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Abstract: Terrestrial laser scanning is a promising technique for automatic measurements
of tree stems. The objectives of the study were (1) to develop and validate a new method
for the detection, classification and measurements of tree stems and canopies using the
Hough transformation and the RANSAC algorithm and (2) assess the influence of distance
to the scanner on the measurement accuracy. Tree detection and stem diameter estimates
were validated for 16 circular plots with 20 m radius. The three dominating tree species
were Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and birch
(Betula spp.). The proportion of detected trees decreased as the distance to the scanner
increased and followed the trend of decreasing visible area. Within 10 m from the scanner,
the proportion of detected trees was 87% on average for the plots and the diameter at breast
height was estimated with a relative root-mean-square-error (RMSE) of 14%. The most
accurate diameter measurements were obtained for pine, which had a RMSE of 7% for all
the full 20 m radius plots. The RANSAC algorithm reduced noise and made it possible to
obtain reliable estimates.
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1. Introduction

Advanced models are currently being used to support sustainable management of forest resources
with consideration to several values such as timber production, pulpwood, biodiversity, and bioenergy,
for example in the forest management planning system Heureka [1]. The modelling is usually based on
individual trees and the forest tree layer is projected to future time periods using growth models in order
to evaluate the consequences of alternative forest management schedules at both the local and regional
level. There are at least two limitations of the current manual field inventory methods used for retrieving
tree data: (1) only a small portion of all trees are measured on sample plots; and (2) there are no detailed
measurements of individual trees.

New ground-based sensors have recently been developed. Currently the most promising technology
for automated measurements of tree stems is terrestrial laser scanning (TLS). Such systems are rapidly
becoming less expensive and more compact while at the same time the measurement frequency is
increasing, allowing for very detailed measurements of a field plot within a few minutes. A TLS system
measures the distance to surrounding objects with mm-resolution based on the emission of laser light
and the detection of reflected signals. The processing tasks include finding the positions of individual
tree stems followed by measurements of the shape of the stems and preferably also the associated
canopies. There are two common approaches when scanning a field plot: single scan and multiple scan.
In the single scan approach, the sensor is positioned in the middle of the field plot and only scans one
side of the trees. In the multiple scan approach, several positions of the field plot is scanned giving
multiple views of the trees, and the data from the different views need to be rectified to a common
coordinate system.

There are four main functions needed in an algorithm for automatic detection and modelling of single
trees in TLS-data:

(1) Extract a digital elevation model of the ground (DEM);
(2) Delineate the data points for each single tree in the investigated area;
(3) Classify the data points of each tree into different categories such as stem, branches and foliage;
(4) Model the detected trees using the derived point sets of different classes.

1.1. Extraction of a DEM from TLS Data Points

Some algorithms for single tree detection and modeling of TLS data need a DEM as input in order
to estimate the breast height level of the trees. Many of them create a raster where the height value
of the lowest data point within each cell is recorded as the height of the ground in that position.
Simonse et al. [2] for instance created a raster with 50 × 50 cm2 cell sizes. Numerous algorithms have
been developed for creating digital elevationmodels from airborne laser scanning data [3]; some of them
can be adapted for TLS-data.

1.2. Delineation of Single Trees in TLS-Data

There are a number of techniques to delineate single trees in a TLS-dataset of a forest field plot. One
method is to find the part of the stem closest to the ground to get an initial position. Simonse et al. [2]



Remote Sens. 2014, 6 4325

for instance used the Hough transform to find circles using the dataset cut out at 1.25–1.35 m above
ground. Every detected circle was assumed to be a stem cross-section of a tree. The data points within a
cylinder of the radius expanded by 10% was chosen and modelled. Bienert et al. [4] also used a 10 cm
slice of the dataset at breast height to search for trees. A search window with a threshold detected
clusters of points. If the clusters were separated by more than the window size they were treated as
separate data sets (data points belonging to a single tree). Király and Brolly [5] used an iterative method
of clustering data points in different height layers to delineate stems. Another method they tested was
modified k-means clustering [6]. Lindberg et al. [7] used the Hough transform to get an initial position
for the tree modeling algorithm.

Erikson and Vestlund [8] found line segments in the range image from the lidar data. Elongated and
vertical structures were assumed to be stems. Forsman and Halme [9] and Pueschel et al. [10] also used
range images to find trees.

One way to classify and delineate point clouds is to find the characteristics of local spatial point
distributions. They can be classified as scattered, linear or flat using the eigenvalues. Lalonde et al. [11]
for instance used a Gaussian Mixture Model and the EM algorithm to train the system to recognize and
group points belonging to stems, ground and foliage. Liang et al. [12,13] used a similar technique
where flat objects with the surface normal pointing in the horizontal plane were assumed to be stems.
Similar flat objects positioned vertically were grouped. Rutzinger et al. [14] used the standard
deviation of elevation and the point density ratio in a given height interval to separate trees from the
ground vegetation.

Filling a three dimensional raster (a voxel space) with point density values has also been used to detect
tree stems in TLS-data. Vonderach et al. [15] detected enclosed regions (the inside of a tree stem) by
using a technique similar to tomography.

There are also examples of TLS equipment where the beam width is at the same scale as the width of
the stems. Strahler et al. [16] modelled the response of a tree using such an instrument.

1.3. Classification of TLS Data Points of the Tree

Once the data points of the tree are delineated they can be further classified into stem, branches, twigs
and foliage. Gorte and Pfeiffer [17] and Gorte and Winterhalder [18] used a voxel space of lidar point
density and 3D mathematical morphology to find the stem and branches of a tree. Each data point was
assigned to the closest branch. Clawges et al. [19] and Côté et al. [20] separated woody parts of the
tree and foliage by the intensity of the lidar returns and Raumonen et al. [21] separated the point sets of
the branches and twigs by a bifurcation recognition process.

1.4. Modeling the Tree

When extracting forestry parameters from the point clouds there is often a need to model the
scanned tree. Different studies have different refinement of these models: from a simple measure of
diameter at breast height (DBH) to a model with twigs and leafs. The most common technique is to fit
circles or cylinders to data points belonging to the stem or the branches by non linear, or linearised,
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least square adjustment [2,6,7,9–11,21–28]. Some studies use robust shape fitting of cylinders like
Liang et al. [12,13] who used Tukey’s estimator.

There are a number of techniques other than circle least square adjustment used, such as the crescent
moon method by Király and Brolly [5] and Wezyk et al. [29] who used the convex hull of the dataset.
Binney and Sukhatme [30] build an iterative generative statistical model of trees. Rutzinger et al. [14]
used alpha shapes to extract tree variables and Vonderach et al. [15] used the cross-section area to
calculate the equivalent diameter as an approximation of the DBH. To get more details of the tree stem,
some methods create triangular irregular networks [22,31] out of the data points or use splines [24] for
instance, to model ovality.

Using the large footprint TLS equipment Echidna, Lovell et al. [32] modelled the response to
get an estimate of the DBH. Côté et al. [20] used skeletonizing of the point cloud by the kNN
method to get the branch structure and attractors to foliage points to build a detailed model of a tree.
Bucksch et al. [33,34] also used skeleton algorithms to build advanced models of trees, as well as
Eysn et al. [35].

The geometric tree parameters like DBH, volume and height are not the only ones that are modelled.
For instance, leaf area index (LAI) [16,19,36–38], wood quality [39] and chlorophyll content [40] have
been extracted.

1.5. Objectives

In order to use TLS for forest appliactions, algorithms should be developed and validated also for
trees with heavy branching (e.g., spruce trees). The modified RANSAC algorithm validated in this study
has the potential to produce reliable estimates based on laser returns that are from both tree stem and
branches. From a production point of view it is also beneficial if there are as few measurements as
possible. This makes it interesting to explore the potential of using a single scan setup in TLS field plot
inventory. The objectives of this study were (1) to develop and validate a new method for the detection,
classification and measurements of tree stems and canopies using the Hough transform and the RANSAC
algorithm and (2) to assess the influence of distance to the scanner on the measurement accuracy.

2. Materials and Methods

2.1. Software

The software tools used for automatic measurements and analysis of the data were developed by
the authors and implemented in C, Python and the R programming languages.

2.2. Study Area

The test site was located in a hemi-boreal forest at the Remningstorp estate in south-western Sweden
(lat. 58◦28′N, long. 13◦38′E). The dominating tree species were Norway spruce (Picea abies L. Karst.),
Scots pine (Pinus sylvestris L.) and birch (Betula spp.).
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2.3. Field Data

Sixteen plots with 20 m radius measured between June and August 2011 were used in the validation
(Table 1). The DBH was measured 1.3 m above ground level in two directions: towards the plot center
and perpendicular to that direction. The mean value from these two directions was used for validation
of the TLS measurements. Only trees with a DBH ≥ 40 mm were manually measured in field. The
plot centers and tree positions were measured with a total station relative to reference points that were
placed in open areas. The position of the reference points were measured with RTK-GPS. The height of
165 sample trees were measured with a scale hypsometer to be used in the evaluation.

Table 1. Descriptive statistics of the diameter at breast height (DBH) for the evaluation plots.

PLOT
Mean DBH Std DBH Min DBH Max DBH Density Pine Spruce Decid.

(mm) (mm) (mm) (mm) (stems/ha) (%) (%) (%)

1 157 67 44 284 716 0 98 2
2 271 121 44 484 660 0 100 0
3 321 105 42 559 509 9 91 0
4 181 72 42 348 1027 0 97 3
5 211 67 42 390 820 17 79 5
6 258 49 150 364 589 61 39 0
7 221 138 42 412 525 52 42 6
8 168 59 40 302 979 0 72 28
9 185 166 39 565 907 23 42 35

10 239 77 50 360 637 0 82 18
11 346 79 168 672 358 0 98 2
12 269 71 66 438 660 0 92 8
13 186 65 42 326 1042 0 93 7
14 316 127 45 516 509 30 58 12
15 191 62 46 362 1042 0 77 23
16 226 69 44 346 875 0 93 7

2.4. TLS Data

A Leica ScanStation C10 was used with the high scanning mode with a distance of 0.5 cm between
measurements in horizontal and vertical direction, at a distance of 10 m. The scanner had a green laser,
532 nm, a beam divergence of 0.1 mrad, a scanning pulse rate up to 50 kHz, and horizontal and vertical
field of view of 360 and 270 degrees, respectively. A single scan setup was used with the scanner in
the center of the field plot.

2.5. Estimation of Ground Model

In order to measure the height above ground a DEM was first estimated from the TLS data. The
algorithm used to acquire the DEM was based on the idea of sampling the laser data in two rasters with
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different cell sizes in order to separate data points that belong to the ground from data points that belong
to the canopy. For details see Lindberg et al. [7].

2.6. Detection of Tree Stem Positions

The assumption used for the tree stem detection algorithm was that the trunk of a tree is continuous
in the vertical direction whereas branches and low vegetation is not continuous in the vertical direction.
A raster in the x, y-plane was created with a cell size large enough to allow for several laser returns within
each cell that originates from data points along a vertical tree stem. The cell size was set to 0.5 m. The
z-value of each laser return was normalized using the DEM to obtain the vertical distance to the ground,
i.e., the height. Only laser returns within the height interval from 1 to 2 m were selected for the task of
finding tree positions. This interval was further divided into 32 height intervals to describe the height
distribution of laser returns. For each raster cell, the number of laser returns located within a height
interval was counted and if there was at least one return within this interval, it was registered as filled.
For each raster cell the number of filled sections and the total number of laser returns was registered.
The total number of laser returns in each raster cell was normalized by the distance to the sensor.

The number of filled sections was normalized to be in the interval 0–1 (fill ratio) where 1 meant that
all sections between 1 to 2 m were filled and 0 that no sections were filled. The fill ratio of each raster cell
was multiplied by the normalized number of laser returns to obtain a stem probability factor. This stem
probability factor is high where there are many laser returns and where they are continuously distributed
along the height interval.

A threshold of 25% of the maximum stem probability factor of the raster was used to remove noise.
All cells with values below the threshold was set to zero. In this raster of stem probability factors
(Figure 1) there were contiguous regions of cells that had values larger than zero surrounded by areas
with zero values. The assumption was that these contiguous regions of cells were located around stem
positions. The stem probability factor cell with the maximum value in each region was chosen to be
a stem position. If there were no other stem positions within a distance of two raster cells, this was set
to be a final stem position. Otherwise the neighbour tree region with the highest stem probability factor
was chosen to be the final stem position.

Figure 1. A raster of the stem probability factor in grey scale. The final tree stem positions
are marked in red.
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2.7. Classification of Laser Data Points to Tree Stem and Tree Canopy

A start coordinate that is close to the root of a tree was a precondition when classifying laser data
points in this method. The stem positions found in the earlier stage were used for this purpose. The
method was a two stage process. First, cross-section circles at different heights along the stem were
found by searching upwards using a Hough transform based method. Second, the shape of the tree crown
was found by searching downwards using the tree stem from the earlier stage. The assumption was that
the trees had a main stem like most conifers and that they were approximately circularly symmetric.
The maximum tree height in this study was assumed to be 30 m.

2.7.1. Finding Stem Cross Sections

To find the first stem cross-section, laser data points were cut out around the start position within a
rectangular box with a width and depth of 1.2 m and a height interval 1–1.5 m above ground (Figure 2).

Figure 2. TLS data points cut out at 1.0–1.5 m above ground: To the left part of a tree stem
and to the right part of a small tree with dense branches.

All TLS points in this subset were projected to a raster in the x, y-plane (where the z-axis is pointing
from ground to sky). The resolution of the raster was 2.5 cm. Each data point was added to the
corresponding raster cell giving a high pixel value where many data points are located. The pixel values
of this raster were normalized to 0–255 and all values below the threshold of 64 were set to zero. The
threshold level was chosen to suppress most of the noise. A stem in this raster looked like a semi-circle,
since the TLS sensor only scanned one side of the tree (Figure 3).

In this raster 7 radius classes were searched for, using an increment of 2.5 cm, starting at 10 cm. Radii
with values other than the classes were detected by the method but the class centers had the strongest
signals. The smallest radius class was chosen to avoid false positives. Small circles tend to fit any pattern.
The largest radius class was estimated to be appropriate for the investigated type of forest. The algorithm
is based on the Hough transform and previously described by Lindberg et al. [7]. A pixel that belongs to
the edge of a circle of a certain radius has a number of possible circle centres that lie along a semi-circle
pointing away from the sensor. By adding every possible circle centre to a raster, for every radius class,
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a probability image for a circle position was made. Positions that were inside compact objects could
be removed since the sensor cannot see inside the tree stem. In addition, pixels not connected to other
pixels could be removed assuming that the stem rim is continuous (for details see Lindberg et al. [7]).
Local maxima in this probability image were assumed to be candidates to the circle center. The circle
with the highest number of votes was chosen as the most probable choice. If no circle had the votes of
more than 20% of what a tree stem of full intensity would give, no tree was detected for this position.

Figure 3. TLS data points projected to a raster in the x, y-plane. A high density of laser
data points give a bright pixel. The coloured circles are the results from the stem finding
algorithm. The red circle is the final chosen stem diameter by the algorithm.

Next TLS data were cut out from 1.5–2.0 m. The same procedure as previous was applied. If several
circles were found, the one closest to the first was chosen. Now two circle centers at different heights
could be connected to allow for leaning trees as well as varying thickness along the stem. If the second
stem radius was 8 cm larger than the first, the stem was considered invalid and discarded. If the tree was
leaning more than 45◦ the choice was also discarded. If the stem was positioned more than 30 cm away
from the start position, it was discarded. The values of the settings were chosen after trials on test data
separate from the evaluation dataset.

The two circles gave a new start position calculated from the leaning tree and the next height interval
was processed, from 2.0–2.5 m and 2.5–3.0 m and so on. If only one or zero circles were found the
whole interval 2.0–3.0 m was chosen with the assumption that twice the amount of datapoints will make
it possible to fit a circle. If only one circle was fitted within the whole interval the tree was assumed to
point along the z axis. The procedure continued until no more circles were found or the stem reached
the maximum height 30 m.

Usually, a dataset is sparse high in the canopy making it more difficult to detect circles. To classify
datapoints where the algorithm did not succeed to detect any circles, an average stem radius with a
corresponding cylinder was calculated to be used were there was missing data. The circles found
by the algorithm in the lower regions were averaged to estimate direction and size of the stem in
the higher regions.
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2.7.2. Finding Tree Crown Cross Sections

To detect the tree crown outline a radially symmetric image was produced (Figure 4). Every data
point in the surroundings of the found tree stem was projected onto this image where the x-axis was
the radial distance from the tree stem at the chosen height and the y-axis was the height from ground.
The resolution of this image was 0.25 cm in the radial direction and 1 m in the height direction. Every
data point increased the corresponding pixel value by one in the image. To make data points closer to the
tree stem more important, the values were scaled by dividing with the circular area at the chosen radius.
Finally every height row was scaled from 0 to 1.

Figure 4. The outline of the tree crown in red. The TLS data points are projected onto
a radially symmetric image. The x-axis is the radial distance from the tree stem, from left to
right and the y-axis is the height from ground. The algorithm start the search from the top
until the first canopy pixel is found.

The search of the outline began at the highest point of this image at the radius 1 m and stopped when
the first part of the tree top was found (a pixel value larger than the threshold 0.2 was assumed to be part
of the canopy). From then on the algorithm searched down one pixel at the time. If no valid crown pixel
was found (value less than the threshold) the algorithm searched towards the stem. If a valid crown pixel
was found the algorithm searched radially outwards until the edge of the crown was found. No crown
radius sections larger than 2.5 m were accepted in order to make the algorithm more robust. Otherwise
a neighboring tree too close to the investigated one might be included in the canopy. When separating
different tree canopies from each other the laser data point was assigned to the closest stem. To avoid
situations where the algorithm does not find a tree top, the smallest accepted tree crown radius was 1 m
at 30 m height above ground and linearly decreasing towards zero at the root of the tree. All laser points
within this cone were guaranteed to belong to the tree. This way there were most often laser data from
the treetop remaining for the height estimates.

2.7.3. Classifying Laser Data Points by Stem and Tree Crown Cross Sections

When all start positions were investigated a number of stem and tree crown outlines were available.
To designate a TLS data point to a class and a single tree, all stem outlines were investigated. If a data
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point was within a distance of (1.5 times the stem radius) from the stem center it was designated to that
particular tree. If it was inside one or several tree crown outlines the closest stem gave which tree this
canopy data point belonged to. All other data points were considered to be ground, low vegetation or
measurement outliers (Figure 5).

Figure 5. Laser data points of a spruce classified into stem (BLUE) and canopy (RED).

2.8. The Use of Classified Laser Data Points to Extract Forest Variables

When the laser data points were designated to single trees and to the stem class or the crown class
(or one of the other classes) it was possible to estimate stem attributes. In this investigation quite
straightforward methods to estimate two of the variables of high interest for forestry were suggested
but once the data points are classified more advanced techniques could also be used. The chosen forest
variables for this study were stem diameter at breast height (i.e., stem diameter at 1.3 m above ground
level, DBH) and tree height.

2.8.1. Estimation of Tree Height by Percentiles

For each single tree the data points classified as tree crown were chosen. For this pointcloud the
height percentiles from ground were calculated. The tree height was then estimated as the 100th
height percentile.

2.8.2. Estimation of Stem Diameter by a Modified RANSAC Method

The Random Sample Consensus (RANSAC) method [41,42] is an iterative algorithm based on the
fact that there are data points that belong to the model (inliers) and those that do not belong to the model
(outliers). If a number of random points in the dataset is chosen, there is a probability of them all being
part of the model. Equation (1) gives the number of iterations necessary to find at least one such case.

N =
log (1− P )

log (1− pn)
(1)
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where N is the number of iterations used where at least one good model is found with the probability P .
The number of chosen data points is n and p is the probability of one chosen point belonging to the
model. The parameter p is given by Equation (2).

p =
M

D
(2)

where M is the number of inliers in the model and D is the number of points in the dataset. Usually
this ratio is not known and has to be estimated for the used dataset. By studying a typical dataset it is
possible at least to obtain a rough estimate of this ratio. In the case of stem detection one would need
to know approximately how many points that belong to the branches and surrounding vegetation rather
than the stem itself.

Tree stems can often be modeled by circles or cylinders which are well suited forms for application
of the RANSAC algorithm. When modeling a circle at least three data points are necessary. That makes
parameter n = 3 in the RANSAC algorithm. Therefore three points were randomly chosen to fit a circle
for one of the iterations. Each data point that was within 2.5 cm from this circle was considered to be an
inlier (Figure 6).

Figure 6. In each iteration in the RANSAC algorithm inliers are found within a given
tolerance of the chosen circle. This model is saved for further calculations if the circle is
of a valid size, there are few points inside the trunk, and the number of inliers is larger than
the previous chosen circle.

For the version of RANSAC modified for this study the number of data points that were inside
the trunk was also calculated for each iteration, with the assumption that no measurements can penetrate
the stem. If the randomly chosen circle for the iteration had more than 1% of the points inside the trunk
the solution was considered invalid. If the randomly chosen circle had a smaller radius than 2 cm or
a larger radius than 30 cm it was also considered invalid. In this version of the RANSAC method it was
the valid iteration with the highest number of inliers that was chosen as the set to which a circle was fit.
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By least square adjustment, a circle was then fitted to the inliers of the chosen iteration. The DBH of the
tree was then estimated as the diameter of this chosen circle.

The parameters for this study were set to: P = 0.99, p = 0.80, and n = 3. The number of iterations
was 100N .

2.9. Linking Detected Tree Stems to Manually Measured Reference Trees

The tree positions were manually measured relative to reference points which were measured with
a global navigation satellite system (GNSS). The manual measurements of trees could therefore be
geo-referenced. However, the TLS system was placed near the center of the field plots with no targets
used for geo-referencing. Instead, an earlier developed algorithm (Olofsson et al. [43]) was applied
to match tree stems detected from the laser data with the positions of manually measured trees. The
algorithm used the center of the field plot as an estimated position of the scan center to start the search.
From the start position, TLS single tree data from within the search area was collected as a list. This list
contained the tree position x, y-coordinates, and the stem diameter. For the manually measured trees a
similar list was required with the positions of the trees and stem diameter. The tree lists were used to
create two tree position images. Within the image, each tree was displayed as a Gaussian surface where
the x and y coordinates determined the position within the image, the tree size variable determined the
amplitude of the Gaussian function, and the standard deviation was set to the expected tree position
precision (1 m in this study). The rotation was ±180◦ with 0.5◦ steps and the translation was ±2 m with
0.25 m steps. The rotation and translation which yielded the maximum correlation between the two tree
position images was then used.

The correlations that were a result of different rotations of the scanners local coordinate system were
plotted for different rotation angles (Figure 7). A sharp peak could be observed when a correlation
value was much higher than for other rotation angles, indicating a rotation with a high probability of
being correct.

Figure 7. The correlation for different rotation angles used to match TLS detected trees with
manually measured tree positions for one example field plot.



Remote Sens. 2014, 6 4335

Once the tree coordinates from the TLS were transformed to the global coordinates from the manual
measurements, the trees detected by the TLS approach were linked to the manually measured trees.
To limit the size of the calculations only trees detected by the TLS approach close enough to the manually
measured trees were included for a possible search. A search radius of 1.5 m was used to include
a possible link between trees. To measure the quality of a link a weight (w) was calculated based on the
Euclidean horizontal distance between trees (d), Equation (3).

w =
1

(1 + d)2
(3)

In the tree link list the algorithm then searched for connected tree clusters, i.e., a group of TLS
detected and manually measured trees that were linked together. Each link only contained one TLS
detected and one manually measured tree, but since each TLS detected tree could be linked to several
manually measured trees and each manually measured tree could be linked to several TLS detected
trees, a network of connections became a cluster of trees, a tree list graph. Since every TLS detected
tree should only be connected to one manually measured tree, multiple links were removed from the
list. The algorithm solved this by trying every possible combination of links in the tree clusters and
combinations with multiple links were discarded. The link combination with the highest sum of weights
was the solution that was chosen for each tree cluster and all other links were removed from the list.

The linked trees were used to evaluate the tree detection results and the estimation of the stem
diameter. Also, estimation of tree heights was validated using the subset of trees with manually
measured heights.

The proportion of detected tree stem positions was calculated as the number of TLS detected trees that
was linked to a field tree divided by the total number of field trees. The proportion of detected stem cross
sections was calculated as the number of TLS detected trees where the algorithm managed to estimate
the stem diameter, and link to a field tree, divided by the total number of field trees.

2.10. Calculating the Shaded Area of Trees in a Plot

The shaded area behind a tree was calculated by Equation (4), where (r) is the stem radius, (R) is
the distance from the sensor to the tree and (θ) is the angle of the circle sector, assuming (R � r). The
shaded area starts behind the tree at the radial distance (R + r) and ends at the radius of the field plot.
This is similar to the shaded areas in the Seidel and Ammer study [44].

θ = 2arctan
r

R
(4)

All shaded areas from the trees were saved to a raster with resolution 1 dm2. If a pixel center was
inside one or more of the shaded areas it was set as a shaded pixel. This way the shaded areas of the
trees were allowed to partly cover each other. The number of shaded pixels inside a plot gave the total
shaded area of the plot. The non shaded area of the plot was the complementary to the shaded area.
The average of the non shaded areas of all plots was calculated to give the shading effect for the region.
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3. Results

3.1. Detected Proportion of Tree Stem Positions

The detected proportion of tree stem positions decreased with increasing distance from the scanner
(Figure 8). Because this trend might be caused by trees obscured by other trees, the non-shaded
proportion of the field plot area was also plotted against the distance to the scanner (Figure 8).

Figure 8. The proportion of detected trees (solid line) and proportion of non-shaded area for
all plots (dotted line) plotted against distance to the scanner.

3.2. Proportion of Detected Stem Cross Sections

The proportion of detected stem cross-sections decreased as a function of distance to the scanner.
Larger trees were easier to detect. The proportion of detected cross-sections was lower compared with
detection of tree stem positions. The difference was, however, small for large trees (Table 2).

Table 2. Proportion (%) of detected trees at different distances for cross-sections (cs.) of
different sizes and tree stem positions (stems).

Distance (m) Prop. cs. all Prop. cs. > 100 mm Prop. cs. > 200 mm Prop. stems

0–5 64.5 72.5 95.4 96.3
0–10 58.8 67.3 87.0 86.6
0–15 55.8 63.3 82.9 81.8
0–20 50.8 58.8 74.8 73.3
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3.3. Estimation of Stem Diameter

To see the effect of gross errors the data set was analyzed both with and without outliers removed.
All datapoints above the line with slope 3/2 and below the line with slope 2/3 were considered to be
outliers (Figure 9).

Figure 9. Scatterplot for TLS estimated versus field measured diameter at breast height
(DBH). All points outside the dotted lines were denoted as outliers. For the points at
DBH = 200 mm, inside the ellipse, the RANSAC algorithm was not able to give any results
and therefore the values were set to the diameter class obtained by the Hough transform.

The estimate of the DBH had a relative RMSE of 12%–21% where trees close to the scanner had
smaller errors (Table 3). However, the error was only 7.1% for Scots pine trees. The stem estimation
errors were smallest for Scots pine trees and largest for deciduous trees (Table 4). There was a small
negative bias (i.e., underestimation) of stem diameter for Scots pine. However, the stem diameter was
overestimated for Norway spruce, and to the highest degree for deciduous trees (Table 4). The errors
decreased for most plots after the removal of outliers (Table 5).

Table 3. Stem diameter estimates at different distances, (I) complete dataset, and (II) dataset
with the outliers removed.

Distance (m) Set RMSE (mm) relRMSE (%) BIAS (mm) relBIAS (%)

0–5 I 33 11.9 9 3.5
0–5 II 26 9.6 9 3.2
0–10 I 39 14.2 10 3.6
0–10 II 27 9.9 7 2.7
0–20 I 59 21.4 13 4.7
0–20 II 28 10.4 6 2.2
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Table 4. Stem diameter estimates for different tree species, (I) complete dataset,
and (II) dataset with the outliers removed.

Species Set RMSE (mm) relRMSE (%) BIAS (mm) relBIAS (%)

Pine I 23.8 7.1 −6.0 −1.8
Pine II 23.8 7.1 −6.0 −1.8

Spuce I 61.8 23.2 15.4 5.8
Spuce II 28.8 10.6 8.3 3.1

Deciduous I 74.8 34.1 25.2 11.5
Deciduous II 34.4 14.4 6.9 2.9

Table 5. Stem diameter estimates for each plot, (I) complete dataset, and (II) dataset with
the outliers removed.

Plot RMSE I (mm) relRMSE I (%) RMSE II (mm) relRMSE II (%)

1 64 23.5 39 14.1
2 96 34.9 38 13.7
3 42 15.2 42 15.2
4 66 24.2 29 10.4
5 50 18.4 21 7.8
6 20 7.2 20 7.2
7 38 14.0 21 7.8
8 93 34.0 34 12.3
9 29 10.7 29 10.7
10 78 28.3 38 13.8
11 33 12.2 33 12.2
12 36 13.1 27 9.9
13 80 29.4 34 12.4
14 38 14.0 38 14.0
15 51 18.7 37 13.6
16 41 14.9 29 10.5

3.4. Estimation of Tree Height

A small portion of the tree heights were severely overestimated by the TLS measurements. However,
the tree heights were on averarge underestimated for all sample trees (Table 6).

Table 6. Tree height estimates.

Distance (m) RMSE (m) relRMSE (%) Bias (m) relBias (%)

0–10 4.3 17.6 −0.1 −0.5
0–20 4.9 20.3 −0.1 −0.6
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4. Discussion

This study suggests a method to automatically detect trees in a TLS-scanned field plot, classify
the laser returns into stem or canopy for each of the detected trees, and extract forest variables from
the classified data.

The proportion of detected tree stems decreases as a function of distance to the scanner and follows
the proportion of non-shaded area. Thus, there is a high probability of detecting a tree with the proposed
method if the tree is not obscured by other trees. The problems with obscured trees in single scans have
also been observed in previous studies. For example, Thies and Spiecker [45] detected 52% of the trees
in multiple scans but only 22% in single scans. Maas et al. [46] reported a success rate of 97.5% on plots
with both multiple and single scans. However, the stem density on the four field plots used for validation
was low with only 15–29 trees on 12–15 m radius plots. Liang et al. [13] validated an algorithm
for detection of trees using single scan data in 9 plots and with higher stem densities: on average
1022 stems/ha compared with 741 stems/ha in this study. They obtained a detection accuracy of 73% on
10 m radius plots. This is similar to the number obtained in this study where the plot radius was 20 m. In
this study, 87% of the trees within 10 m were detected. However, this higher detection rate as compared
with the study by Liang et al. [13] is probably a result of different stem densities. The assumption that
the detection rate follows the decreasing proportion of non-shaded area as the distance to the scanner
increases could be confirmed in this study. That is probably the reason why detection rates close to 100%
are reported in earlier studies where data from multiple scans have been used. Because the detection rate
and proportion of non-shaded area are similar, one conclusion is that the detection rate in this study
was high with almost 100% for non-shaded areas. Reported commission errors in earlier studies are
usually small. In this study the commission error was only 5.5%. For example, Maas et al. [46] obtained
a commission error of 6.1% (5 false tree detections and 82 field trees). Liang et al. [13] obtained
a commission error of 14.5% (42 false tree detections and 289 field trees) but that was for a dense forest,
probably with more branches and low vegetation.

In a second step, stem cross-sections were estimated using the Hough-transform. The detected
proportion was low for small trees but higher for large trees. However, detection of stem cross-sections
was a first step to obtain estimates of the entire tree stem and canopy. A complete description of the
entire tree stem for large trees is what is of interest for forestry applications. These trees are used for
wood assortments while small trees, which require less detailed data, are either not harvested or are used
for bioenergy or pulp wood production.

The overall accuracy of stem diameter estimates was somewhat lower than reported from earlier
studies using similar scanner data and circle fit techniques according to a review of recent studies by
Pueschel et al. [10]. However, it should be noted that the stem diameter estimates in this study were
performed using 16 plots with 20 m radius with a variety of site conditions, including heavily branched
spruce trees, and high stem densities compared with other studies. In earlier studies, the stem diameter
estimates have been obtained on a few plots with sparse, low growing vegetation and few branches
at breast height. For example, Maas et al. [46] reported a RMSE of 1.4–3.25 cm for plots with
clearly visible tree stems and in forest with a low stem density (15–29 trees on 12–15 radius plots).
There are probably two main reasons for large errors for some trees in this study: (1) trees in dense
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stands are sometimes partly shaded by other trees; and (2) branches could be confused with tree stems
by the algorithm. The relative RMSE was only 7.1% for Scots pine trees which is in line with this
assumption: Scots pine trees usually have few branches at breast height and the stands containing pine
trees are usually sparser, resulting in less shaded parts of trees. A modified RANSAC algorithm was
implemented in this study to overcome the problems with outliers caused by heavy branching. However,
the RANSAC followed by the circle fit was only applied for a limited height section of the tree (at breast
height). A further development could be to combine several estimates at different heights to increase the
reliability of a single estimate, Pueschel et al. [10]

In this study, a positive bias was observed for Norway spruce and deciduous trees. One reason for this
bias could be branches and low vegetation which was more common on plots dominated by these tree
species. A small negative bias was observed for Scots pine trees that usually are rough-barked compared
with trees in the two other tree species groups. Brolly and Kiraly [6] observed an underestimation for
the rough-barked larch trees but not for the smoothed-barked beech trees and suggested that this could
be because also rifts in the bark are measured by the laser.

In this study, the RMSE increased with the distance from the scanner but this was caused by a small
proportion of outliers. The number of trees increases proportional to the square of the distance and
therefore the probability to include outliers is higher at long distances. There was no clear relationship
between RMSE and distance after removal of the outliers with the above described boundaries.
Also Lindberg et al. [7] and Pueschel et al. [10] observed no influence of the distance to the scanner.
The cutouts of raw data for some of the outliers followed by visual inspection revealed the reason for
the large DBH errors. The cutouts made by the Hough-transform were not from the tree stem but parts
of the canopy. Thus, the cutout-algorithm should be improved.

One error source could also be the automatic linking applied in this study. The position and orientation
of the scanner were calculated based on correlation between tree patterns and this was followed by
one-to-one linking of TLS and manual measured trees. All trees were not detected in TLS data which
makes the tree linking problem more difficult.

The tree height estimates are similar to what has been obtained in earlier studies. For example,
Maas et al. [46] reported an RMSE of 4.55 m. In this study the overall height accuracy was decreased
severely by a few estimates with overestimation, which was probably due to small trees growing close to
taller trees. Hence, the crown delineation algorithm should be improved to also produce reliable results
in dense forests. The main error sources in the TLS height estimates are that: the top of the tree crown
can be shaded by itself or a neighbour tree, part of the crown of a higher neighbor tree is assigned as the
top of the tree of interest, or the trees are not correctly linked in the evaluation.

The idea of classifying laser data points into stem and canopy is promising and a useful technique.
Once classified data are accessible, advanced techniques for the extraction of forest variables are possible
to apply, giving an opportunity to measure stem quality. Pfeiffer and Winterhalder [24] for instance
distinguished detailed shape of the stems and measured properties like ovality and Thies et al. [25]
implemented methods to access taper, sweep and lean from TLS-data. Terrestrial laser scanners could
therefore be used where there is a need for detailed measurements of individual trees in field plots.
Crown dimensions, competition and other parameters have also been useful in forest research based on
isolated point clouds of trees, such as: Bayer et al. [47] and Seidel et al. [48].
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5. Conclusions

This study suggests a method to automatically detect trees in a TLS-scanned field plot, classify the
laser returns into stem or canopy for each of the detected trees, and extract forest variables from the
classified data. The performance of the random sample consensus method (RANSAC) for stem detection
in a forest from southern Scandinavia was shown. The assumption that the detection rate follows the
decreasing proportion of non-shaded area as the distance to the scanner increases could be confirmed.
The detection rate was almost 100% for non-shaded areas. A further development could be to combine
several estimates of the stem diameter at different heights to increase the reliability of a single estimate.
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