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Abstract: The development of advanced laboratory-based imaging hyperspectral sensors, 

such as SisuCHEMA, has created an opportunity to extract compositional information of 

mineral mixtures from spectral images. Determining proportions of minerals on rock 

surfaces based on spectral signature is a challenging approach due to naturally-occurring 

minerals that exist in the form of intimate mixtures, and grain size variations. This study 

demonstrates the application of SisuCHEMA hyperspectral data to determine mineral 

components in hand specimens of carbonate rocks. Here, we applied wavelength position, 

spectral angle mapper (SAM) and linear spectral unmixing (LSU) approaches to estimate 

the chemical composition and the relative abundance of carbonate minerals on the rock 

surfaces. The accuracy of these classification methods and correlation between mineral 

chemistry and mineral spectral characteristics in determining mineral constituents of rocks 

are also analyzed. Results showed that chemical composition (Ca-Mg ratio) of carbonate 

minerals at a pixel (e.g., sub-grain) level can be extracted from the image pixel spectra 

using these spectral analysis methods. The results also indicated that the spatial distribution 

and the proportions of calcite-dolomite mixtures on the rock surfaces vary between the 

spectral methods. For the image shortwave infrared (SWIR) spectra, the wavelength 

position approach was found to be sensitive to all compositional variations of carbonate 

mineral mixtures when compared to the SAM and LSU approaches. The correlation 

between geochemical elements and spectroscopic parameters also revealed the presence of 
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these carbonate mixtures with various chemical compositions in the rock samples. This 

study concludes that the wavelength position approach is a stable and reproducible 

technique for estimating carbonate mineral chemistry on the rock surfaces using 

laboratory-based hyperspectral data. 

Keywords: SisuCHEMA hyperspectral data; carbonate rocks; mineral mixtures; SWIR 

reflectance spectra; spectral recognition approaches; geochemical analysis 

 

1. Introduction 

Carbonate rocks are one of the important and abundant constituents of materials on the earth 

surface. This is because the rocks not only possess natural resources, such as valuable minerals and 

including fossil fuels, but also contain history of the earth surface environments in the past [1,2]. Thus, 

identification and quantification of the abundances and proportions of carbonate minerals on the rock 

surfaces is essential for minerals exploration and understanding petroleum geology characterization. 

The rocks are constituted by a mosaic of minerals and naturally complex geologic mixtures, such as 

intimate mixtures, grain size variations, weathered constituents, and alteration products [1,2]. Those 

mixtures can create a major obstacle to mineralogic identification [3–5], particularly determining the 

proportions of mineral mixtures. Conventional methods to identify carbonate minerals in rock samples 

include X-ray diffraction (XRD) [6–9], scanning electron microscopy (SEM) [7,10], different thermal 

analysis (DTA) [7], thin section analysis [11,12], staining method [13–16], and others. However, most 

of these methods incur costly techniques and time consuming in terms of sample preparation and 

analysis. A promising approach, which is fast, inexpensive, non-destructive and can achieve a higher 

degree of accuracy in identification and estimation of the abundance of carbonate mineral mixtures, is 

hyperspectral imaging spectroscopy techniques. 

The recent developments of laboratory-based imaging spectrometry sensors such as HyLoggingTM, 

HySpex, SisuROCK, and SisuCHEMA hyperspectral imagers, which integrated the sophisticated 

digital imaging of airborne hyperspectral sensor technologies with the highest spectroscopic resolution 

of field and laboratory spectrometers, have generated a new type of hyperspectral imagery that can be 

used for identifying geologic mixtures of surface mineralogy [17–21]. These spectrometers can acquire 

hyperspectral images of powdered or hand specimen samples for a wide variety of applications 

including chemical imaging, pharmaceutical, and mineralogical identification. These relatively novel 

datasets present new opportunities for analysis of the complex mixtures of surface mineralogy. 

However, the datasets have not been fully explored in determining mineral mixtures and estimating the 

proportions of these minerals on a hand specimen of rock or geologic sample [18,20]. Therefore, the 

application of higher resolution hyperspectral imagery that enables the determination of the abundance 

of naturally mixed minerals on rock surfaces is still challenging. 

This analysis uses higher resolution hyperspectral imagery of the SisuCHEMA hyperspectral 

scanner to determine and estimate the abundance of mineral mixtures on hand specimens of fresh 

carbonate rock surfaces. It is also complemented by geochemical analysis of spot measurements 

obtained by a portable X-ray fluorescence (PXRF) analyzer for identifying mineral chemistry of the 
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rocks. The spectrometer, which was originally designed for chemical imaging, is an automatic 

hyperspectral imaging instrument for rapid scanning and analysis of various samples in laboratory [17]. 

It acquires imagery of the sample mounted on its imaging tray using a push-broom hyperspectral 

sensor. The instrument can be equipped with a shortwave infrared (SWIR) sensor. In this regard, the 

higher resolution SisuCHEMA imagery provides an additional spatial detail to spectral information of 

surface feature characteristics in image pixels. It allows further determination of mineral assemblages 

or mixtures and estimation of the relative mineral abundances on the carbonate rock surfaces using 

various spectral recognition algorithms. 

In order to extract compositional information of mineralogy based on their spectral characteristics 

in hyperspectral imaging data, a number of well-developed spectral classification approaches are 

commonly used. These consist of wavelength position analysis [5,22,23], spectral angle mapper 

(SAM) [24], and linear spectral unmixing (LSU) [25,26]. The approaches have various advantages of 

spectral classification algorithms, as well as relatively accurate methods in identifying minerals from 

image spectra. These methods have also been used extensively for mapping surface mineralogy of 

hyperspectral data in different geological samples or areas [5,18,20,24,27–30]. Wavelength position 

analysis approach is sensitive to band position shift and noisier spectral responses [20,23], which is 

determined from a polynomial fit [23] of continuum-remove spectra [5,22]. SAM, a spectral similarity 

measure [24], is insensitive to illumination and albedo differences [27–29,31]. LSU provides an 

interesting alternative approach to mixing problem of pixel spectra [25,26]. It can derive fractional 

abundances for selected endmembers within a pixel. Thus, detection of the exact absorption 

wavelength position and unique spectral shape is a key factor for direct identification of surface 

mineralogy [5,32–35]. 

The SWIR reflectance spectra (1.0–2.5 µm) are rich in mineral spectral signatures. Within this 

spectral range, the diagnostic absorption features are determined by the occurrence of water (H2O), 

hydroxyl (OH), carbonate (CO3), and sulfate (SO4) [32–35]. Spectral absorption feature characteristics 

of minerals vary, depending on the chemical composition, structural arrangement, and bonding 

characteristics [4,36,37]. Hence, these feature characteristics can be used for discriminating one 

mineral from the other. Carbonate minerals, such as calcite (CaCO3) and dolomite (CaMg(CO3)2), are 

the most common constituents of carbonate rocks [1,2]. They have two prominent absorption features 

in the SWIR region centered within the wavelength ranges of 2.530–2.541 µm and 2.333–2.340 µm 

and 2.503–2.520 µm and 2.312–2.323 µm, respectively [8,18,32,34,37–40]. Those absorption features 

are caused by vibrational processes of the carbonate ions CO  [8,32,34]. Moreover, the positions of 

absorption features of calcite-dolomite mixtures in the SWIR region were determined by the calcite or 

dolomite content in the carbonate samples [37,38]. Absorption feature characteristics of these minerals 

are also influences by particle size [8,37–39], texture [39], porosity [8], and mineral impurities [8,37,39]. 

The presence of clay minerals in intimate mixture with carbonates is usually indicated by a vibrational 

absorption feature around 2.20 µm and 2.30 µm due to the combination of the OH stretch with the  

Al-OH and Mg-OH bending modes, respectively [33–35]. 

The objectives of this study are to (i) estimate the chemical composition and the relative abundance 

of carbonate minerals on the rock surfaces using wavelength position, SAM and LSU approaches, 

(ii) assess the accuracy of these classification methods for identification of surface mineralogy, and 

(iii) find relationship between mineral chemistry and mineral spectral characteristics in determining 
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mineral constituents of rocks. The advent of higher resolution hyperspectral data provided by the 

SisuCHEMA SWIR sensor could potentially help to solve the problem of determining the relative 

abundance of mineral mixtures composing rocks or geologic samples. 

2. Materials and Methods  

2.1. SisuCHEMA Hyperspectral Data 

The data used in this study were higher resolution hyperspectral imagery of carbonate rocks 

acquired by the SisuCHEMA hyperspectral imager of Spectral Imaging Ltd. (SPECIM), Finland [17]. 

We used the SWIR hyperspectral sensor, which acquires images with 320 spatial pixels per line at a 

spatial resolution of 0.21 mm. The imaging sensor is configured to record continuous spectral 

information from 970 nm to 2500 nm with 256 spectral bands at an average full width at half 

maximum (FWHM) of 6.23 nm and spectral resolution of 10 nm [17]. Samples are scanned on a 

moving imaging tray under similar illumination conditions by using SPECIM’s diffused line 

illumination unit. The scanner is integrated with a computer workstation as shown in Figure 1 taken 

from Agus [41] that allows acquiring and saving spectral image in real-time using the ChemaDAQ 

data acquisition software. An internal standard reference target is used for calibration measurement 

before each sample scan. It results in automatically calibrated image data to reflectance. Its higher 

spatial and spectral resolution allows the SisuCHEMA to record distinctive spectral absorption features 

in the SWIR wavelength region, which can be applied to study mineralogical components on rock or 

geological surfaces. 

Figure 1. An integrated system of SisuCHEMA hyperspectral scanner [41]. 
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Figure 2. Fresh surfaces of carbonate rock samples, with red rectangles pointing out areas 

of selected SisuCHEMA images. 

 

Figure 3. Selected SisuCHEMA images A, B, C, and D of carbonate rocks (bands 200, 

205, and 210) with locations of two portable X-ray fluorescence (PXRF) spot 

measurements (red circles).  

 

The rocks imaged were hand specimens of fresh carbonate rock surfaces (Figure 2). These rocks 

were collected from the Bédarieux mining area, which is an open and partly active dolomite mine in the 

Hérault department of Languedoc-Roussillon region, southern France. The samples are originating from 

the Jurrassic-Bathomien formation and their composition becomes sandier from west to east [42]. A total 

of four rock samples (samples A, B, C, and D) were imaged, referred to as images A, B, C, and D. 

These rocks were chosen and assessed visually based on the physical appearance of their carbonate 

mineral compositions. For the purposes of this study, the spatial and spectral subset hyperspectral 

images of carbonate rocks (Figure 3), with 15,756 spatial pixels (156 samples–101 lines) selected 

carefully over a smooth area of the rock surfaces (red rectangles, Figure 2), and a spectral range 

between 2100 nm and 2400 nm (Figure 4), were used. The ENVI software package version 4.7 [43] 

was used to process the images. 
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Figure 4. Example of SisuCHEMA spectra (right) of calcite (red curve), dolomite (blue 

curve) and calcite-dolomite mixtures (black curve) derived from different pixel locations of 

image D (left). The curves show shift in wavelength position of carbonate absorption feature. 

 

2.2. PXRF Geochemical Analysis 

The major and minor element concentrations of collected carbonate rock samples were measured 

using a portable X-ray fluorescence (PXRF), the Niton XL3t GOLDD+ from Thermo Fisher Scientific 

Inc. The PXRF was also equipped with a CCD camera for accurate positioning and documenting the 

measurement spots. This instrument offers a rapid and non-destructive measurement for determining 

and investigating elemental concentrations on rocks or geologic samples [44]. For analyzing geologic 

samples, the analyzer was set up using mining mode option to operate excitation filters that optimize 

the analyzers’ sensitivity for various elements. The “High Range” filter is used to optimize Ba through 

Ag. The “Main Range” filter provides optimum sensitivity for the elements Mn through Bi. The “Low 

Range” filter is used to optimize the sensitivity for the elements from Ti to Cr. The “Light Range” 

filter is available only with He-purged [44]. Helium purge is required to enhance detection and the 

quality of measurement of light elements from Mg to Cl. 

Table 1. Elemental concentrations of the rock samples derived from portable X-ray 

fluorescence (PXRF) spot measurements (in percent). Some elements have lower limits of 

detection (LOD). 

PXRF Spots Code Ca Mg Ba Fe K Al Si Cl S 

A1 24.47 6.54 0.02 0.08 <LOD 0.09 0.22 0.02 0.08 
A2 31.66 7.10 0.03 0.07 <LOD 0.08 0.13 <LOD 0.04 
B1 35.05 4.56 0.02 0.03 <LOD <LOD  0.11 <LOD 0.04 
B2 31.96 4.90 0.02 0.01 <LOD 0.08 0.11 0.04 0.02 
C1 26.13 7.95 0.02 0.01 <LOD 0.07 0.18 0.05 0.11 
C2 30.65 6.79 0.02 0.08 <LOD 0.10 0.16 0.05 0.03 
D1 34.66 5.50 0.02 0.10 0.03 2.31 2.58 0.07 0.02 
D2 31.51 7.43 0.03 0.03 <LOD 0.51 0.63 0.06 0.07 

Samples in the laboratory were placed on a sample compartment over the window frame of the 

sensor. Two PXRF spot measurements with an 8 mm diameter spot size were taken from each fresh 
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carbonate rock surface within the selected area of SisuCHEMA images (Figure 3). The PXRF in 

mining mode setting is calibrated for a silicate dominated rock matrix. Some pure carbonate samples 

were analyzed to check the calibration in this mode and an over estimation of up to 10% was observed 

for Ca and Mg. As the samples used in this research consist of a mixture of calcite and dolomite, the 

last of which the Ca/Mg proportion is not known, it was not possible to establish a correction factor for 

these elements in the PXRF results. It is assumed that the measured Ca and Mg concentrations are 

proportionally correct. The lower limits of detection were approximately less than 0.02% for elements 

K, Al, and Cl (Table 1). 

2.3. Spectral Classification Approaches of the SisuCHEMA Imagery  

2.3.1. Laboratory Spectral Endmembers 

In image classification and compositional identification of hyperspectral remotely sensed data, 

image pixels represented by reflectance spectra of exhibited surface mineralogy are classified on the 

basis of reference spectra or known spectral endmembers of minerals [5]. These endmembers are 

derived from field or laboratory spectra or the purest spectral image pixels or from published standard 

spectral libraries [24,45]. For classification of the selected SisuCHEMA images, we used pure and 

mixed laboratory spectral endmembers of powdered calcite and dolomite synthetic samples in the 

wavelength range of 2100 to 2400 nm with grain size fractions between 125 µm and 500 µm (Figure 5). 

The synthetic sample preparations and spectral measurements of the pure and physical mixed calcite 

and dolomite were essentially those described by Zaini et al. [38]. The carbonate compositions of these 

calcite-dolomite mixture spectral endmembers were ranging from pure calcite to pure dolomite. The 

spectra and absorption feature characteristics from these laboratory synthetic samples [38] were also 

used in the spectral absorption feature analysis, and compositional mineral quantification of the images 

by identifying absorption wavelength position of the spectral image pixels. 

Figure 5. Laboratory spectral endmembers of (a) pure and (b) mixed calcite and dolomite 

synthetic samples (C = calcite and D = dolomite, prefix numbers showing the mineral 

contents in percent) (Modified after Zaini et al. [38]). 
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2.3.2. Absorption Wavelength Position  

Mineral reflectance spectra in the SWIR wavelength region contain a number of diagnostic 

absorption features, which are essential for compositional quantifying and distinguishing surface 

mineralogy. As absorption wavelength position of spectral features of minerals exhibits distinctive 

characteristics of their chemical compositions and molecular bonds [4]. The absorption wavelength 

position calculated from continuum-removed spectra [5,22] is defined as the wavelength at which the 

maximum absorption or minimum reflectance of an absorption feature occurred [5,37]. The detail 

illustration of absorption feature characteristic definitions is given in previous studies [5,38]. 

In order to determine the relative abundances of mineral mixtures on the selected SisuCHEMA 

imagery using wavelength position analysis approach, the hyperspectral imagery was processed using 

Hyperspectral Python (HypPy) software package version 2.6 [46] through the following procedures. 

Firstly, we followed a method developed by Rodger et al. [23] to calculate wavelength position of a 

prominent absorption feature in image spectra within the wavelength range of 2100 to 2400 nm. A 

continuum removal was then applied to the spectra within the selected wavelength range and followed 

by interpolation. A second order polynomial fit is modeled to three data points of minimum reflectance 

in the continuum-removed spectra. The wavelength position of the minimum and depth of absorption 

feature was determined on the fitting polynomial curve or the resulting interpolated parabola. This 

process produced an image with two bands for every pixel consisted of the interpolated wavelength 

position of the minimum of the prominent absorption feature and the depth of the feature, respectively. 

The wavelength position image of band one was used to derive wavelength position of mineralogy on 

the image pixels. Finally, the proportion or percentage estimation of carbonate mineral mixtures on the 

classified wavelength position image was counted manually. It was calculated by dividing the number of 

pixels of each mineral class by the total number of pixels in the image and then multiplied by a hundred.  

2.3.3. Spectral Angle Mapper  

Spectral Angle Mapper (SAM) is a spectral matching approach that compares the spectral similarity 

between reflectance spectra from image pixels and reference reflectance spectra with known material 

constituents [24]. The spectral similarity is measured by calculating the angle between these spectra, 

which are characterized as vectors in space with n-dimensions equal to the number of bands. The angle 

of spectral vectors indicates a match of these spectra, where a smaller angle represents a closer match to 

the reference spectra. SAM only considers the vector directions in comparison of these spectral vectors, 

not their vector lengths, which are insensitive to illumination and albedo differences [24,27–29,31]. 

Although SAM algorithm has been widely used for classifying surface mineralogy of hyperspectral 

imagery in various environmental and geological conditions [18,27–30], its dependency on average match 

of the entire reference spectra has leaded to a certain extent of ambiguity in classification results [28,29]. 

SAM classification was performed for the selected SisuCHEMA images of the fresh rock surfaces 

with a spectral subset of 2100 to 2400 nm using the laboratory spectra of calcite-dolomite mixtures of 

synthetic samples [38] as endmembers with known mineralogical compositions (Figure 5b). The 

maximum angle used in the classification, such as single value or multiple values assigned to each 

spectral endmember of dataset, was defined by user in order to determine a closer match between the 
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endmember spectral vectors and the image pixel vectors. We performed two SAM classifications with 

a value of 0.1 and 0.2 (in radians), which was used as a threshold angle for each laboratory spectral 

endmember. ENVI basic statistics showed the percentage estimation of mineral abundances or 

proportions of carbonate mineral mixtures of each classified endmember in the classified image. 

2.3.4. Linear Spectral Unmixing 

Linear Spectral Unmixing (LSU) is a sub-pixel model algorithm assuming the reflectance at each 

pixel of the image to be a linear combination of the reflectance of each material (or spectral 

endmember) present within the pixel [25,26]. LSU uses the spectral characteristics of materials for 

determining the relative abundances of materials depicted in multispectral or hyperspectral imagery. 

But the number of endmembers used in this classification method must not be more than the number of 

spectral bands [25,26]. Based on user-selected spectral endmember materials extracted directly from 

the image or standard library, the proportional fraction of the pixel that contains the endmember 

material corresponding to the image was calculated using least squares techniques [47]. Thus, the 

approach can estimate the abundance values of each endmember for every pixel.  

The unmixing algorithm was run for the selected SisuCHEMA images with a spectral subset of 2100 

to 2400 nm using the laboratory spectral endmembers of the pure carbonate synthetic samples [38] 

(Figure 5a) to quantify carbonate mineral compositions on the hand specimens of carbonate rocks. A 

unit sum unconstrained and constrained unmixing was applied to classify these hyperspectral images. 

In the constrained method, we defined the weight of a sum-to-unity constraint on the abundance 

fractions with a default value of 1.0. The results of the unmixing classification were generally 

presented as grey-scale images with values from 0.0 to 1.0. The pixels with values of 0.0 were 

displayed as pure black, whereas the pixels with values of 1.0 were displayed as pure white 

representing higher mineral abundances and a perfect match to the endmember. The pixels having 

values above 1.0 or below 0.0 indicated the reference endmembers used for the classification were 

probably poor match, or other endmembers have to be included in the analysis [43]. ENVI 

classification results also produce an RMS error image that can be used to evaluate pixels of omitted or 

incorrect endmembers. The proportion or percentage estimation of carbonate mineral mixtures on the 

classified unmixing image was calculated manually. It was computed by dividing the number of pixels 

having the same fraction value by the total number of pixels in the image and then multiplied by a hundred. 

3. Results  

3.1. Identification of Carbonate Mineral Mixtures  

To identify carbonate mineral mixtures and estimate the relative mineral abundances on the fresh 

carbonate rock surfaces, three spectral analysis techniques, such as absorption wavelength position, 

SAM, and LSU, have been applied to the SisuCHEMA hyperspectral images. The results in the 

following subsections show the relative abundances and distributions of mineral surface components 

estimated using these spectral methods. Generally, classification results indicate that samples B and D are 

composed of more heterogeneous carbonate mineral mixtures than samples A and C (Figures 6–8). 
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3.1.1. Wavelength Position Classification Results 

Figure 6a shows variation distributions and abundances of carbonate mineral mixtures on the four 

carbonate rock surfaces classified by analyzing absorption wavelength positions in the SWIR spectra 

(2100–2400 nm) of the selected SisuCHEMA images. Absorption feature analysis of the spectral 

image pixels indicates that images A and C are formed mainly of dolomite (blue pixels (100D), 

Figure 6a); while images B and D are constituted predominantly of calcite-dolomite mixtures with 

different compositions of carbonate mineral contents (green (25C-75D), yellow (50C-50D) and red 

(75C-25D) pixels, Figure 6a). Wavelength position of dolomite (100D) is centered within the range of  

2313–2323 nm. Absorption wavelength positions for various compositions of calcite-dolomite 

mixtures are centered within the range of 2324–2327 nm, 2328–2333 nm, and 2334–2337 nm for 25% 

calcite-75% dolomite (25C-75D), 50% calcite-50% dolomite (50C-50D), and 75% calcite-25% dolomite 

(75C-25D) mixtures, respectively. Calcite (100C) represented by cyan color in the classified images B 

and D (Figure 6a) is distinguished from dolomite by the presence of a carbonate feature within the 

wavelength range of 2338–2341 nm.  

Figure 6. (a) Wavelength position images, showing the variability carbonate mineral mixtures. 

(b) Estimated proportion of classified minerals derived from the images. (C = calcite and  

D = dolomite, prefix numbers showing the mineral contents in percent). 

 

The proportion estimation of carbonate mineral mixtures composing the rock samples based on the 

wavelength position analysis is shown in Figure 6b. It is obvious that the classified images of the rock 

samples are constituted by different proportions of carbonate mineral compositions. The wavelength 

position image A is dominated by abundant 100D of 64.94% and abundant 25C-75D of 30.80%. The 

classified image B is dominated by 50C-50D with the relative mineral abundances of 41.50% and also 

contains small abundances of 100C of 0.94%. The relative mineral abundance estimation of image C is 

almost the same as the image A, where abundant 100D dominates the sample with a proportion of 

73.97%. The classified image D is dominated by abundant 100D of 44.48% and abundant 25C-75D of 

28.24% and also contains small abundances of 100C of 1.66%. 
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3.1.2. SAM Classification Results 

The classified SisuCHEMA images of the rock samples resulting from the SAM algorithm using 

the laboratory endmembers of mixed carbonate synthetic samples [38] and a 0.1 and 0.2 radians 

threshold are shown in Figure 7a,c. The SAM abundance images for both threshold angles illustrate the 

same overall spatial distribution of carbonate minerals and slightly different proportions of these 

mineral mixtures due to more unclassified pixels in the SAM images of 0.1 threshold angle. Some 

carbonate mineral mixtures distributed over the image pixels are unclassified for both approaches 

(Figure 7a,c), such as the relative small abundances of 100C in the images B and D.  

Figure 7. SAM classification results: (a) SAM images using a 0.1 radians threshold angle, 

(b) estimated proportion of classified minerals derived from (a) images, (c) SAM images 

using a 0.2 radians threshold angle, (d) estimated proportion of classified minerals derived 

from (c) images. The classification images illustrate roughly similar carbonate mineral 

abundances in different threshold angles. (C = calcite and D = dolomite, prefix numbers 

showing the mineral contents in percent). 

 

Figure 7b,d shows proportion estimation of carbonate mineral mixtures on the rock samples using 

the SAM classification method for different threshold angles. These graphs illustrate that the relative 

abundance of carbonate minerals in the resulting images slightly increase with increasing threshold 

angle from 0.1 to 0.2 radians. It is caused by increasing the number of classified pixels in the images. 

The abundance images A are dominated mostly by abundant 25C-75D of 51.61% and abundant 100D 

with a slight different proportion which is of 41.74% in the 0.1 threshold image and 42.09% in the 0.2 

threshold image. The classified images B show the same dominant abundant 50C-50D composing the 
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sample, but the proportions of this carbonate mineral are 58.12% in the 0.1 threshold image and 

61.77% in the 0.2 threshold image due to a significant amount of unclassified pixels of 7.43% in the 

0.1 threshold image. The classified images C present equal proportions of carbonate mineral mixtures 

for both threshold angles, which are dominated by abundant 100D of 69.12%. The abundance images 

D for both threshold angles contain mainly abundant 25C-75D of around 39%.  

3.1.3. LSU Classification Results 

Figure 8a,c shows LSU classification images of the selected SisuCHEMA data using the laboratory 

endmembers of pure carbonate synthetic samples [38] as the reference spectra and unconstrained and 

constrained unmixing algorithms. The LSU images show variations of spatial distribution and 

abundance of carbonate mineral mixtures between unconstrained and constrained unmixing 

algorithms. The small abundant 100C in the images B and D is roughly classified by those unmixing 

methods with different proportions. The LSU results also exhibit a number of unclassified pixels 

(black pixels, Figure 8a,c). In this case, pixels having values above 1.0 or below 0.0 consider as the 

unclassified pixels. 

Figure 8. LSU classification results: (a) unconstrained dolomite endmember images, 

(b) estimated proportion of classified minerals derived from the unconstrained images, 

(c) constrained dolomite endmember images using a 1.0 default value of weight, and 

(d) estimated proportion of classified minerals derived from the constrained images. The 

classification images present a slight variability of carbonate fractional abundances in 

different unmixing approaches. (C = calcite and D = dolomite, prefix numbers showing the 

mineral contents in percent). 
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The estimation of relative mineral abundances of the carbonate samples derived from the 

unconstrained and constrained dolomite endmember images is shown in Figure 8b,d. The abundance 

images A are dominated by abundant 100D with a slight different proportion which is of 58.18% in the 

unconstrained image and 56.78% in the constrained image. The unconstrained image B shows 

relatively similar proportions of carbonate mineral mixtures as the constrained image B. These 

classified images are dominated by carbonate abundances of 50C-50D, but the proportions of this 

carbonate mineral are about 9% higher in the constrained image than the unconstrained image. The 

unconstrained and constrained images C classify the same dominant mineral abundance, which is 

abundant 100D of around 69%. However, the small proportion of abundant 75C-25D (Red pixels, 

Figure 8c) is unclassified in the constrained image C. The unconstrained and constrained images D are 

constituted mainly by abundant 100D and abundant 25C-75D, whereas the proportions of abundant 

100D are around 5% higher in the unconstrained image than the constrained image. In addition, 

although both unmixing algorithms identify the presence of small abundant 100C in the images D, 

these approaches estimate the abundant 100C in different proportions, which are 1.41% for the 

unconstrained image and 0.04% for the constrained image. 

Figure 9. Histograms comparing proportion estimation of carbonate mineral mixtures of 

three spectral analysis techniques applied to the selected SisuCHEMA images. Samples 

(a) A, (b) B, (c) C, and (d) D. Classification results of carbonate mineral abundances differ 

slightly from one approach to another for a given image.  
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3.1.4. Comparison of the Image Classification Approaches 

Figure 9 shows comparison of the relative estimated abundance of carbonate mineral mixtures on 

the rock samples derived from the classified images (Figures 6a, 7a,c and 8a,c) by applying various 

spectral recognition methods. It shows that the proportion estimation of these minerals varies between 

the spectral classification approaches (Figure 9), but overall the classified mineral distributions on the 

rock samples are almost at the same general areas (Figures 6a, 7a,c and 8a,c). 

Table 2. Confusion matrix of the classified carbonate mineral mixtures by comparing 

spectral angle mapper (SAM) and linear spectral unmixing (LSU) results with wavelength 

position results. Samples (a) A, (b) B, (c) C, and (d) D. (C = calcite and D = dolomite, prefix 

numbers showing the mineral contents in percent). 

(a) Sample A 

SAM (0.1 rad) LSU (Unconstraint) 

  100C 75C-25D 50C-50D 25C-75D 100D   100C 75C-25D 50C-50D 25C-75D 100D 

100C 0 0 0 0 0 100C 0 0 0 0 0

75C-25D 0 30.77 0 0 0 75C-25D 0 53.85 2.58 0.02 0

50C-50D 0 69.23 68.82 10.26 0.34 50C-50D 0 30.77 37.84 8.84 1.50

25C-75D 0 0 24.12 71.35 44.40 25C-75D 0 15.38 57.60 59.20 24.18

100D 0 0 7.07 18.39 55.26 100D 0 0 1.98 31.94 74.32

Overall classification accuracy: 60.74%  Overall classification accuracy: 68.12%  

SAM (0.2 rad) LSU (Constraint) 

  100C 75C-25D 50C-50D 25C-75D 100D   100C 75C-25D 50C-50D 25C-75D 100D 

100C 0 0 0 0 0 100C 0 0 0 0 0

75C-25D 0 30.77 0 0 0.01 75C-25D 0 15.38 0.15 0 0

50C-50D 0 69.23 68.09 10.20 0.34 50C-50D 0 76.92 53.50 6.70 0.58

25C-75D 0 0 23.86 70.90 44.31 25C-75D 0 7.69 45.14 64.27 25.84

100D 0 0 8.05 18.90 55.34 100D 0 0 1.22 29.03 73.58

Overall classification accuracy: 60.64%  Overall classification accuracy: 69.83%  

((b) Sample B 

SAM (0.1 rad) LSU (Unconstraint) 

  100C 75C-25D 50C-50D 25C-75D 100D   100C 75C-25D 50C-50D 25C-75D 100D 

100C 0 0 0 0 0 100C 5.60 2.65 0.02 0 0

75C-25D 96.00 54.57 4.78 0.03 0 75C-25D 88.80 66.41 14.16 0.93 0.09

50C-50D 4.00 45.43 93.20 71.48 6.22 50C-50D 4.80 30.36 68.33 36.78 2.36

25C-75D 0 0 2.00 25.81 45.10 25C-75D 0.80 0.57 16.47 45.45 21.61

100D 0 0 0.02 2.67 48.68 100D 0 0 1.03 16.83 75.93

Overall classification accuracy: 63.47%  Overall classification accuracy: 64.49%  

SAM (0.2 rad) LSU (Constraint) 

  100C 75C-25D 50C-50D 25C-75D 100D   100C 75C-25D 50C-50D 25C-75D 100D 

100C 0 0 0 0 0 100C 4.58 0.40 0 0 0

75C-25D 94.04 55.54 4.94 0.03 0 75C-25D 90.20 56.93 5.23 0.19 0

50C-50D 5.96 44.46 93.10 71.44 6.16 50C-50D 4.58 42.57 82.02 41.28 2.43

25C-75D 0 0 1.93 25.73 44.68 25C-75D 0.65 0.11 12.65 51.43 26.76

100D 0 0 0.03 2.79 49.16 100D 0 0 0.09 7.10 70.81

Overall classification accuracy: 63.41%  Overall classification accuracy: 68.55%  
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Table 2. Cont. 

(c) Sample C 

SAM (0.1 rad) LSU (Unconstraint) 

  100C 75C-25D 50C-50D 25C-75D 100D   100C 75C-25D 50C-50D 25C-75D 100D 

100C 0 0 0 0 0 100C 0 0 0 0 0

75C-25D 0 50.00 0.31 0 0 75C-25D 0 0 0.31 0.03 0

50C-50D 0 50.00 35.31 5.03 0.10 50C-50D 0 68.42 41.88 8.37 0.30

25C-75D 0 0 59.84 74.67 12.70 25C-75D 0 31.58 56.25 71.99 11.16

100D 0 0 4.53 20.31 87.20 100D 0 0 1.56 19.61 88.54

Overall classification accuracy: 82.31%  Overall classification accuracy: 82.92%  

SAM (0.2 rad) LSU (Constraint) 

  100C 75C-25D 50C-50D 25C-75D 100D   100C 75C-25D 50C-50D 25C-75D 100D 

100C 0 0 0 0 0 100C 0 0 0 0 0

75C-25D 0 47.37 0.31 0 0 75C-25D 0 0 0 0 0

50C-50D 0 47.37 35.31 5.03 0.10 50C-50D 0 94.74 48.13 8.92 0.22

25C-75D 0 0 59.84 74.67 12.70 25C-75D 0 5.26 50.94 73.47 11.30

100D 0 5.26 4.53 20.31 87.20 100D 0 0 0.94 17.61 88.48

Overall classification accuracy: 82.31%  Overall classification accuracy: 83.45%  

((d) Sample D 

SAM (0.1 rad) LSU (Unconstraint) 

  100C 75C-25D 50C-50D 25C-75D 100D   100C 75C-25D 50C-50D 25C-75D 100D 

100C 0 0 0 0 0 100C 26.25 7.73 0.10 0 0

75C-25D 100 95.32 21.11 0.09 0 75C-25D 61.78 78.03 17.34 0.16 0

50C-50D 0 4.68 66.41 38.03 3.66 50C-50D 11.97 13.99 50.75 20.27 2.25

25C-75D 0 0 12.34 59.20 46.50 25C-75D 0 0.25 30.94 58.11 18.69

100D 0 0 0.15 2.68 49.84 100D 0 0 0.87 21.46 79.06

Overall classification accuracy: 59.48%  Overall classification accuracy: 68.43%  

SAM (0.2 rad) LSU (Constraint) 

  100C 75C-25D 50C-50D 25C-75D 100D   100C 75C-25D 50C-50D 25C-75D 100D 

100C 0 0 0 0 0 100C 0.77 0.20 0 0 0

75C-25D 100 95.28 21.16 0.11 0 75C-25D 91.19 82.19 11.14 0 0

50C-50D 0 4.72 66.30 37.93 3.65 50C-50D 8.05 17.61 65.57 23.55 2.17

25C-75D 0 0 12.35 59.06 46.45 25C-75D 0 0 23.00 62.70 24.28

100D 0 0 0.19 2.90 49.89 100D 0 0 0.29 13.75 73.55

Overall classification accuracy: 59.48%  Overall classification accuracy: 69.31%  

The wavelength position analysis approach of the SisuCHEMA image spectra well characterizes the 

carbonate mineral mixtures and estimates the proportions of these carbonate minerals on the rock 

surfaces. In comparison to the wavelength position classifier, the SAM and LSU algorithms tend to 

produce some misclassified and unclassified pixels of carbonate mineral mixtures (Figures 7a,c and 8a,c). 

The small abundant 100C in the images B and D (Figure 7a,c) is to be unclassified by the SAM 

algorithm. These small proportions of unclassified pixels from the SAM and LSU results are excluded 

from comparison of the classification methods. Hence, we only consider and analyze the proportions 
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of five carbonate mineral mixtures consisted of 100C, 75C-25D, 50C-50D, 25C-75D, and 100D for 

comparison and accuracy assessment of these classification methods. 

The proportions of carbonate mineral mixtures of 25C-75D and 100D estimated from the SAM 

results of images A differ approximately 21% and 23% from the wavelength position classification 

result, respectively (Figure 9a). The proportion differences of these carbonate compositions in images 

A result in around 6% for the unconstrained and 8% for constrained LSU methods, as compared to the 

wavelength position result (Figure 9a). The resulting proportion of 50C-50D from the SAM results of 

images B differs roughly 17% from the wavelength position result, and the unconstrained and 

constrained LSU results exhibit a difference of 0.30% and 8.67%, respectively (Figure 9b). The 

proportions of carbonate mineral mixtures derived from the SAM and LSU results of images C are 

nearly the same as the wavelength position result (Figure 9c). SAM classification results of images D 

illustrate that the proportions of 25C-75D and 100D differ approximately 11% and 21% from the 

wavelength position result, respectively, while the proportion differences of these compositions in 

images D result in less than 3% for the unconstrained and 7% for constrained LSU methods (Figure 9d). 

The overall classification accuracies of carbonate mineral mixtures using these spectral analysis 

approaches are illustrated in Table 2. The results show that the classification accuracies of LSU images 

are slightly higher than SAM images when compared with wavelength position images. The 

classification accuracies of SAM results are almost the same for both threshold angles. It also indicates 

that the classification accuracies of constrained LSU results improve above 1% for images A and B 

and above 0.5% for images C and D when compared with unconstrained LSU results. The 

classification accuracies of the carbonate mixtures in image C using these spectral methods are around 

80%, while the other classified images (images A, B, and D) show an overall accuracy around 60%. 

3.2. PXRF Geochemical Analysis Results 

Geochemical analysis of elements on the selected carbonate rock samples using a PXRF over two 

spot measurements for each sample is shown in Table 1. The PXRF laboratory analysis result shows 

that the samples contain mineralogical associations of major elements, such as Ca and Mg and trace 

elements such as Ba, Fe, Al, Si, Cl, and S (Table 1). Element concentrations of Sr and Ti are mostly 

less than 30 ppm and 55 ppm, respectively. These major and trace elements indicate that the rock 

samples are dominated by carbonate minerals with various compositions of mineral mixtures. Low 

concentrations of the trace elements such as Fe, Al, Si, and S (Table 1) give possibly an indication of 

iron oxide, clay and sulfate mineral associations in the carbonate rocks. 

It can also be seen on the correlation between major elemental concentrations and average spectral 

classification results (Figure 10) derived from the regions of interest (ROIs) of the classified images 

(Figures 6a, 7a and 8a) over the same areas as PXRF spot measurements (Figure 3). As illustrated in 

Figure 10a, an approximate linear relationship is observed between chemical contents and average 

wavelength positions of the classified images. However, some relationships between chemical contents 

and average spectral angles of SAM and fraction values of LSU are poorer than the former for both 

100C and 100D images (Figure 10b,c and Table 3). Although there is a well-fitted correlation of Ca 

content with average mineral spectral parameters, this relation becomes a relatively weak with Mg 

content in the samples.  
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The average band positions shift towards longer wavelength in the SWIR region with increasing Ca 

content, but the average band positions shift towards shorter wavelength in the SWIR with increasing 

Mg content (Figure 10a). It reveals that the wavelength positions depend on Ca and Mg contents in the 

samples. Definite patterns are not observed between the spectral angles of 100D rule images and Ca 

and Mg contents (Figure 10b). The average dolomite abundances (fraction values) of the unconstrained 

unmixing 100D images decrease with increasing Ca content and vice versa for Mg content (Figure 10c). 

It indicates that higher fractions represent the dominancy of dolomite, which is related to increasing 

Mg content in the samples. 

Figure 10. Correlation between major geochemical elements in the carbonate samples and 

the average of spectral parameter results of the classified images. Physical model relating 

Ca and Mg contents in the carbonate samples and spectral parameters derived from images 

classified by (a) wavelength position analysis, (b) and (c) SAM and unconstrained LSU 

methods for 100D images, respectively. These average spectral classification results were 

acquired on the same regions of interest (ROIs) of the PXRF spot measurements.  
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Table 3. Summary of the linear regression results from SAM and LSU classifications of 

images on the major geochemical elements (Ca and Mg) in carbonate samples. Note that 

the average spectral classification results were acquired on the same regions of interest 

(ROIs) of the PXRF spot measurements.  

Spectral 

Parameters 

Classification 

Methods 
Classified Images

Geochemical Parameters 

Ca Mg 

R2 Regression Equation R2 Regression Equation

Spectral angle SAM (0.1 rad) 100C 0.88 y = −0.0031x + 0.1795 0.44 y = 0.0066x + 0.0417 

Fraction value LSU-Unconstraint 100C 0.70 y = 0.0231x − 0.4855 0.64 y = −0.0674x + 0.6541

Fraction value LSU-Constraint 100C 0.54 y = 0.0196x − 0.4041 0.61 y = −0.0634x + 0.6026

Fraction value LSU-Constraint 100D 0.91 y = −0.037x + 1.8083 0.50 y = 0.0835x + 0.1404 

4. Discussion 

Results of this study indicated that differences in carbonate mineral mixtures identification and 

proportion estimation of these minerals of the rock samples depend on spectral classification approaches, 

user-selected parameters, and match between reference spectra and image spectra (Figure 9). However, 

the overall spatial distribution of carbonate mineral mixtures classified by the three spectral analysis 

approaches (Figures 6a, 7a,c and 8a,c) has nearly the same pattern on the rock surfaces. Geochemical 

results analysis also demonstrated a high correlation between chemical contents and spectroscopic results, 

proving various compositional mineral mixtures identification in the samples (Figure 10 and Table 3).  

The absorption wavelength position analysis approach is sensitive to slight changes of carbonate 

minerals composition, even in areas with “noisier” spectral responses. The accurate determination of 

wavelength position improves by applying a polynomial fit to the continuum-removed spectra [20,23]. 

It should be noted that absorption features of the SWIR carbonate spectra may be affected by the result 

of varying grain sizes [8,37–39], weathering, and mixing with organic matters forming a coating on 

carbonate particles [37,39] and iron [8,37] in carbonate samples. Nevertheless, the wavelength position 

approach can identify carbonate mineral mixtures based on spectral characteristics. Thus, occurrence 

of prominent absorption feature in the SWIR spectra around 2300–2350 nm due to vibrational processes of 

the carbonate ions (CO ) [8,32,34,37] can be used to distinguish carbonate mineral mixtures in the rock 

samples [8,32,34,37,38]. The band positions of both pure and mixed calcite and dolomite are centered 

within the range of carbonate wavelength positions observed in previous studies [8,32,34,37,38]. The 

carbonate mixture band positions are determined by the quantity of calcite and dolomite in the 

samples [37,38].  

The outcome of SAM and LSU classification methods demonstrates a number of misclassified and 

unclassified pixels of carbonate mineral mixtures (Figures 7 and 8), as compared to wavelength 

position approach (Figure 6). This may contribute to the difficulty in proportion estimation of 

carbonate mineral mixtures on the rock surfaces (Figure 9). Most probably it could be due to the 

spectral shape similarities of endmembers used for classification (Figure 5) or omitted endmember 

from analysis and mismatches between spectral endmembers and spectra of image pixels. As depicted in 

Table 2, the overall classification accuracies of LSU images are slightly higher than SAM images. SAM 

algorithms were relatively poor in accuracy to discriminate carbonate mineral mixtures between 100D 
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and 25C-75D and between 100C and 75C-25D. These misclassifications may be influenced by very 

similar shape of the endmember spectra although their band positions of absorption features are 

centered at a slightly different wavelength. Previous studies have also described that SAM algorithm is 

not searching for diagnostic mineral absorption features, but it depends on average match of the entire 

reference spectra [28,29] and it is insensitive to illumination and albedo differences [27–29,31]. 

Furthermore, despite the fact that the shape of spectral endmembers of pure calcite and dolomite is 

similar to each other with a slight shift absorption band position, the unconstrained and constrained 

LSU algorithms provide a good agreement in carbonate mineral mixtures identification on the selected 

SisuCHEMA images. It indicated that the unknown spectrum at each pixel of the images may be 

formed by a linear combination of the reference spectrum or endmember. The results of linear 

unmixing processes depend on the combination of the correlation between spectral minerals forming 

the mixture and the endmembers used in analysis [5,45]. Generally the LSU algorithms show a relative 

similar mineral mixtures distribution and proportion estimation of carbonate compositions to 

wavelength position approach. The constrained LSU results achieved slightly higher classification 

accuracies than the unconstrained LSU results, by comparing with wavelength position results. The 

differences in overall classification accuracy may be linked to more unclassified pixels in the 

unconstrained results, particularly in the images B and D (Figure 8a). However, wavelength position 

analysis and LSU classification methods require knowledge of spectral mixture characteristics and 

further preprocessing of the data to estimate the proportion of the mixed minerals on the selected 

SisuCHEMA images.  

The PXRF geochemical analysis results of the rock samples (Table 1) also confirm and prove the 

presence of carbonate mineral mixtures with various compositions. As the major element 

concentrations of Ca and Mg are lower than their stoichiometric values in pure calcite and dolomite. 

These major and trace elements can help to characterize mineralogic assemblages of carbonate rocks, 

which agree with results of previous studies [48–51]. The results from Figure 10 and Table 3 show that 

using the wavelength of minimum absorption through the wavelength position approach provides the 

best predictive value for inverting Ca and Mg chemistry to spectral parameters. Both the spectral angle 

(through SAM) and the fractional abundance (through LSU) overall performance is poorer than 

wavelength position approach. However, they showed acceptable results for individual chemical 

elements inversion. It should be noted that the LSU outperforms the SAM. This is attributed to the fact 

that the endmembers used are correlated and this works in favor of the LSU algorithm, which uses this 

dependency while the SAM assumes the endmembers are independent. In other words, in SAM 

endmembers are tested one at the time against pixel spectra, but in LSU all endmembers are used 

simultaneously in the inversion of the model. It can be envisaged that if the collinearity between the 

endmembers decreases by including more endmembers or less correlated endmembers [52] and this 

improves the performance of LSU over SAM although in the present study this could not be tested. As 

a result, the finding of this study could be implemented to determine naturally mixed minerals and 

estimate the proportions of minerals on rock surfaces using laboratory-based hyperspectral data, 

confirming results of previous studies [18–21].  
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5. Conclusions 

This study for the first time presents the use of SisuCHEMA hyperspectral imagery to identify the 

chemical composition of naturally mixed minerals and estimate the relative mineral abundances in 

hand specimens of carbonate rocks. We demonstrate how to derive the chemical composition (Ca-Mg 

ratio) of carbonate minerals at a pixel (e.g., sub-grain) level using spectral analysis methods from the 

image pixel spectra. Classified images created using wavelength position, spectral angle mapper 

(SAM), and linear spectral unmixing (LSU) were used to spatially map calcite-dolomite mixtures with 

various carbonate mineral compositions and proportions. The wavelength position approach enables to 

determine all compositional variations of carbonate mineral mixtures in the rock samples when 

compared to the SAM and LSU approaches. 

The relationship between major geochemical elements (Ca and Mg) and average spectral 

parameters (wavelength position, spectral angle of SAM, and fraction value of LSU) also proves the 

presence of various carbonate mixtures with different mineralogical compositions on the rock surfaces. 

Our study indicates that the wavelength position approach is a more stable, standardized and 

reproducible technique for determining the carbonate mineral chemistry from the image pixel spectra 

than the SAM and LSU methods. For future research, the established correlation between geochemical 

elements and wavelength position (physical models) can be used for inverse modeling of hyperspectral 

imagery in estimating the chemical composition of carbonate minerals on rock surfaces. In a practical 

sense, understanding of the carbonate mineral chemistry contributes to the developing a frame-work for 

the cement industry in assessing the purity and the chemical composition of carbonate minerals.  
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