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Abstract: The aim of this paper is to analyze the potential of X-band SAR measurements 

(COSMO-SkyMed and TerraSAR-X) made over bare soils for the estimation of soil 

moisture and surface geometry parameters at a semi-arid site in Tunisia (North Africa). 

Radar signals acquired with different configurations (HH and VV polarizations, incidence 

angles of 26° and 36°) are statistically compared with ground measurements (soil moisture 

and roughness parameters). The radar measurements are found to be highly sensitive to the 

various soil parameters of interest. A linear relationship is determined for the radar signals 

as a function of volumetric soil moisture, and a logarithmic correlation is observed 

between the radar signals and three surface roughness parameters: the root mean square 

height (Hrms), the parameter Zs = Hrms2/l (where l is the correlation length) and the 

parameter Zg = Hrms × (Hrms/l)α (where α is the power of the surface height correlation 

function). The highest dynamic sensitivity is observed for Zg at high incidence angles. 

Finally, the performance of different physical and semi-empirical backscattering models 

(IEM, Baghdadi-calibrated IEM and Dubois models) is compared with SAR measurements. 

The results provide an indication of the limits of validity of the IEM and Dubois models, 

for various radar configurations and roughness conditions. Considerable improvements in 
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the IEM model performance are observed using the Baghdadi-calibrated version of  

this model. 

Keywords: soil moisture; soil roughness; TerraSAR-X; COSMO-SkyMed; SAR; IEM; 

Baghdadi-calibrated IEM model; Dubois model 

 

1. Introduction 

Physical soil properties such as roughness and moisture need to be estimated in various scientific 

applications, such as hydrological and erosion modeling, agriculture, and the management of 

sustainable natural resources [1,2]. The parameters characterizing agricultural soils have very high 

spatial and temporal variabilities, and conventional spot soil moisture and surface roughness measurements 

do not provide an adequate description of this variability. Imaging Synthetic Aperture Radar (SAR) 

sensors have demonstrated their potential to effectively measure and monitor soil surface characteristics 

at a high spatial resolution [3–9]. Over bare agricultural areas, the backscattered radar signal is very 

sensitive to dielectric (soil moisture) and geometric (roughness) soil surface properties [10–12]. 

Consequently, different radar backscattering models (physical, semi-empirical, and empirical) have 

been developed to improve scientific understanding of the relationship between the backscattering 

coefficient and the parameters used to characterize the soil. The most frequently used models are the 

Integral Equation Model IEM of Fung et al. [13,14] and the Advanced Integrated Equation Model 

(AIEM) [15,16], which are applicable to a large range of soil roughness conditions, as well as  

semi-empirical models such those of Oh [17] and Dubois [18], which provide simple analytical 

relationships between the backscattered radar signal and physical soil parameters. 

In recent years, various improvements have been achieved in the performance of existing backscattering 

models [19–21], in particular by enlarging their field of applicability. Various studies have contributed to 

the use of a more complete description of soil surface roughness for forward studies [22–30].  

Zribi et al. [26] introduced fractal and Brownian approaches to describe the correlation function, 

whereas Li et al. [20] proposed a general power law description of roughness spectra. Fung [14] 

proposed different types of analytical correlation function, used to fit the experimental data.  

In addition, other studies have been proposed to improve the description of surface parameters in 

contexts where the measurements are achieved with only a small number of radar data configurations 

and the resulting need to retrieve only a small number of surface parameters. Zribi and Dechambre [31] 

proposed the introduction of a new parameter, Zs, equal to Hrms2/l, which combines the effects of two 

roughness descriptions (rms height and correlation length) in one single parameter, and Zribi et al. [32] 

proposed a global parameter combining the influence of three conventional parameters (rms height, 

height correlation length, and correlation function shape). Lievens et al. [30] showed that roughness 

parameters can vary from one SAR acquisition to another, since they are related to the observed 

backscatter coefficients, and to variations in local incidence angle. A statistical model was thus 

developed to estimate effective roughness parameters from radar observations. Baghdadi et al. [33–36] 

define a new empirical correlation length, Lopt, calculated as a function of the rms surface height and 
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the characteristics of the remote sensing radar (frequency, incidence angle and polarization), allowing 

an improved fit to be achieved between IEM simulations and radar observations.  

Despite these contributions, the influence of roughness is still poorly modelled in currently known 

inversion techniques, and most of these studies were made in the C band. Only a small number of 

studies have discussed the potential applications of X-band data [11,12,37]. 

In this context, the aim of the present paper is to analyze the behavior of X-band radar data acquired 

with the TerraSAR-X and COSMO-SkyMed sensors as a function of physical soil parameters 

(moisture and roughness), and to compare these results with the predictions of the most commonly 

used backscattering models. Section 2 describes the study site, satellite images and ground 

measurement database. Section 3 provides a statistical analysis of the relationships established 

between backscattered radar signals and soil parameters. Section 4 compares the performance of the 

different backscattering models. Our conclusions are provided in Section 5.  

2. Study Site and Database Description 

2.1. Study Site Description 

Our study site is situated in the Kairouan plain (9°23ʹ−10°17ʹE, 35°1ʹ−35°55ʹN (Figure 1)), in 

central Tunisia. The climate in this region is semi-arid, with an average annual rainfall of 

approximately 300 mm/year, characterized by a rainy season lasting from October to May, with the 

two rainiest months being October and March [9]. As is generally the case in semi-arid areas, the 

rainfall patterns in this area are highly variable in time and space. The mean temperature in Kairouan 

City is 19.2 °C (minimum of 10.7 °C in January and maximum of 28.6 °C in August). The mean 

annual potential evapotranspiration (Penman) is close to 1600 mm. The landscape is mainly flat, and 

the vegetation is dominated by agricultural production (cereals, olive groves, fruit trees, market 

gardens and bare soils).  

 

Figure 1. Location of the study site.  
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2.2. Database Description 

2.2.1. Satellite Images 

Eleven radar images (X-Band ~ 9.65 GHz) were acquired with four different sensors: TerraSAR-X 

(TSX), and the COSMO-SkyMed constellation (CSK1, CSK2, CSK4), using several different 

configurations (dual polarization, and two incidence angles: 26° and 36°). Table 1 summarizes the 

main characteristics of the SAR images recorded at the Kairouan site. All of the images were acquired 

in the form of “Single Look Complex” products, with the TSX images produced in the Single Look 

Slant Range Complex (SSC) representation, and the CSK images produced in the Single Look 

Complex Slant product Balanced (SCS_B) representation. Seven TSX datasets were acquired with 

Spotlight dual-polarization (HH and VV) at a high incidence angle (36°) and with a ground pixel 

spacing of approximately 2 m. In the case of the CSK data, four images were acquired in Ping Pong 

mode using the horizontal and cross polarizations (HH and HV), at two incidence angles (26° and 36°), 

with a pixel spacing of approximately 8 m. The SAR images were firstly multi-looked to reduce 

speckle using the NEST software (available at: https://earth.esa.int/web/nest/home/). When multi-looking 

is required in the case of CSK images, we consider 2 looks in azimuth and range direction (leading to a 

resolution of ~ 16 × 16 m2), whereas in the case of TSX images, 5 looks are used in azimuth and range 

direction (resulting pixel size ~ 9 × 9 m2). The images were then radio-metrically calibrated to derive 

the backscattering coefficients σ0, and finally geo-referenced using the SRTM 3Sec as a DEM (Auto 

download in NEST software). The mean radar signals were computed for each training plot.  

Table 1. Main characteristics of the X-band SAR images: Pol: Polarization, Inc: Incidence 

Angle, Desc: Descendant and Asc: Ascendant. 

Nr Sensor 

Date of 

Acquisition 

(dd/mm/yyyy) 

Acquisition Time 

(UTC) 

Acquisition 

Mode 

Pol 

Mode 
Inci. Orbit 

Geometric 

Resolution 

(m) 

1 CSK1 06/11/2013 17:21:24 PingPong HV/HH 26° Desc 7.9 

2 TSX 09/11/2013 17:13:34 Spotlight HH/VV 36° Asc 1.8 

3 TSX 20/11/2013 17:13:34 Spotlight HH/VV 36° Asc 1.8 

4 CSK1 22/11/2013 17:21:19 PingPong HV/HH 26° Desc 7.9 

5 TSX 01/12/2013 17:14:17 Spotlight HH/VV 36° Asc 1.8 

6 CSK4 04/12/2013 17:21:14 PingPong HV/HH 26° Desc 7.9 

7 CSK2 05/12/2013 17:15:13 PingPong HV/HH 36° Desc 7.9 

8 TSX 12/12/2013 17:14:17 Spotlight HH/VV 36° Asc 1.8 

9 TSX 23/12/2013 17:14:16 Spotlight HH/VV 36° Asc 1.8 

10 TSX 14/01/2014 17:14:15 Spotlight HH/VV 36° Asc 1.8 

11 TSX 25/01/2014 17:14:15 Spotlight HH/VV 36° Asc 1.8 

2.2.2. Ground Measurements 

Between November 2013 and January 2014, ground campaigns were carried out at the same time as 

the eleven satellite acquisitions. Fifteen bare soil reference fields were considered with different types 

of roughness, ranging from smooth to ploughed surfaces (Figure 2). The surface areas of these study 
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fields ranged between 1.6 ha and 17 ha. The ground measurements made on the test fields involved the 

characterization of the following soil parameters: soil moisture using a theta-probe instrument, 

gravimetric sampling, soil roughness using a pin profiler, soil bulk density and soil texture. 

 

Figure 2. Location of reference fields on the study site (SPOT image). 

Soil Moisture 

For each training field, approximately ten different gravimetric samples were taken (at depths 

ranging between 0 and 2 cm), and approximately 20 handheld thetaprobe measurements were made at 

a depth of 5 cm. These two different depths were used in order to assess the influence of radar 

penetration depth, which is less than 2 cm at X-band frequencies. The samples were taken from 

various locations in each reference field, within a two-hour time frame between 15:40 and 17:40, 

coinciding with the time of each satellite acquisition. The thetaprobe measurements were calibrated 

with gravimetric measurements recorded during previous campaigns [9]. 

The gravimetric soil moisture content was computed from the ratio of the mass of water to the mass 

of dry soil, and was then converted to the volumetric soil moisture using the soil’s bulk density (six 

samples per field). Strong temporal variations in soil moisture content were observed during the 

experimental campaigns. The volumetric moisture ranged between 4.7% and 31.6% for the thetaprobe 

measurements, and between 1.2% and 40% for the gravimetric estimations. 

Figure 3 illustrates the daily values of precipitation and mean volumetric surface soil moisture, 

estimated by calculating the mean value of the continuous recordings given by two thetaprobe 

measurements at a depth of 5 cm. A strong correlation was observed between the soil moisture 

estimations and precipitation events. Following a precipitation event we generally observe a peak 

followed by a strong decrease in soil moisture caused the high level of ambient evaporation. 

Soil Roughness 

Roughness is a measure of micro-topographic height variations at the soil’s surface. This was 

characterized by means of a 1 m long pin profiler with a resolution equal to 2 cm. Ten roughness 

profiles, 5 parallel and 5 perpendicular to the tillage row direction, were established in all reference 
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fields during three different ground campaigns. Two main surface roughness parameters, the root mean 

square surface height (Hrms) and the correlation length (l), were determined from the mean correlation 

function, which was computed from the digitized soil profiles [3,10]. Significant variations in the 

values of Hrms were observed between successive ground campaigns, ranging from 0.24 cm (very 

smooth soils) to 3.4 cm (ploughed soils), resulting mainly from the influence of rain and cultural 

practices (tillage, sowing…). 

 

Figure 3. Daily precipitation data and surface soil moisture variations, recorded during the 

ground campaign with a thetaprobe at 0–5 cm depth. 

Soil Texture 

For each reference field, three soil samples were collected in order to characterize the soil texture. 

Various measurements were made in the laboratory to calculate the percentages of sand, silt and clay 

particles, thus determining the soil's texture. The clay percentages ranged between 18.1% and 47.7% 

and the sand percentages ranged between 9.95% and 68.8%. 

3. Statistical Analysis of Radar Measurements 

In this section, we present the results of our statistical analysis of radar measurements as a function 

of the soil parameters: volumetric soil moisture, and three roughness parameters (Hrms, Zs and Zg), for 

all of the reference fields. 

3.1. Inter-Comparison between TerraSAR-X and COSMO-SkyMed Measurements 

In the last two years, several studies making use of TSX and CSK data have revealed the need to 

inter-calibrate the raw measurement data [38,39], before it is applied to parametric analysis of the soil. 

Recently, Baghdadi et al. [38] compared TSX and CSK signal levels recorded over forests. Although 
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they observed a temporally stable signal for each of the studied X-band sensors (TSX, CSK1, CSK2, 

CSK3, CSK4), significant differences reaching approximately 3 dB in the HH polarization and 5 dB in 

the HV polarization were found in the absolute signal levels measured by these sensors. The results of 

the comparative analysis established by Pettinato et al. [39] have also demonstrated strong differences, 

equivalent to 4.8 dB, between the signals measured by TSX and CSK2.  

(a) (b) 

Figure 4. Inter-comparison between COSMO-SkyMed and TerraSAR-X data at HH 

polarization: (a) TSX and CSK2 at 36° and (b) CSK1 and CSK4 at 26°. Each point 

corresponds to one homogenous region of Interest. 

In the present study, TSX and CSK measurements are compared and analyzed using a large number 

of targets. Comparisons were established between various pairs of images (TSX and CSK), acquired at 

the same polarizations and incidence angles. Images recorded at approximately the same date were 

selected, thus ensuring the presence of similar conditions of soil moisture and roughness. Different 

large, stable plots (i.e., having just one type of land use: bare agricultural areas, steppes, grasslands, etc. 

were selected, and their mean radar signals were calculated. The mean radar signals in the TSX and 

CSK2 images recorded at 36° incidence, and in the CSK1 and CSK4 images recorded at 26° incidence, 

are compared in Figure 4a,b, showing that there are significant differences between the datasets 

recorded by these pairs of sensors. The mean difference between the TSX and CSK2 images is 

approximately 2.8 dB, and that between the CSK1 and CSK4 images is approximately 2.9 dB. It is 

important to note that at 26° incidence, the radar images were acquired in the same descending orbit, 

whereas at 36° incidence the TSX images were acquired in an ascending orbit and the CSK data was 

acquired in a descending orbit. Our analysis is based on the observation of targets, some of which are 

characterized by a limited directional effect. In this context, Zribi et al. [40] have shown that in the 

case of bare soils observed at high incidence angles and high frequencies, the radar signals have a low 

sensitivity to the azimuth angle. As proposed in Baghdadi et al. [38], the signals recorded by TSX and 

CSK4 were taken as references, such that the CSK2 signals recorded at 36° were corrected by the 

mean difference (between the TSX and CSK2 images) of 2.8 dB, and the CSK1 signals recorded at 26° 

were corrected by the mean difference (between the CSK4 and CSK1 images) of 2.9 dB. 
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3.2. Relationship between Radar Signal and Soil Roughness  

In order to analyze the influence of soil roughness on the radar signals, the sensitivity of the TSX 

and inter-calibrated CSK backscattering coefficients was studied as a function of three different 

roughness parameters: (i) the root mean surface height Hrms; (ii) the parameter Zs = Hrms2/l [31], and 

(iii) the parameter Zg = Hrms(Hrms/l)α [32]. This analysis was made in the HH and VV polarizations, at 

incidence angles equal to 36° and 26°. Figure 5 shows the results corresponding to the HH polarization. In 

order to extract the influence of roughness only, the data was sorted into two sets: (i) data corresponding to 

soil with a low volumetric moisture content (less than 10%); and (ii) data corresponding to soil with a high 

volumetric moisture content (greater than 25%). As no high-moisture images were recorded at low 

incidence (26°), datapoints corresponding to low soil moisture only are plotted. 

(a) (d) 

(b) (e)

(c) (f)

Figure 5. Relationship between X-band SAR signals in the HH polarization and the soil 

roughness parameters Hrms, Zs, and Zg. The data was recorded at 36° incidence, for low 

and high values of soil moisture (a–c), and at 26° incidence, for low moisture values only 

(no high moisture at 26° incidence acquisition dates) (d–f). 
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The results show that the radar signals are highly sensitive to all roughness parameters (Hrms, Zs 

and Zg), at high incidence angles. These relationships are well described by a function in which the 

radar backscattering coefficient increases linearly with the logarithm of the relevant roughness 

parameter. This behavior was also observed in several other studies (e.g., [10–12]). The highest 

correlations are observed with the high moisture set (Figure 5a–c). This could be explained by the 

presence of high values of surface roughness in the case of low soil moisture only, for which the radar 

signal nearly reaches saturation. For the high moisture, high incidence (36°) dataset, the radar signals are 

more strongly correlated with Zs (R2 = 0.75, p-value = 0.002) and Zg (R2 = 0.8, p-value = 0.002) than with 

Hrms (R2=0.62, p-value=0.001). This behavior is in agreement with the results observed in [32]. The 

parameter Zs combines the influence of both Hrms and the soil’s roughness correlation length. In addition, 

it introduces the influence of slope (Hrms/l), which is an important soil feature in the estimation of σ0, as 

shown by [31]. The strongest correlation found with Zg can be explained by the fact that it represents 

the combined influences on radar backscattering of Hrms, l and the correlation function shape. At a 

low angle of incidence (θ = 26°), the results shown in Figure 5d–f show that the radar signal is less 

sensitive to soil roughness than at high incidence, as has been shown by various experimental and 

theoretical studies [12]. Table 2 summarizes the correlation coefficients of the logarithmic regressions 

determined for the radar measurements, expressed as a function of soil roughness, for all of the radar 

configurations. It can be seen that the VV and HH polarizations lead to approximately similar 

correlation coefficients. 

Table 2. Correlation coefficients retrieved from logarithmic regressions, for various 

roughness parameters and multi-configuration radar datasets. 

 
HH Polarization VV Polarization 

Low Moisture High Moisture Low Moisture High Moisture 

36° 

Hrms 0.53 0.62 0.57 0.6 

Zs 0.5 0.75 0.52 0.77 

Zg 0.51 0.8 0.53 0.8 

26° 

Hrms 0.4    

Zs 0.3    

Zg 0.31    

3.3. Relationship between Radar Signal and Soil Moisture Content  

Figure 6 shows the behavior of the HH polarization signals as a function of volumetric soil moisture 

derived from thetaprobe measurements (Figure 6a,b), and as a function of gravimetric measurements 

(Figure 7c,d). Linear relationships are observed between the backscattering coefficients and the 

volumetric soil moisture at 36° and 26° incidence. These behaviors are observed in several studies as [4,7]. 

In the case of the data recorded at 36°, the thetaprobe measurements (0–5 cm) are found to be more 

sensitive (0.26 dB/vol%) than the gravimetric measurements (0.21 dB/vol%). These results can be 

explained by the fact that the 0–2 cm layer of soil is relatively thin, is more strongly influenced by 

extremely high and low moisture conditions, and is affected by a larger range of soil moisture values. 

In practice, the storage capacity of the thin surface layer is quickly saturated during a strong 

precipitation event. In addition, the upper surface layer is the most strongly affected by evaporation, 
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under very dry conditions. In the case of the data acquired at 26°, the radar signal is also found to have 

a good sensitivity to volumetric soil moisture, corresponding to 0.16 dB/vol% for gravimetric 

sampling and 0.2 dB/vol% for the thetaprobe measurements. It should be noted that due to the 

relatively restricted range of soil moistures occurring at the time of the low incidence radar 

acquisitions, weaker correlations are observed at 26° than at 36° incidence. These results are also 

confirmed in the VV polarization (36° incidence), with sensitivity equal to 0.25 dB/vol% for the 

thetaprobe, and 0.2 dB/vol% for the gravimetric measurements. 

(a) (b)

(c) (d) 

Figure 6. Relationships between backscattering coefficient and measured volumetric soil 

moisture in the HH polarization: (a,b) for moisture measured with a thetaprobe instrument 

at a depth of 5 cm, at 36° and 26° incidence; (c,d) for moisture measured by gravimetric 

sampling at a depth of 2 cm, at 36° and 26° incidence. 

3.4. Relationship between Radar Signal and Soil Parameters 

In the previous two sections, we implemented separate analyses of the radar signal's sensitivity to 

surface roughness and soil moisture. From these results, we propose a simple empirical expression 

relating the radar signal to these two parameters, i.e., Mv (soil moisture) and Zg (surface roughness): 

    ZgMv log0  (1)

As the soil moisture is characterized by a small dynamic range at 26° incidence, our analysis was 

restricted to that of images acquired at 36° incidence. Our radar data was divided into two datasets: the 
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its validation. The coefficients α, β and γ were fitted using the least squares method. For the HH 

polarization, α = 0.22, β = 0.85 and γ = −11.14, with R2 = 0.82. For the VV polarization, the following 

values were found: α = 0.20, β = 0.59 and γ = −11.21, with R2 = 0.82. Figure 7 shows a plot comparing 

the values computed using this empirical relationship with those recorded in the second experimental 

dataset. The agreement between experimental radar data and simulated values is found to be excellent, 

with an RMS error of 1 dB in the HH polarization, and 0.94 dB in the VV polarization. 

 
(a) 

 
(b) 

Figure 7. Validation of the empirical model used to simulate radar signal strength  

at 36° incidence, as a function of soil moisture and soil roughness: (a) HH polarization;  

(b) VV polarization. 

4. Evaluation of Backscattering Models 

In this section, we evaluate the accuracy of various backscattering models: IEM model; Dubois 

model; and the Baghdadi-calibrated IEM model, by comparing the predicted signal strengths with the 

remotely sensed radar data. In situ measurements from our database (soil moisture and surface 

roughness) were used to provide input to the models. The discrepancies observed between the real and 

simulated signals are expressed in the form of two statistical indices: root mean square error (RMSE) 

and bias. 
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4.1. IEM Model 

The Integral Equation Model is a physical radar backscattering model, developed by Fung and  

Chen [13]. For bare agricultural soils, it simulates the σ0
HH, σ0

HV and σ0
VV radar backscattering 

coefficients as a function of various radar configurations and soil parameters. The IEM’s domain of 

applicability covers a wide range of roughness values [13], which can be approximated by k × Hrms < 3, 

corresponding to Hrms < 1.5 cm in the X-Band, where k is the wavenumber of the radar signal. Two 

types of surface correlation function, exponential or Gaussian, are used in the IEM backscatter model 

simulations. The exponential correlation function is generally used to represent smooth natural 

surfaces, whereas the Gaussian function is used to describe high surface roughness values [41].  

Figures 8 and 9 compare the IEM model with measured radar data, at 36° incidence (HH and VV 

polarizations) and at 26° incidence (HH polarization).  
 

(a) (b) 

(c) (d) 

Figure 8. Comparison between measured X-band data and IEM simulations, at 36° 

incidence: HH polarization: (a) exponential correlation function and (b) Gaussian 

correlation function; VV polarization: (c) exponential correlation function and (d) Gaussian 

correlation function. 

The results show that the IEM simulations are in good agreement with the remotely sensed signals 

under certain conditions only: 

- In the HH polarization, for Hrms < 1.5 cm, with an exponential correlation function: at θ = 36°, 

bias = 0.29 dB and RMSE = 1.59 dB; and at θ = 26°, bias = 0.08 dB and RMSE = 3.54 dB. On 
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the other hand, the IEM model tends to over-estimate the backscattering coefficient σ0
HH in the 

following cases: Hrms > 1.5 cm with a Gaussian correlation function: bias approximately −2.31 

and −1.98 dB, and RMSE equal to 2.64 and 2.9 dB, for θ = 36° and θ = 26°, respectively. 

- In the VV polarization, for Hrms < 1.5 cm, with an exponential correlation function: at θ = 36°, 

bias = 0.63 dB and RMSE = 2.4 dB. For Hrms > 1.5 cm, with a Gaussian correlation function: at 

36°, bias = 0.24 and RMSE = 1.66 dB. 

(a) (b) 

Figure 9. Comparison between measured X-band data and IEM simulations at 26° incidence 

in the HH polarization: (a) exponential correlation surface; (b) Gaussian correlation function. 

Using X-band data and various incidence angles in the range between 25° and 52°, Baghdadi et al., [30] 

observed that the IEM correctly simulates the values of σ0
HH and σ0

VV for the following two cases:  

Hrms < 1.5 cm with an exponential correlation function; and Hrms >1.5 cm with a Gaussian function. 

4.2. Dubois Model 

The Dubois model is a semi empirical backscattering model, developed by Dubois et al. [18]. It 

simulates the σ0
HH and σ0

VV radar backscatter coefficients using as input the incidence angle (θ°), the 

dielectric constant, the Hrms surface height, and the radar wavelength. Figure 10 shows that this model 

is in good agreement with the measured σ0
VV data, only for the case where Hrms > 1.5 cm and θ = 36°, 

with a corresponding bias of −0.18 dB and RMSE of 1.75 dB. The Dubois model often tends to  

over-estimate the SAR backscattering coefficients at θ = 36° when Hrms > 1.5 cm, with a bias of 

approximately −2.6 dB and an RMSE of 3.4 dB, and at θ = 26° for all values of Hrms, with a bias of 

approximately −4.6 dB and an RMSE of 5.5 dB. On the other hand, at θ = 36° this model 

underestimates the radar signal in the case of low surface roughness (Hrms < 1.5 cm), with a bias of 

approximately 2.32 dB and an RMSE of 3.25 dB in the HH polarization, and a bias of approximately 

3.5 dB and an RMSE of 3.9 dB in the VV polarization. 

4.3. Baghdadi Calibrated IEM Version 

In the following paragraph, the semi-empirical calibration of the IEM model developed by 

Baghdadi et al. [33–36] is applied, in order to minimize the mismatch between the IEM simulations 
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is replaced by a fitting parameter “Lopt”, whatever the range of Hrms. The use of Lopt has been tested 

under various SAR configurations, in the X and C bands, and at both HH and VV  

polarizations [33–36]. The results show firstly that the implementation of Lopt leads to an improved 

agreement between the IEM simulations and the SAR data. Secondly, it also allows the IEM’s domain 

of validity to be extended, to include even high values of surface roughness (Table 3). Finally, it makes 

it possible to restrict the use of roughness parameters to that of Hrms only. This is very useful for the 

inversion of data, using a generally small number of radar configurations. These modifications are 

proposed for the Gaussian correlation function shape, which leads to the best agreement between 

simulations and data, when the new fitting parameter Lopt is used. 

(a) (b) 

 

(c) 

Figure 10. Comparison between X-band data and Dubois simulations: (a) HH polarization, 

at 36° incidence; (b) VV polarization, at 36° incidence; (c) HH polarization, at 26° incidence. 

In the X-band, when the Gaussian correlation function is used, Lopt is written as [36]: 

  0.00350.033 0.7644, , 18.102 eLopt Hrms HH e Hrms
  , for HH polarization (2)

  0.01450.0379 1.2594, , 18.075 eLopt Hrms VV e Hrms


 , for VV polarization (3)

where θ is expressed in degrees, and Lopt and Hrms are expressed in centimeters. 

Figure 11 compares the measured radar data with simulated signals obtained with the initial version 

(using the measured correlation length), and with the empirical calibrated version (using the fitting 

parameter Lopt) of the IEM model. In these two versions, σ0
HH and σ0

VV are computed using the Gaussian 

correlation function. 
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(a) (b) 

 
(c) 

Figure 11. Comparison between X-band radar signals and Baghdadi-calibrated IEM [36] 

simulations: (a) HH polarization; 36° incidence angle; (b) VV polarization, 36° incidence; 

(c) HH polarization, 26° incidence. 

Table 3. Main statistical indexes (Bias and RMSE) for the IEM model, Dubois model,  

and the IEM model calibrated using Lopt, described by Baghdadi et al. [36], in the HH and 

VV polarizations. 

HH Polarization VV Polarization 

IEM Model (Using Measured Correlation Length) 

Bias (dB) RMSE (dB) Bias (dB) RMSE (dB) 

36° 

(Exponential 

function) 

Hrms < 1.5 cm 0.29 1.59 0.63 2.41 

Hrms > 1.5 cm 4.56 7.78 6.04 9.21 

All Hrms 2.11 5.2 3.34 6.72 

36° 

(Gaussian 

function) 

Hrms < 1.5 cm 3.42 8.2 4.32 8.36 

Hrms > 1.5 cm −2.31 2.64 0.24 1.66 

All Hrms 0.99 6.5 3 6.9 

26° 

(Exponential 

function) 

Hrms < 1.5 cm 0.08 3.54 

 

Hrms > 1.5 cm 11.1 11.8 

All Hrms 6.45 3.05 

26° 

(Gaussian 

function) 

Hrms < 1.5 cm −1.28 3.6 

Hrms > 1.5 cm −1.98 2.89 

All Hrms −1.2 3 
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Table 3. Cont. 

HH Polarization VV Polarization 

Dubois Model 

Bias (dB) RMSE (dB) Bias (dB) RMSE (dB) 

36° 

Hrms < 1.5 cm 2.32 3.25 3.48 3.9 

Hrms > 1.5 cm −2.57 3.38 -0.18 1.75 

All Hrms 0.22 3.3 1.91 1.78 

26° 

Hrms < 1.5 cm −2.19 2.85 

 
Hrms > 1.5 cm −6.8 7.08 

All Hrms −4.6 5.49 

IEM calibrated Model according to Baghdadi et al. [36] 

36° (all Hrms) 0.97 1.8 0.84 1.67 

26° (all Hrms) −0.55 1.64 

In the HH polarization, the results predicted by the semi-empirical IEM calibration are found to be 

in good agreement with the measured backscatter coefficients, with a bias of approximately −0.5 and 

0.9 dB, and an RMSE of approximately 1.64 and 1.8 dB, at 26° and 36°, respectively. In the VV 

polarization, at 36°, the bias (difference between the IEM simulations, using Lopt and σ0
TSX) is  

0.84 dB and the RMSE is equal to 1.67 dB. Application of the initial version of the IEM (using the 

measured correlation length and a Gaussian correlation function) leads to considerable discrepancies, 

with an RMSE of 6.5 and 3 dB in the HH polarization, at 36° and 26° respectively, and an RMSE of 

approximately 6.9 dB in the VV polarization, at 36°. 

The results determined using the semi-empirical calibration are in good agreement with those 

obtained in [36], and lead to a significant improvement in the IEM backscattering predictions. The 

calibrated IEM approach thus provides a robust model for the simulation of radar backscattering from 

agricultural soils. 

5. Conclusions  

In this study, the sensitivity of X-band SAR signals to physical soil parameters is analyzed for the 

case of bare agricultural soils. Remotely sensed data, recorded by two SAR systems (the TSK and 

CSK constellations) over a semi-arid region in Tunisia, is compared with in situ measurements of soil 

moisture and surface roughness. The first step in this process involves the inter-calibration of four 

different X-band sensors (TSX, CSK1, CSK2, CSK4). As reported in other studies, strong offsets are 

observed between the signals measured by these sensors. An empirical calibration of the CSK1 and 

CSK2 signals is proposed, in which the latter are referenced to the signals recorded by the TSK and 

CSK4 sensors, respectively. Logarithmic relationships are then observed between the multi-configuration 

backscattering coefficients extracted from the TSX and CSK sensor data and the surface roughness 

parameters: Hrms (root mean square height), Zs and Zg. The strongest correlation (R2 = 0.8) is 

obtained with the parameter Zg, at 36° incidence. This can be explained by the fact that Zg combines 

the influence of several conventional roughness parameters (Hrms, correlation length and correlation 

function shape). A linear correlation is observed between the radar signals and the measured values of 

volumetric soil moisture, at angles of incidence equal to 26° and 36°. The strongest sensitivities are 
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obtained from the thetaprobe moisture measurements made at 0–5 cm. An empirical model is proposed 

to simulate radar signals as a function of soil moisture and the surface roughness parameter Zg. 

Validation of the proposed expressions with a second dataset reveals an excellent agreement between 

measurements and simulations, with an RMS error equal to 1 dB and 0.94 dB for the HH and VV 

polarizations, respectively. 

The performance of the IEM, Dubois, and Baghdadi-calibrated IEM [36] models are also discussed. 

In practice, the IEM model correctly simulates the response of X-band radar sensors under the 

following conditions: Hrms < 1.5 cm, use of an exponential correlation function, HH polarization at 

26° and 36° incidence; Hrms < 1.5 cm, use of an exponential correlation function, VV polarization; 

Hrms > 1.5 cm, use of a Gaussian function, both polarisations at 36° incidence. Significant 

discrepancies (over- or underestimations) are generally observed between the measured X-band SAR 

signals and the backscattering predicted by the Dubois model. Considerable improvements are observed 

in the performance of the IEM model when the IEM Baghdadi-calibrated version is implemented, with 

for example (between measured and simulated radar signals): biases of approximately −0.5 and 0.9 dB, 

and RMSE’s of approximately 1.64 and 1.8 dB, in the HH polarization, at 26° and 36° 

incidence, respectively. 

The results presented in this paper confirm the usefulness of X-band SAR (HH and VV) data for the 

retrieval and mapping of soil properties near the surface over bare agricultural soils. In future studies, 

the present authors will apply X-band SAR data to this type of analysis. 
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