of 

the most widely used VIs for estimating biomass. DVI is also commonly used. SAVI and MSAVI are 

suited to areas of low vegetation coverage due to their elimination or weakening of the interference 

from soil background information, whereas EVI2, based on EVI, uses only the red and near-infrared 

reflectance to obtain results similar to EVI. EVI2 can effectively weaken the noise caused by the soil 

or atmosphere. The correlation coefficient between NDVI and biomass in the meadow steppe and 

typical steppe regions was higher than that of the other VIs, and the power function model relating 

NDVI to biomass was superior to the other models. This model selection result was in agreement with 

other studies in Xilingol [13,35]. However, because the percent cover of soil was higher in areas with 

sparse vegetation, VI was more strongly affected by the interference from soil background information 

in the desert steppe region. The correlations between biomass and the three VIs (EVI2, SAVI and 

MSAVI) that better addressed soil interference in the desert steppe region were higher than those for 

the non-adjusted VIs, and the model weakened the interference from soil background information. 

Simultaneously, the precision of the linear model was higher than those of the other function models. 

This finding represented the critical difference between the estimation model for the desert steppe 

region and those for the meadow steppe and typical steppe regions. 

At present, several models are available for estimating the biomass in one study area, although none 

have been confirmed as the optimal model, and a degree of uncertainty about the optimal model 

remains in each case. In this study, the models of estimated biomass have the following advantages: 

(1) In general, a high R
2
 or a low error level indicates a good fit in terms of model quality. In this 

study, we developed a biomass estimation model based on a collection of field sampling data and 

verified the precision of the models. The use of an extensive field sampling dataset established that the 

statistical models proved good reliability and accuracy. The estimated precision of the models was 

dependable, as we evaluated them using the reserved samples but not the modeling samples;  

(2) Because the biomass fluctuated each year, we developed the model using field sampling data for 
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seven consecutive years. This approach was more stable than one based on field sampling data for a 

single year or several years; (3) Previous studies typically selected one month or several periods of  

10-day VIs to estimate the biomass. This approach lacked temporal correspondence between the date 

of field data sampling and the date of remote sensing data acquisition. In our study, we ensured that the 

timing of field sampling and remote sensing data acquisition was consistent to the greatest possible 

extent. This approach enhanced the sensibility of the remote sensing data to reflect the vegetation 

biomass information; (4) Our findings suggested that biomass estimates on a large scale should be 

divided into different regions based on biophysical conditions. Within different regions, a suitable VI 

should be selected to identify the model that can best minimize the shortcomings of a single VI to 

estimate the biomass given heterogeneous vegetation.  

4.2. Temporal and Spatial Variation of Biomass 

Grassland types can affect the spatio-temporal patterns of biomass. Reflecting the location of the 

meadow steppe region in the eastern part of Xilingol and the gradual westward succession of typical 

steppe followed by desert steppe, the biomass decreased from east to west. Due to the abundant 

diversity of plant species and dense vegetation in the meadow steppe region, the biomass in this region 

was higher than in other grassland types. In addition, due to the large area of the meadow steppe region 

and differences in species composition, soil texture and hydrothermal conditions, the biomass of 

different meadow steppe types exhibited obvious spatial heterogeneity. In particular, the biomass of 

the montane meadow was the highest due to the favorable hydrothermal conditions and predominance 

of tall plant species. Additionally, the biomass of the typical steppe region was at an intermediate level, 

with typical xerophytic bunch grass. However, the desert steppe region is located in the temperate arid 

region, featuring perennial xerophytes and small bunch grasses, and presents a low, sparse appearance 

and seasonal uniformity. The biomass of the desert steppe region was lower than that of the meadow 

steppe and typical steppe regions [4]. 

Different patterns of interannual variations of biomass were also observed within the different 

grassland types. As shown in Figure 7, there was a negative but non-significant correlation between 

biomass and CV (R = −0.318, α = 0.405). With the increase of biomass in different grassland types, the 

CV decreased, whereas the stability of annual biomass increased. The range of biomass fluctuations 

for the meadow steppe types was greater than that for the other steppe types, although the CV for the 

meadow steppe types was lower than that for the other types. The source of this difference was the 

growth variations shown by the dominant plant species of the meadow steppe, Stipa baicalensis 

Roshev. and Leymus chinensis (Trin.) Tzvel. In years with abundant precipitation, these plant species 

grew well, and the biomass showed a marked increase. During drought years, plant growth was 

inhibited, and the biomass decreased substantially. However, because of the higher richness of plant 

species and higher biomass in the meadow steppe region, they inhibited the interannual variation of 

biomass [36]. In particular, the CVs of lowland meadow and montane meadow were low. These 

meadow steppe types were part of the intrazonal vegetation. These areas had better habitat and water 

conditions and experienced a weaker climate effect. Particularly in drought conditions, the biomass 

was higher and the interannual variation lower in these areas than in other steppe types [13]. 
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Figure 7. Biomass-CV plot for different grassland types. Biomass was calculated as the  

7-year-average grassland biomass in different grassland types. CV was calculated from the 

annual biomass of grassland types from 2006 to 2012. 

 

Although the range of interannual fluctuation of biomass in the desert steppe region was lower than 

in the meadow steppe and temperate steppe regions, the CV was higher than in the other regions. The 

dominant plant species of the desert steppe region were Stipa klemenzii Roshev. and Caragana 

korshinskii Lam. Because of the lower absolute amount of biomass, relatively slight interannual 

fluctuations of the desert steppe ecosystem corresponded to a large range of fluctuation [37]. 

4.3. Differences between Biomass Estimates 

Although several researchers have recently estimated the biomass of different grassland types in 

China using various methods, these estimates vary widely. For example, Ni [38] estimated carbon 

storage in 18 grasslands of China based on forage yield. We converted this carbon storage to biomass 

using a conversion factor for carbon (i.e., a carbon conversion factor of 0.45 was used to compare the 

estimates) [28]. The average biomass estimates for temperate desert-steppe, temperate steppe and 

temperate meadow-steppe were 455.6 kg/ha, 889.6 kg/ha and 1,464.7 kg/ha, respectively. Piao et al. [11] 

estimated the biomass of various grassland types in China between 1982 and 1999 based on time series 

data from NOAA/AVHRR-NDVI and field sampling data. The results indicated that the average biomass 

levels of temperate desert-steppe, temperate steppe and temperate meadow-steppe were 435.7 kg/ha, 

915.2 kg/ha and 1,449.0 kg/ha, respectively. Our estimated average biomass values were lower than 

the corresponding values from these two studies. We used field sampling data from 2006 to 2012, 

whereas Ni and Piao used the first national grassland resource inventory from 1981 to 1988. Hence, the 

source of field data had a potentially significant impact on the estimation of biomass. Gao et al. [16] 

established a statistical model using field samples and MODIS-NDVI from 2005 to 2011 and estimated 

biomass in Inner Mongolia’s grassland. The average biomass values for temperate desert-steppe, 

temperate steppe and temperate meadow-steppe were 336.7 kg/ha, 600.4 kg/ha and 1,035.3 kg/ha, 
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respectively. Our estimates of biomass in temperate steppe and temperate meadow-steppe were similar 

to those of Gao et al. [16], with a larger difference for temperate desert-steppe. In the present study, 

when plant species in temperate desert-steppe were sparse, the estimation model based on NDVI was 

influenced by soil background information. The precision of the estimation model using SAVI, which 

weakened the influence of the soil background information, was superior to that of the model using 

NDVI. In addition, variation among the research methods and the studied grassland regions also 

contributes to differences among estimates of biomass [27]. Additional uncertainties in the estimation 

of biomass are related to the characteristics of field samples, research methods and the study scale. 

Due to the different time frames for data collection and differences in the methods, even if the analysis 

is applied to the same data for one region, estimates of biomass can vary considerably based on several 

sources of variation and error. Additionally, the statistical models of the relationship between the field 

sampling data and VIs were expressed in terms of wet weight. When the biomass values were 

converted from wet to dry weight using the wet/dry conversion coefficients for grassland types, errors 

may have been introduced [16]. However, it was difficult to measure wet/dry ratios for each point in 

the entire coverage region based on ground observations. In the future, we should strengthen the 

measurement of the wet/dry weight ratios based on field sampling. 

5. Conclusions 

The estimation of biomass using a dataset of field samples and temporally corresponding remote 

sensing data can accurately reflect the temporal and spatial distribution characteristics of grassland 

vegetation and explore the interannual variation of biomass in different grassland types. Field sampling 

data provide the foundation needed to improve the precision of estimated biomass by remote sensing, 

and statistical models using several successive years of field sampling data can effectively enhance the 

stability of the estimates. The correlation coefficients between different VIs and biomass exhibit 

certain differences. Thus, one should select suitable VIs for different grassland type regions.  

The dominant plant species in different grassland types can affect the temporal and spatial distribution 

of biomass. Moreover, climatic factors such as precipitation and temperature affect the spatial 

distribution and interannual fluctuation of biomass [39–41]. These considerations are subject to future 

discussion and analysis. Our study can serve as a reference for the effective protection and utilization 

of grassland resources as well as the scientific management of different regions and grassland types. 
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