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Abstract: Robust estimation of soil moisture using microwave remote sensing depends on 

extensive ground sampling for calibration and validation of the data. Soil surface sealing is 

a frequent phenomenon in dry environments. It modulates soil moisture close to the soil 

surface and, thus, has the potential to affect the retrieval of soil moisture from microwave 

remote sensing and the validation of these data based on ground observations.  

We addressed this issue using a physically-based modeling approach that accounts 

explicitly for surface sealing at the hillslope scale. Simulated mean soil moisture at the 

respective layers corresponding to both the ground validation probe and the radar beam’s 

typical effective penetration depth were considered. A cyclic pattern was found in which, 

as compared to an unsealed profile, the seal layer intensifies the bias in validation during 

rainfall events and substantially reduces it during subsequent drying periods. The analysis 

of this cyclic pattern showed that, accounting for soil moisture dynamics at the soil surface, 

the optimal time for soil sampling following a rainfall event is a few hours in the case of an 

unsealed system and a few days in the case of a sealed one. Surface sealing was found to 

increase the temporal stability of soil moisture. In both sealed and unsealed systems, the 

greatest temporal stability was observed at positions with moderate slope inclination.  

Soil porosity was the best predictor of soil moisture temporal stability, indicating that  

prior knowledge regarding the soil texture distribution is crucial for the application of  

remote sensing validation schemes. 
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1. Introduction 

Soil moisture at the surface vicinity affects the partitioning of rainfall into infiltration and runoff 

and modulates soil-atmosphere feedback interactions [1,2]. It also affects groundwater recharge, the 

movement of contaminants and crop growth [1], and therefore, it has been the focus of many studies 

that have addressed soil moisture dynamics across different climatic regions and spatial and  

temporal scales [3–6]. 

Due to advances in sensor technologies over the last two decades, spaceborne microwave instruments 

have become efficient tools for indirectly estimating soil moisture in the top few centimeters of soils at 

different spatial and temporal scales [7–13]. The effective penetration depth of the microwave beam 

depends upon several factors, including soil moisture [14] and soil properties [15]. Consequently, the 

effective penetration depth of the sensors ranges from ≈0.5 to 5 cm [14,16,17]. A common need for all 

remote-sensing (RS) missions, regardless of the spatial scale of interest, is intensive ground soil 

moisture sampling for the calibration of retrieval algorithms and the validation of the data [18].  

These field campaigns are usually conducted using a network of soil moisture probes that monitor 

changes in the soil moisture of the upper soil layer [19,20]. Due to technical constraints [14] and field 

conditions, these probes usually measure the moisture in a layer 5 to 10 cm thick [21–24]. Therefore, 

when these probes are used for the calibration or validation of remotely sensed soil moisture, the depth 

of the sampled soil layer on the ground is generally deeper than the sensor’s effective penetration 

depth, a bias that can affect the estimates [14,16,25]. 

This issue can become even more complex when a physical seal layer has formed at the soil surface. 

Surface sealing is a widespread phenomenon that occurs in bare agricultural soils (after seed bed 

preparation, for example) and between patches of vegetation in natural landscapes [26]. The seal layer 

develops due to the pounding of raindrops on the soil surface and the destruction of soil aggregates. 

This, in turn, leads to the washing-in of fine material and the formation of a distinct compacted soil 

layer at the surface [27–29]. The difference in bulk density between the seal layer and the underlying 

undisturbed soil is greatest at the soil surface and decreases exponentially with depth at a rate that 

depends on soil and rainfall properties [26,30]. Therefore, the seal layer is characterized by hydraulic 

properties that differ significantly from those of the underlying soil and by a thickness that can reach a 

few centimeters [26]. Consequently, the seal layer was found to affect infiltration [31,32], evaporation 

fluxes [33–36] and runoff [32,37,38]. The presence of a seal layer at the surface can complicate the 

calibration or the validation of RS missions, since the sensor’s effective penetration depth lies mostly 

within the seal layer, whereas the soil moisture probe uses average soil moisture readings from both 

the seal layer and the undisturbed soil in the much thicker layer underneath. The way in which the seal 

layer on top of undisturbed soil affects the bias in the calibration and validation of RS data has not  

been investigated. 

A second issue related to the validation procedure applied to RS data that could also be affected by 

soil surface sealing is the optimal location of soil moisture sampling sites on the ground. Regardless  
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of the spatial scale of interest, field soil moisture data are required for the validation of the RS sensor  

footprint [5,18]. Conducting simultaneous multi-point soil-moisture validation campaigns can be 

unfeasible, due to time and cost restrictions, and an optimization method is highly sought to reduce the 

number of ground samples [39]. While many statistical optimization methods were presented (see the 

review by Hu et al. [40]), one of the promising methods for approaching this task that has been widely 

applied [4,41–43] is the time stability analysis, described by Vachaud et al. [44]. In that study, it was 

shown that soil moisture in particular individual locations conserves the property to represent the mean 

soil moisture value of the field and, thus, could be referred to as temporally stable. 

To avoid an exhaustive review of the literature regarding factors affecting soil moisture  

temporal stability, only a concise summary is presented here (a detailed review can be found in 

Vanderlinden et al. [45]). Topography has a strong effect on soil moisture temporal stability (SMTS), 

with locations within mid-slopes or elevation [41,46] and locations with mild slope inclinations [43] 

exhibiting greater temporal stability. Vegetation was found to decrease SMTS [47]. Contradictory 

results were published regarding the effect of soil texture, where SMTS either increases [43,48] or 

decreases [2] with finer soil texture. Contradictory results were also published regarding the effect of 

soil depth on SMTS, with studies concluding that SMTS increases [42,49–51], decreases [52–54] or is 

unaffected by soil depth [55,56]. SMTS is affected by both spatial (e.g., maximal distance between 

measurements) and temporal (e.g., the frequency and duration of data acquisition) scales, with only a 

few studies spanning a period of several rainfall seasons or longer [45]. 

Modeling could be a step forward to address the complex interactions between the factors that affect soil 

moisture and its temporal stability [45]. This was demonstrated recently by Martinez et al. [48], who used 

a 1D physically-based model and a synthetic dataset of soil and climatic parameters to study how local 

controls, such as soil texture, regulate SMTS. However, soil surface sealing was disregarded in that 

study. Moreover, to the best of our knowledge, no attempt was made to study how the presence of a 

seal layer affects bare soil SMTS patterns at the hillslope scale and, consequently, optimal  

soil-moisture sampling locations. 

This paper applies a physically-based model and uses long-term climatic records to reconstruct soil 

moisture realizations at the hillslope scale of a semiarid experimental site in central Israel, accounting 

explicitly for soil surface sealing. We addressed two questions: 

(1) How does the presence of a seal layer affect soil moisture at the top soil? What are the 

implications for the validation of close range and remotely sensed data? 

(2) Which factors control SMTS under sealed and unsealed conditions and how does the presence 

of a seal layer affect the sampling locations that best represent the hillslope mean soil moisture? 

2. Material and Methods 

2.1. The Study Site 

The LTER (long-term ecological research) Lehavim site (31°20′N, 34°45′E) is located in the Negev 

Desert in the center of Israel (Figure 1). The climate is characterized as semiarid, with an annual 

rainfall of 290 mm, usually falling between November and March. Within the LTER, a typical 

hillslope was chosen (0.075 km2) composed of east- and west-facing slopes. The soils are brown 
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lithosols and arid brown loess, which are prone to surface sealing, with a mean soil texture of 23% 

sand, 56% silt and 21% clay. The hillslope soil depth ranges from 0 to 55 cm, with a mean value of 22 cm. 

Rock outcroppings cover 11% of the entire hillslope and are concentrated mainly in the interfluvial 

area. The vegetation (24% cover) is characterized by scattered dwarf shrubs (the dominant species is 

Sarcopoterium spinosum) and patches of herbaceous plants [57]. 

Figure 1. The study site: (A) the Lehavim long-term ecological research area in central 

Israel; (B) the hillslope under study; the 30-m cells are marked in red, and the locations of 

the validation points on the ground are marked in green. (C) A 3D representation of the 

hilly terrain of the study site. 

 

2.2. Methodological Approach 

A physically-based modeling approach relying on the numerical solution of the flow equations 

using Hydrus 1D [58] and measured climatic data was applied to simulate the mean soil moisture 

dynamics across a hillslope represented by 8240 cells (3 × 3 m). Two cases of bare soil profiles were 

considered: (1) uniform (unsealed case); (2) topped by a completely formed seal layer (sealed case). 

Israel 

Jordan 

A B 

High – 416m 

Low – 345m 

C North 



Remote Sens. 2014, 6 7473 

 

 

An extensive validation of this approach for the upper 15 cm of the soil profile was performed 

previously [59]. The characterization of the hillslope as an amalgamation of 1D cells was compared 

with a 2D approach for a subset of the data and was found suitable in reconstructing soil moisture 

measured in the field (see Appendix A). 

To corroborate the model’s ability to reconstruct the soil moisture dynamics at shallower soil 

depths, the simulated soil moisture was compared with gravimetric soil-moisture data repeatedly 

collected from the 0–10 cm-deep upper layer at 7 to 13 different locations on the hillslope (Figure 1B), 

during nine field campaigns spanning the 2010–2011 rainy season (for a total of 82 samples). For each 

sampling date, each gravimetric sample, in each location, was averaged over three replicates. Details 

regarding the 2010–2011 rainfall season and sampling dates can be found in Sela et al. [59]. 

Gravimetric soil moisture data were converted to volumetric soil moisture using soil bulk density 

calculated following Saxton et al. [60], using soil texture at each sampling site as the input. 

To address the objectives of the study, two datasets of soil moisture were created by averaging the 

simulated data for the hillslope in two different ways: the first dataset represents the soil layer, which 

corresponds to satellite observations. While in reality, the thickness of this layer is affected by soil 

moisture, this is neglected at this stage, and the layer thickness is assumed to be 0–2 cm (spatially 

uniform and constant in time). The second simulated soil moisture dataset represents the soil layer that 

is usually sampled by soil moisture probes used to validate satellite observations. In this study, the 

thickness of this layer was assumed to be 0–10 cm and to be spatially uniform. Using a soil moisture 

dataset created by a hydrological model allows more flexibility in studying near-surface soil moisture 

dynamics at various temporal scales, from a single rainfall event to the multi-seasonal scale, than if 

real RS data were used. 

The use of model-based soil moisture realizations enables the study of SMTS dynamics at any 

prescribed spatial scale, both with and without accounting for a seal layer at the surface, thus allowing 

the quantitative evaluation of its specific effect. In this study, all analyses were applied to a 30 × 30-m 

spatial scale, corresponding to the scale of synthetic aperture radar (SAR) satellites, such as  

RadarSat-1 [61]. Consequently, the studied hillslope was mapped to a 30 × 30-m grid, resulting in 69 

cells (Figure 1B). 

The initial soil moisture conditions at the beginning of each simulation were assumed uniform, both 

spatially and with depth, and consisted of a soil moisture value of 	θ = 0.1	( ). For each of the 

simulated seasons, mean soil moisture values for the 0–2 cm (representing the penetration depth of the 

RS sensor) and 0–10 cm (representing the sampled depth of the ground sensors) layers were computed 

on an hourly basis in each 3 × 3-m model cell and extracted every 6 h for both the sealed and the 

unsealed conditions. The known discrepancy between the point scale of the ground validation 

measurements and the RS sensor footprint scale was not addressed here, and the comparison between 

the 0–2 cm and 0–10-cm soil depths was conducted directly at the RS sensor footprint scale of 30 × 30 m 

to emphasize the net effect of the seal layer. Therefore, simulated soil moisture data were upscaled 

from the 3 × 3-m model cell to the 30 × 30-m RS sensor cells by averaging all respective 3 × 3-m cells 

contained within each RS sensor cell, for each time step. Finally, to study the factors controlling the 

bias between mean soil moisture at the 0–2 cm and 0–10 cm depths, the mean difference between the 

simulated soil moisture at these depths during all seasons was computed for each RS sensor cell and 
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was used as an input for a multi-parameter, stepwise regression (SPSS version 20, IBM, Inc. Armonk, 

NY, USA). 

To study how surface sealing affects the sampling locations that best represent the hillslope mean 

soil-moisture, a temporal stability analysis [44] was applied using simulated soil moisture data for the 

0–2-cm layer, representing the RS sensor output. A long-term dataset of measured climate records was 

used for this analysis, and both sealed and unsealed conditions were considered. Finally, to study the 

factors affecting the spatial distribution of temporally stable cells, an analysis of variance (ANOVA) 

was applied. 

2.3. Modeling Approach 

For a detailed description of the modeling approach, the reader is referred to Sela et al. [59].  

In short, the Hydrus 1D software [58] is used to solve numerically the flow equations in the 8240 

independent cells (3 × 3 m) that represent the hillslope study site. MATLAB (Release 2012b,  

The MathWorks, Inc., Natick, MA, USA) code was used to automate the simulations on an hourly 

basis during the rainfall season. The 8240 bare soil cells were characterized using an extensive 

database of topographic and soil-hydraulic parameters collected in the field. Assuming that potential 

evaporation (PE) is mainly controlled by solar radiation, the model accounts for the spatial variability 

of PE at the study site using a correction index,  [59]. This index adjusts the applied PE values in 

each cell according to aspect and hillslope location, using the ratio between solar radiation in each 

model cell and the respective radiation of a flat surface. Using the ratio between the rock and soil 

covers in each cell, rainfall intensity over all cells was corrected to account for the contribution from 

local rock outcrops. Boundary conditions consist of an atmospheric condition for the top (open to 

rainfall and evaporation fluxes) and free drainage for the bottom of the solution domain, reflecting the 

high level of uncertainty regarding the local bedrock permeability, which was found to be highly 

disintegrated [62]. In the unsealed case, a uniform soil profile was assumed. When a seal layer was 

accounted for, a two-layer soil profile was assumed, with the seal having a thickness of 2 cm based on 

observations of a similar soil type [63,64]. Under field conditions, the thickness of the seal layer is 

expected to depend on local factors, such as slope inclination and the percentage of fine material in the 

soil. However, no such relations had been established yet for the study site. Therefore, in this analysis, 

the seal layer thickness is assumed to be spatially uniform throughout the hillslope. 

The hydraulic parameters of the seal layer were directly related to the underlying soil using the 

Mualem and Assouline [30] approach. The model simulates soil moisture dynamics at the bare soil 

between vegetation patches and, thus, neglects vegetation effect on infiltration and water 

redistribution. This approach could be justified at the study site, as the dominant shrubs 

(Sarcopoterium Spinosum) were found to have mainly vertical roots, extracting water from fissures at 

the bedrock [65]. Surface water ponding was not allowed in the Hydrus 1D model simulations. 

Rainfall excess was recorded, but no runoff routing was considered between the cells, based on very 

limited runoff connectivity, which was measured at the site [66]. Subsurface flow between the cells 

was not accounted for. Considering all the above-mentioned assumptions, the simulated results were 

verified extensively in the field. Several sampling campaigns of the 2–15-cm layer for soil gravimetric 

soil moisture measurements were carried out in the bare soil areas between vegetation patches during 
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the 2010–2011 rainfall season. A comparison between simulated and measured mean soil moisture 

values has resulted in a satisfactory Nash and Sutcliffe [67] efficiency index of 0.7, indicating that the 

modeling approach and the assumptions were able to represent soil moisture dynamics in the top soil 

of the experimental hillslope. 

2.4. Climate Data 

A 20-y dataset (1993–2013) of daily rainfall measured at the Lahav meteorological station, located 

4 km north of the study site, was used for the analysis. All precipitation from a particular rain event 

was assumed to fall during a 3-h period, the average duration of rainfall events at the study site. 

Potential evaporation for the years 1993–2009 was measured using a Class A pan at the Lahav station. 

For the period of 2010–2013, potential evaporation was calculated using the Penman–Monteith 

equation [68], based on data from the Beer Sheva meteorological station located 10 km south of the 

study site. 

2.5. Time Stability Analysis 

In this study, SMTS was analyzed using the mean relative difference (MRD) method [44].  

The mean relative difference (δ ) ( ) for each 30 × 30 m RS cell (i) was calculated using Equation (1): 

MRD = ̅ = 1 , − ̅̅  (1)

where , 	( ) is the soil moisture at location  at time ; ( ) is the hillslope mean soil moisture at 

time t and nt are the number of sampling points at time t. Therefore, locations that have a negative or 

positive MRD are drier or wetter than the hillslope mean, respectively; whereas locations with an 

MRD close to zero are good predictors of the hillslope mean [1]. The variance of the relative 

difference for each cell was calculated using Equation (2): 

( ) = 1− 1 , − ̅̅ − ̅  (2)

The combination of these two indices leads to the root mean square error (RMSE) of the relative 

difference for each cell (Equation (3)) [43]. 

, = ̅ + ( ) /
 (3)

Lower RMSE values indicate locations with a higher time stability of soil moisture. These locations 

are considered to represent the best the mean soil moisture of the hillslope [43]. 

2.6. Statistical Analysis 

To study the factors that affect the bias in validation, two statistical methods were applied: linear 

multiple parameter step-wise regression and analysis of variance (one way ANOVA). Five topographic 

and soil hydraulic variables (all of them serve also as model inputs) were chosen for the analysis:  
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(1) soil depth; (2) rock cover; (3) the correction index,  for PE [59]; (4) the saturated water content 

value (θ ) of the soil layer, which is equivalent to soil porosity; and (5) slope inclination. A moderate 

correlation (R = 0.53) was found between the relations of the soil depth-rock cover and the soil  

depth-slope inclination. A weak correlation was found for all other combinations of the regression 

parameters. For the regression analysis, we have used dimensionless standardized regression 

coefficients, calculated by scaling the sample mean value to zero and the sample variance to one [69]. 

Using standardized regression coefficients allows us to compare, with necessary caution, the relative 

importance of each explanatory parameter. One-way ANOVA can be used to test for significant 

differences between the means of multiple populations [70]. Here, it is applied to study if significant 

differences are found between populations grouped by topography or soil hydraulic parameters [43], 

highlighting variables that could be good predictors of SMTS. For this analysis, each of the five 

variables mentioned above was discretized into four groups, based on an equal interval classification. 

3. Results and Discussion 

3.1. Corroboration of the Model with Field Data 

The comparison between simulated and measured mean soil moisture data for the 0–10 cm upper 

layer is depicted in Figure 2. Accounting for soil surface sealing improved model predictions for the 

lower soil moisture levels and increased the Nash and Sutcliffe [67] efficiency index from 0.59 for the 

unsealed case to 0.66 for the sealed case. This latter value is considered a satisfactory agreement 

according to the guidelines presented in Moriasi et al. [71]. Based on these results, we conclude that 

the modeling approach accurately simulates soil moisture dynamics in the upper soil layer and that the 

sealed case is better at representing soil moisture in the field than the unsealed case. 

Figure 2. Model simulations vs. measured soil-moisture data averaged for the 0–10-cm soil 

depth. The 1:1 line is drawn in black. 

 

3.2. Differences between Simulated Soil Moisture for the RS Sensor Penetration Depth and Ground 

Validation Depth 

To investigate the bias induced by using soil moisture measured at the 0–10-cm layer to validate 

soil moisture sensed at the 0–2-cm layer, the model was forced with the climatic data from three 
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representative seasons: 2004–2005 (407 mm rainfall), 2006–2007 (275 mm rainfall) and 2007–2008 

(203 mm rainfall), representing above average, average and less than average rainfall seasons, 

respectively. For each model cell, soil moisture data from all three seasons were combined to a 

continuous dataset and the difference between the mean soil moisture in the two layers was compared 

for both the sealed and unsealed systems (Equations (4) and (5), respectively):  = θ , − θ ,θ , X100 (4)

= θ , − θ ,θ , X100 (5)

where (θ) is the mean soil moisture for the respective depths. Negative values for Equations (4) and (5) 

indicate that the 0–2-cm layer is wetter than the 0–10-cm layer, while positive values indicate the 

opposite. When averaged over the three seasons, the difference between the layers was found to be 

minor (−0.1% and 7.9% for the sealed and unsealed systems, respectively). To study the factors that 

spatially affect the error between the 0–2-cm and 0–10-cm soil depth layers, the mean error in each 

cell was subjected to stepwise regression (Table 1). Using standardized regression coefficients enables 

one to compare the relative contribution of each parameter to the regression model. In both the sealed 

and unsealed systems, the saturated water content value was found to be the parameter with the most 

effect on the mean error. At the study site, the saturated water content tends to increase with the slope 

inclination (Figure 3A). Therefore, as depicted in Figure 3B, in the unsealed system, the lowest errors 

could be found at the lower parts of the hillslope. In the sealed system, a more complex behavior 

emerges where positive Diff values could be found at upper parts of the hillslope, while negative  

Diff values could be found at the lower ones. 

Table 1. Standardized beta coefficient values determined from the step-wise regression 

analysis of the mean difference in soil moisture between the 0–2 and 0–10-cm depth  

layers in each 30-m cell vs. five explanatory parameters. Dashed lines represent parameters 

for which their inclusion did not improve the regression model and, therefore, were 

removed by an iterative step-wise regression procedure. All parameters found significant  

( = 0.05, < 0.001). 
Parameter Sealed Unsealed 

Depth 0.604 0.162 θ  −0.709 −0.858 
Slope - - 

Ei - 0.512 
Rock (%) - −0.481 
Total  0.912 0.922 

3.3. Temporal Variation in the Error between the 0–2 and 0–10 Layers 

The computed Diff values for Equations (4) and (5) for the 2006–2007 rainfall season are depicted 

in Figure 4. This season was chosen, because the seasonal cumulative rainfall depth during that year is 

similar to the long-term mean value of the rainfall data for the study site. A cyclic pattern for the 
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difference between the mean soil moisture within the two layers was observed under the sealed and the 

unsealed conditions. Negative values were found to characterize the rainfall events (e.g., higher soil 

moisture at the 0–2-cm compared to the 0–10-cm layer) and positive values to characterize drying 

periods (e.g., higher soil moisture at the 0–10-cm compared to the 0–2-cm layer). The bias associated 

with the validation of remotely sensed soil moisture during rainfall events due to the different RS 

penetration and ground sampling depths in unsealed systems is a known issue that was addressed 

previously [21]. The seal layer was found to intensify this bias, especially during low-intensity rainfall 

events where, in the absence of runoff initiation, the percolation of water through the seal layer is 

impeded by the seal layer’s lower hydraulic conductivity. Interestingly, the difference in soil moisture 

values between the 0–2 and 0–10-cm layers during the drying periods was substantially smaller in the 

sealed system. This is attributed to the seal layer’s suppression of evaporation during the drying 

periods [33,59], which reduces the difference between the two layers over time. Conversely, in the 

unsealed system, the progression of a drying front through the soil profile led to an increase in the 

differences in soil moisture between the 0–2 and 0–10-cm soil layers over time. Figure 4C summarizes 

the net contribution of the seal layer to the difference in soil moisture between the 0–2 and 0–10-cm 

soil layers. The seal was found to add up to 10%–15% of the difference between the 0–2 and the  

0–10-cm layers during rainfall events. However, immediately following a rainfall event, the seal layer 

starts to compensate for this increased difference, and by the time the drying period ends, the 

difference in moisture between the two layers can be reduced by 10%–15%. 

Figure 3. (A) The relation between the saturated water content and the slope inclination at 

the study site, calculated for the 30-m cells ( = 0.05, < 0.001 ). (B) The relation 

between the Diff value in each cell for Equations (4) and (5) and the saturated water 

content value (the sealed and unsealed systems are marked in blue and red, respectively). 

The presented data was calculated for the combined three rainfall seasons.  

The cyclic pattern in the differences in soil moisture between the 0–2 and 0–10-cm soil layers, 

driven by the rainfall events and drying periods (Figure 4), suggests that there might be a characteristic 

duration until the difference in soil moisture between these layers vanishes. To test this hypothesis, this 

duration was computed following each of the rainfall events of the three representative seasons (a total 

of 40 rainfall events). The results are summarized in Figure 5, which shows a histogram of the 

computed durations. In most of the cases, the difference in soil moisture between the layers vanished 

(A) (B) 
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10 h for the unsealed system and 30 h for the sealed system after rainfall, representing an ideal 

duration for sampling. In reality, validation ground sampling schemes is designed to coincide with the 

timing of satellite overpass and not according to the local climatic conditions. However, since the bias 

between the layers was found to follow a cyclic pattern, using these calculated durations can assist 

validation schemes by indicating whether a positive or negative bias in soil moisture validation could 

be expected during the actual satellite overpass. 

Figure 4. Extract of the 2006–2007 average rainfall season (27.5 cm/y) presenting:  

(A) rainfall data; (B) the mean difference between the mean soil-moisture levels in the 0–2 

and 0–10-cm soil layers calculated using Equations 4–5. The sealed and unsealed systems 

are marked in blue and red and denoted by the subscripts, S and US, respectively. (C) The 

net effect of soil sealing on the difference between the layers. 
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Figure 5. Histogram of the simulated duration in hours until no difference in soil moisture 

could be observed between the 0–2 and 0–10-cm soil depth layers. 

 

Figure 6. Rank-ordered temporal stability characteristics of the unsealed (A) and  

sealed (B) systems. The mean relative differences (MRD) and error bars that represent one 

standard deviation are marked in blue. RMSE values are shown in red. 

 

3.4. Effects of a Seal Layer on SMTS and the Determination of Optimal Hillslope-Scale  

Sampling Locations 

To study the effect a seal layer has on SMTS patterns at the hillslope scale, the model was forced 

with 20 years of measured climate data (1993–2013), and MRD and RMSE values (Equations (1)–(3)) 

were calculated for each 30-m cell based on the entire period. Figure 6 presents the MRD and RMSE 

values of the sealed and unsealed systems, ranked from the smallest to the largest, according to the 

MRD values. Sixteen percent and 14% of the cells in the sealed and unsealed systems, respectively, 

estimated the hillslope mean soil moisture within ±2%, thus exhibiting a relatively high SMTS. Fifty 

five percent and 39% of the cells captured up to ±5% of the mean hillslope soil moisture, while 87% 

and 78% of the cells captured up to ±10% of the mean hillslope soil moisture (for the sealed and 

unsealed systems, respectively). Overall, soil surface sealing improves SMTS, reduces the RMSE by 

26%, the mean absolute MRD by 20% and its variance by 46%. In both the sealed and unsealed 

systems, the variance of the MRD values was greater in cells with soil moisture that is consistently 

higher than the mean value (positive values of the MRD) than in cells that were consistently drier then 

the hillslope mean. This result agrees with those of several previous studies [1,2,43,52,72]. The MRD 
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values calculated in this study were lower than the values reported in other studies conducted on 

similar semiarid hillslopes or small catchments [47,72,73]. This could be related to the fact that we 

considered soil moisture data averaged over the 30-m footprint, while those studies used data originating 

from a network of point measurements. 

Table 2. F values and their significance, testing for differences in mean MRD values for 

different groups. 

Sealed MRD Unsealed MRD 

Parameter F-Value p-Value Parameter F-Value p-Value 

Depth 0.847 0.473 Depth 1.019 0.390 
θ  160.242 5.6E−30 θ  140.409 2.4E−28 

Slope 6.953 0.0004 Slope 15.885 7.46E−8 
Ei 5.075 0.0032 Ei 2.497 0.067 

Rock (%) 1.446 0.237 Rock (%) 0.138 0.937 

Figure 7. The mean soil moisture MRD in the 30-m cells, based on 20 y of climatic data. 

(A) The sealed (blue) and unsealed (red) systems are delineated into four zones based on 

the slope inclination in each cell. The vertical error bars represent one standard deviation of 

the MRD value in each category/zone. (B) The spatial distribution of the respective slope 

inclination zones along the hillslope is presented. 

 

Following the methodology presented in Jacobs et al. [43] and Joshi et al. [1], to further study 

whether topographic and soil hydraulic variables could be good predictors of the MRD values in a 
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quantitative manner, the results of the ANOVA analysis are presented in Table 2. The results indicate 

that for both the sealed and unsealed systems, the difference in MRD between the groups is most 

significant for the saturated water content value and the slope inclination. Figure 7A depicts the mean 

MRD in each of the four slope inclination groups, together with the spatial distribution of each zone 

along the hillslope (Figure 7B). For the sealed system, both the higher and lower backslope (10–15 and 

15–20 degrees) emerge as optimal locations for sampling, estimating the hillslope mean soil moisture 

within ±2%. For the unsealed system, only sampling from the lower backslope (15–20°) allowed the 

estimation of the hillslope mean soil moisture within ±2%. However, for both the sealed and unsealed 

systems, all four slope-inclination zones had highly variable MRD levels (e.g., relatively large standard 

deviations), indicating that slope inclination alone may not be a good predictor of optimal locations for 

sampling soil moisture. Figure 8 depicts the relation between MRD and the slope inclination and the 

saturated water content value. While the relation between the MRD and the slope inclination is 

scattered across the entire range of MRD values, a strong linear relation was found between the 

saturated water content and the MRD (R2 values of 0.97 and 0.93 for the sealed and unsealed systems, 

respectively). This indicates that temporally stable hillslope locations (e.g., MRD of ±2%) could only 

be found within a narrow range of saturated water content (or porosity) values ( = 0.482 − 0.486), 
closely representing the hillslope mean value ( = 0.484). 

Figure 8. Relation between the mean relative differences (MRD) calculated for each 30-m 

cell based on 20 years of measured climate data and two explanatory variables: slope (top) 

and saturated water content value (bottom). The sealed and unsealed systems are marked 

in blue and red, respectively. 
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4. Conclusions 

The effect of soil surface sealing on soil moisture dynamics of the upper few centimeters of the soil 

profile, and its implications on remote sensing (RS) soil moisture estimates, was investigated here for 

the first time using a physically-based hydrological model. Model-based soil moisture realizations 

were used instead of real RS data, allowing increased flexibility in studying near-surface soil moisture 

dynamics at different temporal and spatial scales. Simulations were used to represent soil moisture at 

the typical soil layers corresponding to both the RS sensor readings (0–2 cm) and the ground 

measurements used to validate those readings (0–10 cm). 

The bias in the validation of soil moisture using point measurements, as reflected in the soil 

moisture simulations for the two soil layers under interest, was found to vary both spatially and 

temporally. When averaged over seasonal time scales, the difference between the simulated soil 

moisture at the radar penetration depth and the simulated soil moisture at the ground validation depth 

was found to be minor. However, when intra-seasonal soil moisture dynamics where considered, a 

cyclic pattern was detected where during rainfall events, soil moisture values at the 0–10-cm layer are 

consistently lower than the soil moisture values at 0–2-cm layer. This trend is reversed during drying 

periods. The seal layer was found to intensify the simulated difference in soil moisture between these 

layers during rainfall events, in general, and during low-intensity rainfall events, in particular. 

However, the seal layer compensates for this intensification during the drying periods, reducing 

substantially the difference in soil moisture between the two soil layers, as compared with an unsealed 

system. Analysis of this cyclic pattern in the sealed and unsealed systems suggests that considering 

climatic conditions alone, the optimal time for sampling when the bias between the two soil layers is 

minimal is a few hours following a rainfall event for an unsealed system, and one or two days after 

rainfall for the sealed one. Since, in practice, the timing of validation is determined by the satellite 

overpass and not according to local climatic conditions, our results can assist in indicating the type of 

bias (e.g., overestimation or underestimation of the RS sensor) that could expected in the field during 

the satellite overpass. 

Soil surface sealing was found to improve soil moisture temporal stability (SMTS), affecting the 

locations that best represent the hillslope mean soil-moisture value. Considering a mean relative 

difference (MRD) of ±2% of the mean soil moisture as a threshold for optimal sampling locations, the 

entire range of 10–20 degrees of slope inclination was found suitable under sealed conditions.  

In comparison, for the unsealed system, only the 15–20-degree range fit the threshold criteria.  

The saturated water content value, θ 	, which corresponds to soil porosity, was found to be the best 

predictor of the MRD value in both the sealed and unsealed systems, with optimal sampling locations 

found at sites characterized by a porosity similar to the mean porosity of the hillslope. The fact that 

porosity appears to be the main factor affecting hillslope-scale SMTS suggests that prior knowledge 

regarding the soil texture distribution in the field is crucial for the preparation and application of RS 

soil-moisture validation schemes. Further studies are needed to relate the mechanistic model 

estimations with soil moisture estimates from remotely sensed data under surface sealing conditions. 
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Appendix 

To test the bias that might result from using a 1D modeling approach instead of a 2D approach,  

five points from the validation set were randomly chosen (Figure A1), representing different 

geomorphic units and field conditions. In each location, measured soil moisture data (2–15-cm soil 

layer) was compared with simulated data resulting from the application of a 1D and 2D approaches to 

a fully-sealed profile. Hydrus 1D [58] and Hydrus 2D [74] models were used for the simulations. The 

seal layer hydraulic properties were modeled following Mualem and Assouline [30], with the seal layer 

assumed to have a uniform thickness of 2 cm. The prescribed boundary conditions (BC) for the model 

during the simulations consisted of a flux type (Neumann). The top and bottom BC for both the 1D and 

2D applications were similar: open to rainfall and evapotranspiration at the top and free drainage at the 

bottom. Through this lower BC, the discharge flux was calculated according to Equation (A1):  = − (ℎ) (A1)

where q is the flux (cm2/h), K is unsaturated hydraulic conductivity (cm/h) and h is the local value of 

pressure head (cm). For the 2D application, the transect sides were set a “gradient” BC [75] assuming 

that the 2D transect is part of a continuous hillslope where the flow is parallel to the direction of the 

slope. The flux through this boundary is calculated according to Equation (A2): = − (ℎ)sin ( ) (A2)

where ( ) is the transect slope inclination. Each 2D transect was three meters in length. In both the 1D 

and 2D cases, the profile was characterized by topographic (e.g., slope, soil depth) and hydraulic data 

measured in the field [59]. Climatic data of the 2010–2011 rainfall season was used for the simulation. 

Potential evaporation data, calculated using the Penman–Monteith equation [68], were available  

from the Beer Sheva meteorological station (10 km south of the study site). Rainfall data (measured at 

10-min resolution and downscaled to an hourly time step) were measured at the Lahav meteorological 

station, 4 km north of the study site. The model was forced with the climatic data and the mean soil 

moisture values for the 2–15-cm soil depth were extracted on an hourly time step. The results  
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(Figure A2, Panel A) indicate that the 2D approach offers a limited advantage over a 1D approach, 

with a Nash and Sutcliffe [67] efficiency index of 0.78 and 0.73, respectively. Accounting for a seal 

layer was found to improve the model results compared to an unsealed system (Figure A2, Panel B). 

Figure A1. Hillslope locations where measured soil moisture data were compared to 

simulated 1D and 2D simulations. 

 

Figure A2. (A) Measured soil moisture data and the corresponding model predictions for a 

sealed system resulting from the application of the 1D and 2D approaches. (B) Mean 

values of the measured and simulated data throughout the 2010–2011 validation season, 

resulting from the application of the 1D and 2D approaches for both the sealed and 

unsealed cases. 
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