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Abstract: Detecting and modeling urban furniture are of particular interest for urban 

management and the development of autonomous driving systems. This paper presents a 

novel method for detecting and classifying vertical urban objects and trees from unstructured 

three-dimensional mobile laser scanner (MLS) or terrestrial laser scanner (TLS) point cloud 

data. The method includes an automatic initial segmentation to remove the parts of the 

original cloud that are not of interest for detecting vertical objects, by means of a geometric 

index based on features of the point cloud. Vertical object detection is carried out through 

the Reed and Xiaoli (RX) anomaly detection algorithm applied to a pillar structure in which 

the point cloud was previously organized. A clustering algorithm is then used to classify the 

detected vertical elements as man-made poles or trees. The effectiveness of the proposed method 

was tested in two point clouds from heterogeneous street scenarios and measured by two 

different sensors. The results for the two test sites achieved detection rates higher than 96%; the 

classification accuracy was around 95%, and the completion quality of both procedures was 

90%. Non-detected poles come from occlusions in the point cloud and low-height traffic signs; 

most misclassifications occurred in man-made poles adjacent to trees. 

OPEN ACCESS 



Remote Sens. 2015, 7 12681 

 

 

Keywords: pole-like objects; feature extraction; pattern recognition; clustering; 3D point 

cloud; MLS; anomaly detection 

 

1. Introduction 

Creating and updating accurate maps and spatial databases has been demanded by various 

applications such as city management, urban planning, and intelligent transportation systems. For city 

management and urban planning, accurate land cover information is needed to document cities growth, 

make policy decisions, and improve land use planning [1]. For intelligent transportation systems, updated 

geodatabases that include the location of urban objects and traffic signs are required for terrestrial 

navigation and, of course, to decrease traffic congestion, lessen the risk of accidents [2], and develop 

autonomous driving systems [3]. Geospatial information has been widely used to meet these requirements 

for accurate and up-to-date remote sensed data. Light detection and ranging (LIDAR) technology has been 

used extensively in surveying and mapping. This technology provides three-dimensional data that 

complements the spectral information contained in two-dimensional images. Laser scanner sensors can 

be placed on aerial (airborne laser scanner, ALS) and terrestrial platforms (terrestrial LIDAR). Terrestrial 

LIDAR can be subdivided into two types: static and dynamic. Static terrestrial LIDAR technology 

(terrestrial laser scanner, TLS) data is collected from a sensor fixed in a base station. Thus, a small area 

can be mapped with high accuracy, but several scans are needed to cover large areas. Dynamic terrestrial 

LIDAR sensors (mobile laser scanner, MLS) are installed in vehicles provided with, as for ALS 

platforms, a navigation system based on global navigation satellite systems (GNSS) and inertial 

measurement units (IMUs). These devices determine the position of the mobile platform and the 

direction and orientation of the sensor at every moment [4]. 

Given that MLSs and ALSs capture data in large areas within short periods, both sensors are 

commonly used for urban applications, while the TLS is reserved for short-range applications, such as 

forest inventory [5], deformation monitoring [6] or heritage documentation [7]. ALS and MLS sensors 

provide three-dimensional (3D) point cloud data from mobile platforms, but significant differences exist 

between the two systems. ALS capture objects from the top view, while MLS and TLS collect data from 

the side-view, which makes the data taken by both types of sensors complementary. Additionally, the 

distance between the sensors and the ground is shorter in an MLS than in an ALS; consequently, the 

former performs measurements with higher resolution and greater density than the aerial sensors. ALS 

sensors cover large areas cost-effectively and rapidly but fail to capture details of small urban targets. 

Thus, MLS sensors are suitable for ground-based object modeling and to detect and extract elements 

located at street level, hardly achievable tasks in low density ALS data [8]. The main disadvantage is 

that MLS output files are large and hard to manage, forcing the development of organizing, cataloging, 

and optimizing methodologies to reduce the computation time significantly. 

Many works in which point clouds are involved incorporate a preprocessing step or develop 

techniques that facilitate the treatment of the datasets and reduce the processing times. In some cases, a 

voxelization is performed to divide the point cloud space in a 3D grid of small regular cubes called 

voxels (volume elements) whose resolution depends on the size of the grid cells [9,10]. On a different 
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approach, the point cloud is decomposed into several two-dimensional vertical slices using the global 

positioning system (GPS) time as auxiliary information [11] or into horizontal sections, parallel and 

above the ground [12]. Other works analyze each scan line individually instead of considering the cloud 

as a whole [13,14]. Removal of parts of the cloud that belong to objects that are not the focus of the 

study [15] is another common technique. A segmentation procedure is also routinely used for point cloud 

handling. Segmentation is the process of grouping the points of the cloud into segments: points in the 

same region are given the same category and treated as a set [16]. Some segmentation techniques such 

as graph cut [17], region growing [18], and 3D connected components [19] are also applied to facilitate 

the handling of the point cloud.  

Creating and updating the databases of vegetation elements and street furniture in urban environments 

is an important issue in 3D city modeling, city management, and urban planning. Some cities such as 

Melbourne, Australia, have created their own street objects database in order to improve the design, 

amenity, and quality of the public environment [20]. The creation of these inventories with field visits 

and photo interpretation of remote sensing data can be an expensive, tedious, and imprecise work. Thus, 

recent studies have also started to address the automatic or semi-automatic computerized extraction of 

urban objects. Generally, these types of elements, whether trees, lampposts, or signs, are cylindrical or 

conical in geometry. In [21] and [22] two methods for detecting generic cylindrical elements using 

Hough transform and Random Sample Consensus (RANSAC), respectively, were proposed. In [23] and [24] 

the authors searched vertical isolated elements in a point cloud previously structured in voxels or regions 

within a previous segmentation procedure. [25,26] developed different methods that also depend on the 

geometry of vertical urban elements. In these cases, the detection is based upon the study of the three 

eigenvalues obtained from the covariance matrix of each segment in which the cloud was previously 

decomposed. In [27], trees were detected from a priori information of geometric features, such as the 

roughness and the point density ratio. Continuing this trend, in [28] a knowledge-based classifier that 

uses the size, shape, height, and reflectance intensity information of each pole as descriptors is proposed. 

Another useful technique consists of simplifying the 3D point cloud by projecting it in several 2D planes, 

both horizontal and vertical, and searching and classifying street objects represented in the cloud. This 

approach is followed in [29] where a method for extracting trees that voxelizes the point cloud and 

studies layers at different heights is developed. Potential trees are represented by the voxels that are 

isolated in consecutive layers. In [30] the authors segmented every scan line based on the distance 

between adjacent points; clusters were merged to group the segments that represented the same pole-like 

object. The classification between poles and non-poles was based on a priori information of geometric 

features such as the length of the cluster, its shape, direction, and number of sweeps. In [15] an algorithm 

for extracting lampposts was proposed in which a gridding process is applied to the point cloud. In every 

cell of the grid, the height of the highest point is stored; those cells that are taller than an established 

threshold are considered lampposts. An automatic method for extracting individual trees is presented 

in [31]. It consists of separating trees from man-made objects by projecting 3D points on horizontal grid 

accumulators at three heights and performing a cross comparison through these layers. In [32] the point 

cloud was projected in planes orthogonal to the direction of the MLS trajectory before the extraction of street 

curbs. Among the non-road segments, the street light poles were segmented using a pairwise 3D shape 

context based on a priori information of the type of lampposts of the area. 
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In our approach a fully automated method for detecting pole-like objects and classifying them as trees 

and man-made poles is developed. This method detects and classifies vertical urban elements from MLS 

data by means of a three step procedure: 

1. A preprocessing stage, including a reference frame transformation and a region of interest 

(ROI) isolation. These procedures diminish the size of the original point cloud, the number of false 

positives in the following procedures, and the computational effort of the successive stages. 

2. Vertical urban elements detection using the Reed and Xiaoli (RX) anomaly detection 

algorithm. Previously the preprocessed point cloud is organized in a pillar structure. 

3. Vertical elements classification into two classes (trees and man-made poles) using an 

unsupervised classification algorithm. 

2. Method 

2.1. Preprocessing 

Three-dimensional point cloud data files from MLS data systems include not only X, Y, and Z point 

coordinates but also additional information such as GPS time, scan angle, or reflectance intensity 

information, for the millions of points contained in the point cloud. In the current paper, the 

preprocessing step is divided into two main stages: (i) transforming the reference frame and (ii) removing 

the parts of the cloud that are not of interest in this work (point cloud reduction). 

2.1.1. Reference Frame Transformation 

Point clouds registered by MLS sensors are properly geo-referenced in a global reference system by 

a navigation system (GNSS) and an IMU, which provide coordinates within a global frame to every 

registered point. The original coordinate system is now transformed by means of a translation and three 

rotations into a local Cartesian coordinate system. The origin of the new reference frame is located at the 

beginning of the MLS trajectory, the z-axis is coincident with the local vertical direction, and the x-axis is 

coincident with the average direction of the vehicle. The y-axis completes the dextro-rotatory set, which 

makes local (x,y,z) coordinates handier than the global ones. 

2.1.2. Removing Uninteresting Points  

In an urban environment, objects such as columns of buildings, fences, or decorative elements on 

façades that are not of interest in this work can be found; they are not urban elements and, in addition, 

they can be wrongly detected as pole-like elements in the detection procedure. Normally, these elements 

are located in distant areas of the mobile laser scanner data, inside buildings or local businesses; 

meanwhile, vertical urban furniture and trees are located on the sidewalks and the surrounded area of 

the road. To avoid these false positives, a method to remove all these uninteresting points from the 

original point cloud was developed. The procedure consists of two steps: (i) an index is developed based 

on geometric features to determine the vertical (mainly buildings and fences) and large horizontal 

surfaces (roads and sidewalks); and (ii) the 3D connected components are segmented to group the points 

that are part of the same surface.  
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Geometric Index Definition 

To identify the façades of the point cloud, a geometric index was developed. Indexes developed from 

geometric features of the cloud have been adopted in previous works such as [33], in which an operator 

based on a normal vector was introduced as a preprocessing step of an object recognition procedure. The 

index elaborated in the current paper is called the Geometric Index (GI) and combines the information 

provided by the normal vector and roughness values of every point of the cloud: 

𝐺𝐼𝑖 = 
|𝑁𝑋𝑖| + |𝑁𝑌𝑖| − |𝑁𝑍𝑖|

|𝑁𝑋𝑖| + |𝑁𝑌𝑖| + |𝑁𝑍𝑖|
 ×  

1

𝑒𝑅𝑖
 (1) 

In Equation (1) (𝑵𝒙𝒊
, 𝑵𝒀𝒊

, 𝑵𝒁𝒊
) are the components of the normal vector 𝑵⃗⃗  in the point 𝑷𝒊 and 𝑹𝒊 is 

the roughness of the studied point. These values are measured from those points contained in a sphere 

of radius r centered in the studied point (𝑷𝒊). Roughness (𝑹𝒊) is defined as the distance between the 

studied point 𝑷𝒊 and the least square best fitting plane comprising 𝑷𝒊 and its neighborhood points inside 

the radius r sphere [6]. The first term of Equation (1) combines the three elements of the normal vector 

in a single value normalized in [–1, +1]. The behavior of the normal vector and its sensitivity to variations 

in the neighborhood size have been analyzed in five urban element types, easily identified in urban 

environments: façades, treetops, poles, roads, and cars. Significant differences have been found between 

these elements. In those elements with a horizontal flat surface that are determined as a trend surface 

(mainly roads and sidewalks), the vertical normal component (𝑵𝒁𝒊
) takes higher values than the 

horizontal ones 𝑵𝑿𝒊
 and 𝑵𝒀𝒊

. The opposite occurs on façades and fences, which are best fitted by vertical 

surfaces, in which horizontal normal vector components (𝑵𝑿𝒊
 and 𝑵𝒀𝒊

) take greater values than the 

vertical one. Other elements such as trees or cars present an irregular appearance because of their 

irregular and heterogeneous shapes. The roughness is included in the denominator of the second term of 

the GI Equation as an exponential to improve the separation between flat and rough surfaces. The lowest 

roughness values correspond to flat surfaces while higher roughness values take place in those elements 

with irregular shapes. According to the roughness study shown in Figure 1a, roughness 𝑹𝒊 takes values 

around 0m in flat elements and higher values in rough surfaces; thus, term 
𝟏

𝒆𝑹𝒊
 takes values around one 

for flat surfaces and lower in points that are further from the fitted plane. Consequently, the second term 

will not significantly affect the value of the GI in flat elements but will notably reduce it in rough 

surfaces, which helps to identify these elements in the point cloud. Since 𝒆𝑹𝒊 is close to one for flat 

surfaces, this term has no effect on the GI but in contrast tends to substantially decrease the GI for rough 

surfaces, when 
𝟏

𝒆𝑹𝒊
 is close to zero. To get the most suitable neighborhood size for the GI computation, 

normal and roughness features were studied in different radii values at the test sites. For small 

neighborhood radii (less than 20 cm), in many positions there are not enough point neighbors to compute 

the roughness and normal vector, making the distinction unclear. With large radii (more than 150 cm), 

the behavior of the GI in horizontal surfaces and elements at the ground level such as cars, pedestrians, 

or containers was quite similar. The neighborhood must be small enough not to consider points that 

belong to other elements but large enough to hold sufficient points to accommodate the interest features. 

Furthermore, the computational time increases exponentially with the radii and makes the process 

notoriously slow. Radii of 50 cm were set as optimal for extracting surfaces, because with this size (i) the 

GI values of flat surfaces, both horizontal and vertical, are suitably separated from other urban elements 
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and (ii) the processing time is acceptable. In Figure 1, the roughness and the GI with different 

neighborhood sizes are shown. These studies were conducted in the two test sites. Figure 1a shows that 

the lowest roughness values correspond to flat surfaces; while higher roughness values correspond to the 

elements with irregular shapes. According to Figure 1b, the highest GI values, close to one, correspond 

to building façades and the lowest, around –1, to surfaces such as roads or pavement. Figure 2a shows 

the GI of the point cloud used as test site B in a color palette in which red corresponds to higher GI 

values, close to one, blue is reserved for the lowest GI values, and yellow and green represent the points 

with an intermediate GI value, around zero. 

 

Figure 1. Behavior of the roughness (a) and GI (b) in five street elements for different 

neighborhood radii. 

Extraction of Vertical and Horizontal Surfaces 

To extract the vertical and horizontal surfaces, two thresholds α𝑉 and α𝐻 are set on the GI index. 

Those points (P𝑖) with a higher 𝐺𝐼𝒊 than α𝑉 are considered to belong to a vertical surface; meanwhile, 

points with a GI𝑖 below α𝐻 are treated as horizontal surfaces. Point clouds obtained after thresholding 

are composed of vertical and horizontal surfaces but also by points that satisfy these conditions that do 

not belong to these surfaces. These points are usually isolated or belong to small urban elements, such 

as treetops or pole-like objects.  

The 3D-connected components were segmented in favor of (i) grouping the points that belong to the 

same surface and (ii) removing isolated noisy points. Connected components analysis scans an image and 

labels its pixels into components if they are connected to each other (either four or eight connected) [34]. 

Once all groups have been determined, each pixel is labeled with an identifier according to the 

component the pixel was assigned to [35]. This technique is adapted to 3D point clouds structured in 

octrees. In a similar manner as for 2D images, the 3D connected components analyze the connectivity 

of the octrees and group in the same segment those that have a common side. In this case, the 3D 

connected components segmentation is defined by two parameters: the octree level (OL) and the 

minimum number of points per segment (MINP). The OL is related to the size of the octrees in which 
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the point cloud is organized. It must be large enough for every octree not to be empty of points but 

sufficiently small for different urban elements to belong to independent octrees. A priori knowledge of 

the point cloud density is required to set the appropriate OL. Optimal OL has been empirically 

established, by the authors, as five times the mean distance between the points of the cloud. The MINP 

determines the number of components and their size. The objective of this step is removing isolated 

noisy points, and only large segments that represent building façades and pavement are considered. Once 

the 3D connected components are segmented, the entire segments recognized as façades are grouped 

into a single point cloud. This operation is repeated for the segments that represent roads, resulting in 

three point clouds: the original measured by the MLS sensor, one containing points that belong to 

building façades, and one with roads and sidewalks information (Figure 2b).  

 

Figure 2. (a) GI in test site 2 and (b) façades detected after the connected components segmentation. 

Original Point Cloud Reduction 

The isolated region coming from preceding procedures that represents the road is analyzed using  

two-meter-wide sections, perpendicular to the x-axis of the local reference frame (Figure 3a). For each 

section, the center of the road and the location of building façades at both sides of the street are 

determined by analyzing the histogram of these point clouds. In every section, the road center is 

considered the modal class value in the y-coordinate histogram of the horizontal surfaces point cloud 

(Figure 3b). Thus, it is possible to approximately recreate the path followed by the MLS sensor, 

providing a kind of virtual MLS trajectory by joining the pavement center detected in each section. 

(a) 
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Additionally, for every 2-m-wide section, the alignment of the existing buildings is established by 

searching the modal class values of the y-coordinate histogram at both sides of the road center. A new 

point cloud is then generated by removing the points that lie beyond the façade line at both sides of the 

street (Figure 3d). This procedure automatically reduces the volume of the original point cloud, speeding 

up the following processes and removing potential false positives caused by vertical building columns. 

Furthermore, since this method is applied in narrow sections 2 m wide, it also accurately and precisely 

eliminates building façades in curved street sections or difficult areas, such as road intersections. 

 

Figure 3. (a) Cloud MLS analysis in two meters width sections; (b) Original point cloud; 

(c) Histogram of façades and horizontal surfaces extracted and (d) Point cloud reduced: 

Isolated region of interest in green and removed façades in red. 

2.2. Pole-Like Elements Detection 

2.2.1. Point Cloud Structuring 

MLS data is composed of several million points so analyzing every single element and its 

neighborhood is computationally expensive and unproductive in terms of feature extraction. To speed 

up the detection and extraction procedure, the point cloud obtained in the previous step is organized and 

analyzed in a 3D vertical pillar structure pattern (Figure 4) [36].  

Every point of the cloud is associated with a pillar, and all the points belonging to the same pillar are 

considered a set. The point cloud is divided in a 2D (m × n) grid composed of m columns and n rows. 
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Each cell of the grid represents a pillar. Every pillar has a unique identifier ID assigned from its (x,y) 

coordinates in the 2D grid. Thus, for every cell ci = (xi, yi), with xi ∈ [0, m] and yi ∈ [0, n] corresponds 

the identifier IDc = (m × yi + xi).  

 

Figure 4. Creation of the pillar structure in the studied point cloud. 

 

Figure 5. Pillar height is delimited until an empty voxel is found. 

To avoid considering pillars as infinitely tall elements, the point distribution in each pillar is analyzed. 

This is achieved by decomposing the pillars into voxels of regular heights. The process starts searching 

the lowest occupied voxel, that is, the voxel with the lowest height that contains at least one point, and 

continues studying the voxels above it until an empty voxel is detected. Once a discontinuity is observed, 
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that is, the first empty voxel above the occupied ones, the points above the discontinuity, if any, are discarded 

and not considered in the following steps. Thus, every pillar is formed by the points whose z-coordinate is 

between the lowest occupied voxel and the first discontinuity (empty voxel), found in the pillar. After 

this operation, every pillar is formed only by the elements connected to the ground level and 

disconnected points that unnecessarily increase the weight of the pillar and may hinder the detection and 

classification process are removed (Figure 5). 

2.2.2. RX Anomaly Detection Algorithm 

Once the point cloud has been structured, vertical urban elements are extracted and classified from 

the pillars in which the point cloud has been decomposed. It is necessary to determine which pillars 

contain a target element and which not. The RX anomaly detection algorithm is applied with this goal. 

This algorithm is commonly used to detect outliers in hyperspectral images, but it can also be used in 

multispectral images. The RX algorithm was developed by Reed and Xiaoli Yu [37]. It is based on the 

Mahalanobis distance and follows Equation (2) [38]: 

𝛿𝑅𝑋(𝑃𝑖) = (𝑟𝑖 − 𝜇)𝑇𝐾𝐿𝑋𝐿
−1 (𝑟𝑖 − 𝜇) (2) 

where 𝒓𝒊 is a vector in which considered features in the studied pillar 𝑃𝑖 are saved, μ stores the mean 

values of the considered variables in the set of pillars of the whole point cloud, K is its sample covariance 

matrix, and L is the number of considered variables. i is the number of pillars in which the point cloud 

is structured. The minimum value of i is zero (the first studied pillar) and the maximum value depends 

on the size of the considered pillars The Mahalanobis distance is used to calculate how far each pillar is 

from the center of the cloud formed by the other pillars, and the shape of the cloud is considered through 

K. Mathematically, the RX algorithm performs some kind of inverse procedure of the principal 

component analysis (PCA); this was proved by Alonso et al. [39]. Anomalies should be understood as 

those elements whose spectral signature differs from the terrain in which they are. Anomalies are 

significant features of special interest to image analysts. In a hyperspectral image, every band contains 

information from a certain wavelength of the electromagnetic spectrum. The RX algorithm detects those 

pixels for which, in any band of the hyperspectral image, exists an anomalous spectral response compared 

with the response of the rest of the pixels of the image. MLS point clouds do not provide spectral 

information, but some geometric features can be computed for each point and its neighborhood. These 

geometric features have singular behaviors in vertical elements, quite different from other street elements.  

In this work, the RX algorithm is applied to three features for every pillar of the point cloud. Height 

difference and the points’ spatial dispersion have been considered to detect those pillars that represent a 

vertical urban element. To study the behavior of street objects in the variables, pillars that represent 

horizontal surfaces and vertical elements were chosen as ground truth (Table 1). 

Height difference (Δh): every pillar is formed by points whose z-coordinate is between the lowest 

occupied voxel and the first voxel discontinuity. The height difference is referred to the distance, in 

terms of the z-coordinate, between the lowest and highest points of all points belonging to a pillar. The 

pillars in roads or pavement areas present a low height difference; however, vertical elements show a 

larger height difference between their lowest and highest points. Most pillars of an urban point cloud 

correspond to horizontal elements because they are the most common ones in streets environments. As 
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can be seen in Table 1, the average value for the height difference in the full set of pillars is close to the 

trend of horizontal elements, with a low height difference (around 0.15 m). 

Spatial dispersion is calculated from x- and y-coordinate dispersion (σx, σy). The distribution of the 

(x,y) coordinates of the points contained in every pillar depends on which element is contained in it. The 

standard deviation of both planimetric coordinates (x,y) are the dispersion measures used as a geometric 

feature. In Table 1, the average (x,y) dispersion in roads and pavement is around 0.14 m; in pole-like 

elements, the average dispersion is a bit lower, around 0.10 m. 

The number of points contained in every pillar (density) in which the point cloud is organized has 

been used in other works as a feature for extracting urban objects with satisfactory results [40]. 

Furthermore, surfaces that are orthogonal to the laser pulses show a higher density than those that are 

nearly parallel [11], a useful property for differentiating orthogonal from parallel elements. However, in 

the current work the accumulative number of points in every pillar was discarded and not included as a 

feature for detecting vertical elements. This is because the number of points that represent an urban 

element depends on the relative position of every element in relation to the MLS sensor and on the laser 

scanner properties. The same urban furniture located at both sides of the street does not have the same 

number of points in the 3D dataset even though they correspond to the same type of element. The closer 

an element is to the sensor, the more points represent it in the point cloud. Incorporating the point 

accumulation as a descriptor in an automatic detection procedure may cause errors in the process due to 

the different behavior of the elements shown in the point cloud. 

To determine the relationship between the RX values and the features, the correlation between these 

variables was studied (Table 2). The RX values and height differences had a high positive correlation 

(0.72); meanwhile, the RX and both dispersions presented a negative correlation (–0.44 for 𝛔𝑿  and  

–0.57 for 𝛔𝒀). The pillars with a ΔH higher than the average and dispersions (𝛔𝑿 and 𝛔𝒀) lower than the 

average have higher RX values. In Table 1, the mean value of the features (ΔH, 𝛔𝑿, 𝛔𝒀) in three RX 

percentiles (P90, P95, and P99) are shown. As the correlation study suggested, the higher the RX values, 

the higher the ΔH and the lower the 𝛔𝑿 and 𝛔𝒀. The pillars included in the RX 99th percentile are 

considered vertical urban elements since they perform a behavior similar to that of vertical elements’ 

ground truth. 

Table 1. Behavior of horizontal surfaces and pole-like elements in the considered features 

and average values among the full set of pillars and in percentiles 90, 95, and 99 of 

RX values. 

 ΔH (m) σx (m) σy (m) 

Ground Truth Horizontal surfaces 0.044 0.141 0.140 

Ground Truth Vertical elements 2.78 0.103 0.098 

Full pillars average 0.151 0.136  0.134 

P90 1.16 0.129 0.114 

P95 1.64 0.121 0.103 

P99 2.96 0.106 0.102 
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Table 2. Correlation matrix between RX and considered geometric features. 

 ΔH σx σy 

RX 0.72 −0.44 −0.57 

2.3. Pole-Like Elements Classification 

Once the vertical pole-like elements are extracted they are classified into two categories: man-made 

poles and trees. In this step each detected vertical element is isolated from the rest and treated as an 

independent set of points. The correct selection of descriptors is a key point to obtain good results in the 

classification procedure. In our case three descriptors for vertical element were computed: the roughness 

of their points (both mean and dispersion values) and the scattering of radial distance (𝝆) of the 

cylindrical coordinate frame centered in the studied pole-like set of points. 

Cylindrical coordinates: After the reference frame transformation performed in the preprocessing 

step, the point cloud is referred to a local coordinate system. In the current step a new reference frame 

transformation is performed for every detected pole, moving from the Cartesian local reference frame 

(x,y,z) to a cylindrical coordinate system (ρ, ϕ, z). For every detected pole-like object its own cylindrical 

coordinate frame system is established. Its cylindrical axis coincides with the direction of Z-axis in the 

local coordinate system and it is located in the (x,y) centroid of the set of the points that belong to the 

pole-like object. From the cylindrical triplet of coordinates, the most interesting feature to accomplish this 

classification is the radial distance (𝛒𝑷). This is because points that belong to man-made poles are closely 

located around the vertical cylindrical axis than those that represent trees due to their thin appearance. 

Thus, the dispersion of 𝛒𝑷 in these elements is lower than in trees.  

Roughness: It has been observed that both mean and standard deviation of roughness have a different 

behavior in each category, being their values significantly differ in both types of pole objects. Roughness 

values of artificial poles are lower than trees due to their flat and smooth shape on their upper part, 

contrary to the irregular and rough appearance of treetops, which cause higher values on these 

descriptors. Additionally, dispersion of this parameter in poles is lower than in trees due to the 

heterogeneity caused by branches and treetops 

In order to test whether the geometric descriptors taken into account are distinguishable and present 

a distinctive behavior in the two considered classes, a separability study has been carried out. To achieve 

this inspection a ground truth has been generated by identifying diverse elements of both categories in 

the point cloud. There are several methods to measure the separability between variables; in this work 

Jeffries-Matusita (JM) distance and transformed divergence, computed from Bhattacharyya distance (BD) 

(3) has been used as separability measure [41]. In Equation (3), (µ𝒂, µ𝒃) and (𝝈𝒂, 𝝈𝒃) are, respectively, the 

mean and standard deviation of classes a and b. JM distance (4) takes values in the range [0,2]. The higher 

JM values, the higher the separability between the studied classes. As can be seen in Table 3, differences 

between man-made poles and trees are considerably higher in the three examined variables, taken values 

around 1.5 and 1.8 for mean and dispersion roughness respectively, and above 1.5 in the radial distance. 

According with the given separability values, it is expected to obtain accurate results by the clustering 

algorithm in the classification of man-made poles and trees. 
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Table 3. Jeffries-Matusita distances for man-made poles and trees in the considered descriptors: 

mean and standard deviation of roughness (µr and σ𝑟) and standard deviation of ρ (σρ). 

Test Case µr poles-trees 𝛔𝒓 poles-trees 𝛔𝛒 poles-trees 

Dataset A 1.51 1.76 1.72 

Dataset B 1.52 1.88 1.53 

3. Test Cases 

The efficiency of the proposed method was tested in two datasets measured by different MLS sensors. 

In every test site the detection and classification procedure have been performed in order to test the 

capability of the proposed method to extract and classify pole-like objects. 

3.1. Mapping Data 

3.1.1. Dataset A 

The point cloud used as test site 1 represents a 300 m section of an urban street in Boadilla del Monte, 

a city in western Madrid, Spain. This street is a type of a wide boulevard, with two lanes for each 

direction, the tracks of a tram in the median strip, and sidewalks and parking areas on both sides of the 

street. Features such as trees, shrubbery, traffic lights, lampposts, containers, bus shelters, pedestrians, 

or vehicles are present in this scene. This dataset was selected to test the method in areas of the city with 

wide streets and a great variety of vertical elements. The slope, 5% on average in this street section, also 

affected the selection of this test site. This dataset comprises more than 3 million points and was acquired 

with the IP-S2 Compact + system produced by Topcon Inc. The IP-S2 incorporates a dual frequency 

GNSS receiver, an IMU, and a connection to external wheel encoders, which receive odometry 

information. These three systems provide a highly-accurate 3D position for the vehicle. The IP-S2 

Compact + scanner is equipped with five laser scanners that collect 150,000 points per second at a range 

of 40 m, with a vertical field of view of 360°. It is also equipped with a panoramic camera that delivers 

360° spherical imagery. 

3.1.2. Dataset B 

A dataset corresponding to test site 2 was measured by a Lynx Mobile Mapper system, produced by 

Optech Inc. The Lynx scanner collects survey-grade LIDAR data at 500,000 measurements per second 

with a 360° field of view (FOV). The Lynx also incorporates the POS LV 520, by Applanix, which 

integrates an IMU with a two-antenna heading measurement system. LIDAR sensors are located in the 

rear of a van. Each sensor registers points in a plane at 60° to the horizontal and 45° to the longitudinal 

axis of the driving direction. This laser scanner provides absolute accuracies of 0.015° in heading, 0.005° 

in roll and pitch, 0.02 m in the X, Y positions, and 0.05 m in the Z position. All values are determined 
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via differential GPS post-processing after data collection using GPS base station data [42]. In this case, the 

point cloud was composed of more than 6 million points, and the measurements were made along a  

400-m-long street in Busto Arsizio, in the Lombardy region, in northern Italy. The street is narrow, and 

there is one lane in each direction and sidewalks, parking areas, and buildings on both sides of the road. 

Furthermore, there is a double barrier of leafy tall trees on both sides of the road that causes occlusions 

in urban furniture, such as lampposts or traffic signs present in this test site. This site was chosen to test 

the efficiency of the method in narrow streets covered by dense woody vegetation. 

3.2. Reference Data 

A ground truth was created in each of the two datasets in order to evaluate the results provided by the 

detection and classification procedures. The target elements included in the detection ground truth 

database are those with a pole-like shape, among which are lampposts, traffic signs, traffic lights, and 

trees. In the classification reference data, pole-like objects are sorted into two categories: man-made 

poles and trees. The reference datasets were composed of all the pole-like elements that were identifiable 

in the original point cloud. Ground truth in Dataset A is composed of 241 pole-like objects; 141 were 

man-made poles and 100 were trees. In Dataset B, a total of 228 pole-like elements were observed; 56 

were trees and 172 artificial poles. 

The validity of our model was quantified by means of completeness, correctness and quality 

quantifiers, which follow Equations (5)–(7), respectively [43]. TP (true positive) are the detected poles 

that matched the reference, FP (false positive) represents the detected poles that do not match the ground 

truth, and FN (false negative) symbolize the poles that exist in the ground truth but are not detected by 

the proposed method. 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =  
𝑝𝑜𝑙𝑒𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑝𝑜𝑙𝑒𝑠 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =  
𝑝𝑜𝑙𝑒𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑝𝑜𝑙𝑒𝑠
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =  
𝑝𝑜𝑙𝑒𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑝𝑜𝑙𝑒𝑠 +  𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (7) 

To quantify the results of the classification step, the classification ground truth was compared with 

the labeled point cloud provided by the clustering algorithm. For every test site, a confusion matrix was 

constructed from which five parameters well-known in the evaluation of classification procedures are 

extracted: overall accuracy, commission and omission errors, and user and producer accuracy [44]. 

3.3. Algorithm Settings 

One of the main purposes of this work was to develop automated extraction and classification 

procedures, which minimize user interaction. To achieve this goal, the variables and the parameters must 

be robust enough to be independent of the attributes of the point cloud and the configuration of the study 

street. We determined that the critical parameters are (i) thresholds in the geometric index to extract 

vertical and horizontal surfaces, (ii) the settings of the connected components segmentation, and (iii) the 

percentile of RX values that represent pole-like objects. The sensibility of each parameter has been 



Remote Sens. 2015, 7 12694 

 

 

analyzed in order to establish the range of values that every parameter can take without affecting the 

final result of the procedure (Table 4). Regarding RX percentile, which is the parameter that determines 

the pole-like objects detection, its influence in the extraction has been studied and quantified for different 

percentile values in order to determine the optimal ones. It has been concluded that RX percentile values 

that provide the best quality rates are P98.5 and P99 (Table 5). 

In the current work, the GI thresholds were set from the studies summarized in Figure 1, in which the 

vertical surfaces (façades) were detected for αV > 0.8 and horizontal elements (pavement and sidewalks) 

were located when αH > −0.8. Thus, the vertical and horizontal surfaces were set to GIi > 0.8 and 

GIi < −0.8, respectively. Regarding the 3D connected components segmentation, the MINP was set to 

2000 points/region. For the octree level (OL), in the cases the mean distance between points was almost 

4 cm, which implies an OL of 20 cm. Other parameters, such as pillar size and RX, are less dependent 

on the characteristics of the cloud and had similar values in every case because they refer to the properties 

of pole-like urban elements. For the test sites used in this work, the pillar size was established at 50 × 50 cm, 

and the RX percentile was fixed at P99. The same settings were applied to both test sites (Table 4). 

Table 4. Algorithm settings used in the test sites A and B and range of values that every 

parameter can take. 

 Algorithm Settings Parameter Ranges 

Vertical surfaces threshold (αV) 0.8 [0.75; 0.85] 

Horizontal surfaces threshold (αH) −0.8 [−0.9; −0.7] 

Minimum number of points (MINP) 2000 points [2000; 3000] 

Octree level (OL) 20 cm [15cm ; 25cm] 

Pillar size 0.5m [0.4m; 0.6m] 

RX Percentile P99 [P98.5; P99] 

4. Results 

4.1. Dataset A 

In the point cloud corresponding to this dataset, 241 pole-like elements have been observed among 

trees, lampposts, traffic signs, traffic posts, and tram posts. The detection procedure extracts 233 vertical 

elements (Figure 6a), of which 230 match with the ground truth reference and the three remaining 

detected poles correspond with a working vehicle that has a similar structure to the pole-like objects 

(Figure 7e). Consequently, eleven poles were undetected, nine of them due to their position in occluded 

or shadowed regions of the point cloud (Figure 7c). The two others non-detected poles are traffic signs 

of low height included in the reference dataset, but not high enough to be extracted by the method 

(Figure 7a,b). According with these results, the detection step takes completeness, correctness, and 

quality rates of 95.4%, 98.7%, and 94.3%, respectively (Table 5).  

Regarding the classification procedure, 217 out of 230 vertical elements were correctly labeled 

(Figure 6b), which means an overall accuracy of 94.35% (Table 6). About trees category, 85 trees were 

correctly labeled and eight were wrongly classified as artificial poles due to their scarce and sparse 

vegetation, similar to that of a man-made pole (Figure 7i). In terms of producer's and user's accuracy, 

91.4% and 94.44% are obtained in trees category with commission and omission errors of 5.56% and 
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8.6%, respectively. In relation to poles, five of 137 man-made poles included in the ground truth 

reference were incorrectly labeled. These poles are close to trees and their branches modify the 

appearance of the artificial poles, providing a scattered shape more characteristic of trees than of its own 

nature (Figure 7f,g). This classification results in a commission and omission errors of 5.71% and 3.65%, 

being the producer’s and user’s accuracy achieved 96.35% and 94.29%, respectively (Table 6). In an 

overall evaluation of detection and classification procedures, 217 pole-like objects out of 241 were 

correctly detected and classified, which means an accuracy of 90.04% (Table 7). 

 

Figure 6. Results for the detection (a) and classification (b) procedure in Test Site 2. 

Table 5. Completeness, correctness and quality achieved with the proposed detection 

method in the two studied test sites with different RX percentile values. 

Test Site A/ 

RX Percentile 
Observed Detected FP FN TP Completeness Correctness Quality 

97.5 241 347 111 5 236 97.93 68.01 67.05 

98 241 314 78 5 236 97.93 75.16 73.98 

98.5 241 252 17 6 235 97.51 93.25 91.09 

99 241 233 3 11 230 95.4 98.7 94.3 

99.5 241 144 2 99 142 58.92 98.61 58.44 

Test Site B/ 

RX Percentile 
Observed Detected FP FN TP Completeness Correctness Quality 

97.5 228 359 136 5 223 97.81 60.43 61.26 

98 228 314 91 5 223 97.81 68.83 69.91 

98.5 228 244 21 5 223 97.81 91.39 89.56 

99 228 222 2 8 220 96.5 99.1 95.7 

99.5 228 119 1 110 118 51.75 99.16 51.53 

Trees 

Man-made 

poles 

 

Poles 

detected 

(a) 

(b) 
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Figure 7. (a,b) little signals appearance in a RGB image and in the point cloud, 

(c,d) occlusion of a tree trunk, (e) in red, features detected in a work vehicle, (f,g) man-made 

pole surrounded by tree branches in a RGB image and in the point cloud, (h) rough and 

scattered man-made traffic light wrongly classified as a tree, and (i) tree with scarce and 

sparse vegetation misclassified as a man-made pole. 

Table 6. Confusion matrix of the classification procedure in test site A, where columns are 

the ground truth and rows represent the classification results. 

Dataset A Trees Poles Σ 

Trees 85 5 90 

Poles 8 132 140 

Σ 93 137 230 

Overall Accuracy = 94.35% (217/230) 

  

(a) (b) (c) 

(d) 

(i) (h) 

(e) (f) (g) 
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Table 6. Cont. 

Dataset A Commission Omission 

Trees 5.56% (5/90) 8.6% (8/93) 

Poles 5.71% (8/140) 3.65% (5/137) 

 Producer’s Accuracy User’s Accuracy 

Trees 91.4% (85/93) 94.44% (85/90) 

Poles 96.35% (132/137) 94.29% (132/140) 

Table 7. Quality evaluation complete procedure in Dataset A and B. 

4.2. Dataset B 

In this street section, 228 vertical elements were observed of which 220 were correctly extracted, 

eight were undetected, and two were falsely detected. Thus, the completeness of the detection procedure 

was higher than 96%, the correctness above 99%, and the quality higher than 95% (Figure 8a,b and 

Table 5). Regarding the eight false negatives, the undetected elements, seven were discarded by the 

method because they were a special kind of traffic sign, with a lower height than ordinary signs 

(Figure 7a,b). The remaining missing pole element corresponded to a tree trunk, which was partially 

occluded in the point cloud by a parked van (Figure 7d). The two false positives were detected from the 

structure of a van that had a shape similar to pole-like objects, with high height differences and low 

dispersion in (x,y) coordinates. The number of non-target pole-like elements detected would have 

increased, especially inside the footprint of buildings, unless the original point cloud reduction step had 

not been carried out. In relation to the classification step, in this road section the overall accuracy rate 

was 95.0%, which means that 209 out of 220 vertical elements were correctly labeled (Figure 8c,d). 

According to Table 8, ten man-made poles were mistakenly labeled as trees. Six of these poles were 

surrounded by branches of nearby trees, which caused the scattered and rough appearance of their pole 

in the cloud. The remaining four poles were low traffic lights, which were misclassified due to the 

roughness generated by their upper light structure (Figure 7h). Only one tree was wrongly classified as 

an artificial pole. The shape of this tree was similar to a pole, with a thin, tall trunk and barely scattered 

branches. These results provide a commission and omission rate of 6.02% and 0.63% in the trees and 

1.85% and 15.87%, respectively, in the man-made poles category. For accuracy, tree classification 

achieved a producer accuracy of 99.36% and a user accuracy of 93.98%; meanwhile, the pole labeling 

was 84.13% and 98.15% in the producer and user accuracy, respectively (Table 8). Thus, 209 vertical 

elements out of 228 were correctly detected and labeled, which meant a global accuracy of 91.67% of 

the complete procedure (Table 7). 

  

 Observed Detected FP Undetected 
Correctly 

Labeled 

Wrongly 

Labeled 
Accuracy 

Test site A 241 233 3 11 217 13 90.04 (217/241) 

Test site B 228 222 2 8 209 11 91.67 (209/228) 
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Table 8. Confusion matrix of the classification procedure in Dataset B, where columns are 

the ground truth and rows represent the classification results. 

Dataset B Trees Poles Σ 

Trees 156 10 166 

Poles 1 53 54 

Σ 157 63 220 

Overall Accuracy = 95.0% (209/220) 

Dataset B Commission Omission 

Trees 6.02% (10/166) 0.63% (1/157) 

Poles 1.85% (1/54) 15.87% (10/63) 

 Producer’s Accuracy User’s Accuracy 

Trees 99.36% (156/157) 93.98% (156/166) 

Poles 84.13% (53/63) 98.15% (53/54) 

 

Figure 8. A zenithal and perspective view of the detection (a,b) and classification (c,d) 

results achieved with the proposed method in dataset B. 

(b) 

Detected Poles 

Trees 

Man-made 

poles 

(c) 

(d) 

(a) 
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4.3. Comparison with Previous Methods 

The results provided by our method were compared with other algorithms to evaluate its performance. 

In the current literature, several methods focus on extracting urban objects. In [15] the target elements 

were lampposts; trees were the main category in [27], and [23] extracted all types of pole-like objects 

without differentiating between different types. The lack of a common dataset with a ground truth 

associated means that every work uses its own dataset and creates a ground truth with visual inspections 

of the field and the point cloud. In [23] a method for extracting pole-like objects is presented that 

achieves a completeness detection rate average of 92.3% and a correctness of 83.8% in the four datasets. 

Most false positives obtained by this method are detected inside the footprint of buildings. The method 

developed by [30] achieved completeness and correctness rates of 77.7% and 81.0%, respectively, for 

targets closer than 30 m to the scanner route, which means a mean accuracy of 79.3%. Only when targets 

closer than 12.5 m were considered, these rates increased, achieving 83.5% and 86.5% for completeness 

and correctness, respectively, and a mean accuracy of 85%. Most failures in the remotest parts of the 

clouds were due to shadowed areas and low point density in these areas. [32] extracted lampposts in six 

datasets achieving completeness rates above 99% and correctness between 97.55% and 99.01; the quality 

index ranged from 96.74% to 98.21%. Despite the high accuracy, this method seems to be far from 

automated due to the large number of thresholds to be set to conduct the extraction. Individual street 

trees were extracted in [29] and accuracy rates above 98% were achieved. This method presents some 

limitations because it is designed to be used in flat terrains, and all trees must be the same height from 

the ground. Furthermore, this method achieves accurate results in individual street trees, but its 

effectiveness in dense vegetated areas where treetops are merged has not been tested. In [26], the accuracy 

in pole-like objects recognition was 63.9%, and in [31] the completeness and correctness achieved in 

detecting individual trees ranged from 80.7% to 81.2% and from 70.2% to 75.5%, respectively. 

The pole-like object detection method proposed in this paper achieved quality rates in the two datasets 

of 94.3% and 95.7%, respectively, which are slightly higher than some of the previous methods. The 

two datasets used to test this method were measured by different sensors in diverse scenarios, which 

prove its robustness. This algorithm is independent of the scanning geometry and of the slope of the 

street because the coordinates are transformed in the preprocessing step. In addition, this process detects 

the horizontal and vertical surfaces in the point cloud and automatically delimits the regions of interest, 

thus avoiding false positives inside the footprints of buildings. Furthermore, this process does not require 

a priori information or previous training, and the number of thresholds has been minimized in order to 

automate the procedure. However, certain problems may occur in remote areas of the cloud with low 

point density and in trees whose trunks appear tilted. A previous work [30] proposed the development 

of methods for separating tree trunks from other poles. In the current work, trees and man-made poles 

were distinguished with a clustering algorithm. This classification procedure achieved an overall 

accuracy higher than 90% in every data case. 

5. Conclusions and Future Works 

The main novelties of the present work are: (i) the development of a geometric index that extracts 

horizontal and vertical surfaces and can also be used to reconstruct the MLS vehicle trajectory, (ii) the 
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detection of pole-like objects by means of an anomaly detection algorithm and their classification in 

trees and man-made elements without prior training data, and (iii) the definition of a robust procedure 

that can be easily automated and provides accurate results with minimal user intervention.  

The pole-like object detection method proposed in this paper achieved quality rates in the two datasets 

of 94.3% and 95.7%, respectively, which are slightly higher than other methods. The two datasets used 

to test this method were measured by different sensors in diverse scenarios, which prove its robustness. 

This algorithm is independent of the scanning geometry and of the slope of the street because the 

coordinates are transformed in the preprocessing step. In addition, this process detects the horizontal and 

vertical surfaces in the point cloud and automatically delimits the regions of interest, thus avoiding false 

positives inside the footprints of buildings. Furthermore, this process does not require a priori 

information or previous training, and the number of thresholds has been minimized in order to automate 

the procedure. However, certain problems may occur in remote areas of the cloud with low point density 

and in trees whose trunks appear tilted. 

The typology and casuistry of urban pole-like objects are very diverse, and there is probably no single 

best method for detecting and classifying them in all cases. According to the results in this work, we can 

conclude that this method is robust, useful for automatically detecting and classifying pole-like objects, 

and provides satisfactory results regardless the heterogeneity of the area and the specifications of the 

sensor and does not need the knowledge of the measured MLS trajectory. In the future, other anomaly 

detection algorithms could be tested in the detection step, and other features such as laser intensity could 

be introduced in the classification procedure to expand the classification to other types of urban elements. 

The detecting procedure provided quality values of around 95% in two test sites, and the classification 

step achieved an overall accuracy above 94%. In an overall evaluation of both procedures, more than 

90% of the vertical elements were correctly detected and classified. 
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