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Abstract: Here, we conducted drought stress gradient experiments of maize, and used ten 

water content related vegetation indices (VIs) to estimate widely variable canopy water 

content (CWC) and mean leaf equivalent water thickness at canopy level (𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅) based on in 

situ measurements of Lambertian equivalent reflectance and important biological and 

environmental factors during the 2013−2014 growing seasons in the North China Plain. 

Among ten VIs, the performances of green chlorophyll index (CIgreen), red edge chlorophyll 

index (CIred edge), and the red edge normalized ratio (NRred edge) were most sensitive to the 

variations of CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. Simulated drought in two differently managed irrigation years 

did not affect the sensitivities of VIs to the variations in CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. However, the 

relationships between CWC and VIs were more noticeable in 2014 than in 2013. In contrast, 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and VIs were more closely related in 2013 than in 2014. CWC and relative soil water 

content (RSWC) obviously exhibited a two-dimensional trapezoid space, which illustrated 

that CWC was determined not only by soil water status but also by crop growth and stage of 

development. This study demonstrated that nearly half of the variation in CWC explained by 

spectral information was derived from the variation in leaf area index (LAI). 

Keywords: canopy water content; drought stress gradients; hyperspectral remote sensing; 

maize canopy; spectral vegetation indices 
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1. Introduction 

Vegetation water content serves as an important biophysical characteristic of terrestrial vegetation. 

Knowledge related to vegetation water conditions and how it varies can contribute to accurately detecting 

the physiological status of vegetation [1–3]. It can also provide useful information for making sound 

decisions related to agriculture irrigation and assist with drought monitoring assessment [2,4,5]. Generally, 

canopy water content (CWC) and the mean leaf equivalent water thickness at the canopy level (𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅) are 

widely used for describing the vegetation water status [6,7]. Since many biogeochemical processes 

including photosynthesis, evapotranspiration and net primary production are closely related to vegetation 

CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ [8–10], therefore, gaining a thorough and better understanding of vegetation CWC and 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ will play an important role in mapping and monitoring the conditions of terrestrial ecosystems such 

as environmental stress [11], wildfire potential [12] or soil moisture retrieval [13]. 

Remote sensing techniques provide a non-destructive, effective, and reliable method for assessing canopy 

biophysical variables [5]. Hyperspectral remote sensing has been widely used especially to estimate leaf area 

index (LAI) [14–16], fraction of absorbed photosynthetically active radiation (fAPAR) [17,18], chlorophyll 

content [19–22], photosynthetic parameters [23], biomass [14], and gross primary production [21,22]. In 

recent years, studies of vegetation water content using remote sensing techniques have received 

widespread attention, and have become a focus point during vegetation monitoring and parameter 

inversion. Currently, a few studies have been conducted on the estimation of vegetation water content 

using hyperspectral data [5–7,10,24,25]. In these studies, two major approaches, physically-based 

radiative transfer models [5,6,10,24,25] and statistical models mainly including the first derivative 

reflectance spectra [6,7,25], spectral reflectance indices [5,7,10,24,26], continuum removed spectra 

analysis [6,10], and full spectrum methods [26] were used. 

Radiative transfer models, being functions of canopy, leaf, and soil background characteristics, had 

theoretically physical foundations, but they had the ill-posed nature of model inversion [27,28]. Statistical 

approaches, being sensor-specific and dependent on site and sampling conditions, are easy to implement [28,29]. 

In addition, the full spectrum methods, such as partial least squares regression, had better predictive 

powers for biophysical variables [30], but it suffers from the problem of over fitting [31]. Moreover, 

Mirzaie et al. [26] also estimated vegetation water content by using all possible band combinations of 

vegetation indices (VIs) and obtained satisfactory results. Here, in the present study, the performances of 

the most widely used VIs were evaluated to predict CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ so that these standard VIs could be 

linked with satellite data for applications at broader temporal and spatial scales. 

Drought stress gradient experiments are effective platforms for constructing a universal algorithm for 

accurately estimating a wide dynamic range of CWC. This algorithm needs to consider both the 

saturation of VIs at moderate to high vegetation conditions and the adaptation of estimation models 

using VIs in cases of sparse canopies. This study used spectral reflectance and important biological and 

environmental measurements from maize drought stress gradient experiments conducted during the 

growing seasons in 2013−2014. The goals were to: (i) compare and evaluate the accuracy of ten VIs in 

estimating CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ along soil moisture gradients during the entire growing season for maize; 

(ii) test whether two years of different irrigation management techniques can significantly affect the 

relationships between VIs and CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅; (iii) determine whether a robust algorithm for widely 

variable CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ can be devised; and (iv) to assess the performance of hyperspectral remote 
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sensing data for monitoring the seasonal variations of CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. This study was conducted to 

select the most sensitive VIs to the variations of CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅, to construct a universal algorithm for 

the accurate estimations of CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅, and ultimately to evaluate the performances of VIs for 

monitoring crop canopy water status for maize. 

2. Materials and Methods 

2.1. Study Area 

Experiments on responses of maize to drought stress gradients were conducted during 2013−2014 in 

a large water-controlled experimental field at Gucheng Ecological and Agricultural Research Station 

(39°08′N, 115°40′E, 15.2 m a.s.l.), Chinese Academy of Meteorological Sciences, in Dingxing County, 

Hebei Province, China. The warm–temperate continental monsoon climate provides a mean annual air 

temperature and precipitation of 11.7 °C and 551.5 mm, respectively. The typical brown soil had an 

organic matter content of 12.1 g∙kg−1 and total nitrogen of 0.56 g∙kg−1 [32]. This study area is located in 

a typical irrigation agriculture region in the North China Plain. The dominant cropping system in this 

region is a double cropping system of winter wheat and especially maize. The selected crop type was 

maize and the maize hybrid was Zheng Dan 958, sown in late June and harvested in early October. This 

study employed 2 × 4 m experimental plots with natural field soil; each plot was equipped with a 3 m 

deep concrete wall to avoid horizontal water exchange, and also a buffer at a depth of 3 m to avoid 

vertical water exchange (Figure 1). Large electric rain-out shelters were used to exclude rainfall, so that 

the water supply could be artificially controlled for crop growth and development [33]. 

 

Figure 1. Photo 2 × 4 m experimental plots and large electric precipitation control shelters at 

Gucheng Ecological and Agricultural Research Station, Chinese Academy of 

Meteorological Sciences, Dingxing County, Hebei Province, China. 

2.2. Experimental Design and Treatments 

Prior to the irrigation treatments using water gradients, a small amount of appropriate irrigation was 

conducted to maintain a consistent background level of soil water in all plots; after this initial irrigation, 

aside from the irrigation methods described below, the maize was never irrigated. In 2013, seven 

different amounts were applied to various plots for water irrigation treatments numbered 1 to 7 (120, 

100, 80, 60, 40, 25, and 15 mm). This was completed on 24 July 2013 at the seven-leaf stage of maize 

4 m 

2 m 
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after observations on 23 July 2013. In addition, corresponding rainfed plot controls with no irrigation 

and a rainfed field control were designed. The first measurements after irrigation were conducted on 29 

July 2013, and only in irrigation treatments 1 (120 mm) and 2 (120 mm) were re-wetted with the 

amounts of 80 mm and 40 mm on 26 August 2013 after field measurements on 25 August 2013 at the 

flowering stage in maize, respectively (Table 1). In 2014, seven water treatments from 1 to 7 were conducted 

with each treatment to simulate different irrigation amounts (225, 150, 120, 90, 60, 30, and 10 mm) and the 

corresponding rainfed plot control with no irrigation was also designed on 1 July 2014; in this case, no 

field control was employed (Table 1). Three replicates were conducted during the experiments, with 

each plot being one replicate in both 2013 and 2014. In total, 24 experimental plots were constructed: 

seven with water gradients for 21 plots plus three control plots as well as a field control in 2013. 

Similarly, 24 experimental plots were also constructed in 2014 but without a field control. 

Table 1. Experimental design and irrigation amounts (mm) in 2013 and 2014. 

Year Control Plot Treat. 1 Treat. 2 Treat. 3 Treat. 4 Treat. 5 Treat. 6 Treat. 7 Field Control 

2013 0 120 + 80 100 + 40 80 60 40 25 15 0 

2014 0 225 150 120 90 60 30 10 - 

Treat. is the abbreviation for treatment and “+” indicates rewetting irrigation. 

2.3. Field Measurements 

2.3.1. Canopy Spectral Reflectance 

A total of sixteen sets of field reflectance spectra measurements were made on a nearly weekly basis 

during July–October as follows: 23 and 30 July, 8, 18 and 25 August, 5 and 20 September, and 8 October 

in 2013, and 10 and 18 July, 1, 7 and 19 August, 3, 16 and 27 September in 2014 (Table 2). An ASD 

FieldSpec3 spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA) was used to measure 

spectral reflectance (details in [18]). Spectral measurements were made on days with clear skies between 

11 h and 14 h. The fiber optics, with a field of view of 25°, were handheld approximately 1−1.3 m above 

the undisturbed maize canopy at the nadir position at each experimental plot for every observation 

during the growing seasons of 2013−2014 as well as for the field control in 2013. Each water treatment 

was replicated three times and with 20 spectral readings for each spectral measurement above the maize 

canopy per experimental plot. The mean value of spectral reflectance averaged over these 20 spectral 

measurements was used as the spectral reflectance of each experimental plot. During spectral 

measurements, a standard white spectralon target with a reflectance of 0.99 was placed on the ground 

next to the experimental plots and was used as a reference against which the target objects could be 

calibrated. Thus, the reflectance values became dimensionless. 

Table 2. Field reflectance spectra measurement dates in 2013 and 2014. 

Year NO. 1 NO. 2 NO. 3 NO. 4 NO. 5 NO. 6 NO. 7 NO. 8 

2013 23 July 30 July 8 August 18 August 25 August 5 September 20 September 8 October 

2014 10 July 18 July 1 August 7 August 19 August 3 September 16 September 27 September 
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2.3.2. CWC 

We made three replicates for each irrigation treatment, and used one standard maize plant per 

experimental plot as well as 3−4 standard plants for the field control, and harvested these plants to 

measure fresh weight (FW, g∙m−2) and dry weight (DW, g∙m−2) for leaves, stems, and fruit. The 

area-coefficient method was used to measure LAI [18]. In this study, only one standard plant per plot was 

harvested, and its individual lengths and widths were measured on each sampling date. Observation 

dates of biomass and LAI were the same as for the spectral reflectance measurements. Using the dates 

listed above, eight data collection campaigns per year were conducted, with sixteen campaigns in total. 

At the canopy level, CWC can be defined as the quantity of water per unit area of ground surface 

(g∙m−2) [34]. CWC is calculated by 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅, defined as quantity of water per unit leaf area (g∙cm−2) [35], 

multiplied by the canopy LAI or the difference between FW and DW. In this study, CWC was the 

quantity of canopy leaf water in maize per unit area of ground surface calculated by Equation (1). 

Additionally, the canopy level reflectance is usually affected by LAI and a large variability in LAI will 

enhance water content related features in spectral reflectance, and thus improve the estimation accuracy 

of CWC. Therefore, to evaluate the effects of LAI on water content related VIs for the estimation of 

CWC, we also calculated 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ by Equation (2): 

CWC = FW – DW (1) 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ = CWC/LAI (2) 

2.3.3. Soil Water Content 

After the spectral measurements, gravimetric soil moisture (θm, %) was measured by oven-drying soil 

samples at 105 °C for 24 h for controlled-gradient plots, as well as for the corresponding plot and field 

controls. Every 10 cm soil layer was sampled for 0−50 cm soil profiles in 2013 and 0−90 cm in 2014, 

with three replicates for one water treatment and one sampling per plot. In addition, four observation 

sites were used for the field control with one replicate for each observation site in 2013. Relative soil 

water content (RSWC, %) was the ratio of θm and field capacity (Fc; Equation (3)): 

RSWC = (θm/Fc) × 100% (3) 

In this study, the roots of maize penetrated about 30 cm. Therefore, the mean values of RSWC were 

averaged over three values at 10, 20 and 30 cm soil depth represented the RSWC value of each 

experimental plot. 

2.4. Vegetation Indices Used in This Analysis 

We describe ten water content related VIs with the goal of examining their potential of estimating 

widely variable CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (Table 3 [4,19,36–41]). 
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Table 3. Vegetation indices (VIs) used in the study and related source references. 

Index Equation Reference 

Normalized difference vegetation index (NDVI) (ρnir – ρred)/(ρnir + ρred) [36] 

Red edge normalized ratio (NRred edge) (ρ750 – ρ710)/(ρ750 + ρ710) [37] 

Water index (WI) ρ900/ρ970 [4] 

Normalized difference water index (NDWI) (ρ860 – ρ1240)/(ρ860 + ρ1240) [38] 

Land surface water index (LSWI) (ρnir – ρswir)/(ρnir + ρswir) [39,40] 

Green chlorophyll index (CIgreen) (ρ750/ρ550)–1 [19] 

Red edge chlorophyll index (CIred edge) (ρ750/ρ710)–1 [19] 

Normalized red edge reflectance curve area (680–780nm; Area680–780) 
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[41] 

Normalized reflectance curve area (1015–1050nm; Area1015–1050) 
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This study 
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Notes: ρnir, ρred, and ρswir are the averaged reflectance among the waveband range to match MODIS data in the 

near-infrared (841–876 nm), red (620–670 nm), and shortwave infrared (SWIR1: 1628–1652 nm) 

wavelengths, respectively. 

2.4.1. Normalized Indices 

The normalized difference vegetation index (NDVI) is the most commonly used vegetation index. It 

is based on the contrast between the maximum absorption in the red due to chlorophyll pigments and the 

maximum reflectance in the infrared caused by leaf cellular structure and LAI [30]. In addition, a red 

edge normalized ratio (NRred edge) uses the same NDVI formulation but with the red edge (around 

700 nm) bands. NRred edge is also a good predictor of green vegetation information [42]. Viña and 

Gitelson [17] used it to estimate fAPAR, and Wu et al. [36] tested NRred edge in the remote estimation of 

canopy chlorophyll content. 

2.4.2. Water-Related Indices 

Studies have been conducted on VIs closely related to canopy water status. The land surface water 

index (LSWI) was calculated as the normalized difference between the near-infrared (NIR; 780−890 nm) 

and the shortwave-infrared (SWIR; 1580 nm−1750 nm) wavelengths [39,40]. The water band index 

(WI) is the ratio between the reflectance at 900 and 970 nm [4]. In addition, the normalized difference 

water index (NDWI) used reflectance values in the 860 nm in the NIR region and 1240 nm in the SWIR1 

region spectral bands of hyperspectral data [38]. 

2.4.3. Chlorophyll Indices 

Vegetation water content was not only related with water information, but also had quite a close 

relationship with crop greenness (chlorophyll). Gitelson et al. [19] proposed the chlorophyll index of red 

edge (CIred edge) model using a stepwise technique based on a linear regression of the model vs. total 

chlorophyll content in the canopy. They found a close relationship between CIred edge and canopy 

chlorophyll content in maize and soybean. A further application of CIred edge was for remote sensing of 

gross primary production [19,21,22,43]. In this study, we used both of the CIred edge and the green 

chlorophyll index (CIgreen). 
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2.4.4. Normalized Reflectance Curve Area Indices 

Ren et al. [41] showed that the performance of the red-edge reflectance curve area between the 

normalized reflectance curve and wavelength in 680–780 nm region was better than that of traditional 

VIs and the red-edge position when used to estimate green aboveground biomass in arid and semi-arid 

areas. Studies showed that two water absorption features exist at approximately 970 nm and 1200 nm 

that were caused by the absorption by O-H bonds in liquid canopy water [44]. Moreover, studies 

demonstrated that derivative spectra at the right slope of the 970 nm absorption feature and at the left 

slope of the 1200 nm feature had potential as predictors of CWC [6]. Therefore, we not only introduced 

the normalized red edge reflectance curve area (680–780 nm; Area680–780), but also constructed the 

normalized reflectance curve area (1015–1050 nm; Area1015–1050) and the normalized reflectance curve 

area (1110–1170 nm; Area1110–1170). Our goal was to explore their sensitivities to the variations of CWC 

and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. Here, the reflectance curve area refers to an area between the reflectance curve and the 

horizontal coordinate axis (wavelength) in the three regions of 680–780 nm, 1015–1050 nm and  

1110–1170 nm, respectively. 

All statistical analyses were performed with SPSS 17.0 software (SPSS, Chicago, IL, USA), and 

SigmaPlot 10.0 software (Systat, San Jose, CA, USA) was used to draw the figures. 

3. Results 

3.1. Temporal Variations of Soil Moisture, CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ 

The RSWC and CWC varied seasonally under different water treatments for maize during the growing 

seasons in 2013−2014 (Figure 2). In both years, different irrigation treatments led to significant 

differences of soil water status. In 2013, controlled-irrigation started on 24 July at the seven-leaf stage 

after observations on 23 July 2013 and RSWC gradients were observed from 29 July 2013. In 2014, early 

soil water control was conducted on 1 July 2014 at the three-leaf stage, and RSWC gradients were 

observed from 10 July 2014. In addition, the rewetting treatments with 40 and 80 mm were made only 

for treatments 1 and 2 on 26 August 2013. These rewetting treatments induced a sudden increase of 

RSWC for these two treatments on 5 September 2014 (the first measurements after rewetting treatments), 

which gradually decreased later in the experiment. The status of soil water in 2013 and 2014 was similar 

in that a significant difference was observed among the drought-treated plots at the early stage of 

irrigation treatment, although these differences gradually declined over time and into the late stage of 

maize growth. Except for the observation dates of 23 July and 25 August for the field control in 2013, 

other values of RSWC were basically maintained at a level above the saturated water content. Thus, it 

was demonstrated that different irrigation gradient treatments resulted in RSWC gradients with different 

degrees of drought for each experimental plot. In total, compared with the soil water conditions in 2013, 

2014 tended to be drier with RSWC values below 40% during the middle-late stages of growth in maize. 

Therefore, each treatment plot basically maintained consistent and extremely dry conditions. 
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Figure 2. Variations in relative soil water content (RSWC, %), canopy water content (CWC, 

g∙m−2) and mean leaf equivalent water thickness at the canopy level (𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅, i.e., CWC/leaf 

area index (LAI), g∙cm−2) during the growing seasons of 2013 and 2014. Error bars indicate 

the mean standard errors of three replicates. For 2013, treatments 1–7 indicate seven 

different irrigation amounts, 120, 100, 80, 60, 40, 25, and 15 mm, as well as a rainfed plot 

control with no irrigation (Control) and a rainfed field control (Field); for 2014, treatments 

1–7 indicate different irrigation amounts of 225, 150, 120, 90, 60, 30, and 10 mm and the 

rainfed plot control with no irrigation (Control). 

Compared with CWC and RSWC, the seasonal trend of 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅  was not obvious. However, the 

differences caused by the drought gradient were remarkable (Figure 2). In 2013, after the irrigation 

treatment on 24 July, improved soil water status resulted in a higher value of 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. In 2014, it followed 
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this pattern during the early stage of growth in maize, but when entering into the middle-late stages, the 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ values declined with experimental plots well-supplied with water entering into the reproductive 

stage. For the experimental treatments of moderate or severe drought, the delayed phenological phases 

or not entering into the reproductive stage resulted in that 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ did not always decrease and finally 

reached its minimum value for each plot at the end of the 2014 growing season (Figure 2). 

Obvious differences were observed among each water treatment, between 2013 and 2014, and in the 

seasonal variations in CWC. Based on measurements of CWC, the differences among the drought-treated 

plots and corresponding control plots were amplified. This not only reflected the difference of soil water 

background, but also illustrated the differences in plant development that resulted from differences in 

soil water content during the entire growing season. Although different degrees of drought-stress 

existed, CWC showed a single peak seasonal trend, with the peak occurring around 20 August. Periods 

with superior soil water conditions had a more obvious single peak seasonal trend. In contrast, during 

drought stress the seasonal trend was less obvious and the peak values decreased or the date of the peak 

values was delayed (Figure 2). At an inter-annual scale, the seasonal trend of CWC was consistent with 

RSWC, and crops obviously grew better in 2013 than in 2014. The overall values of CWC were higher in 

2013 than in 2014. 

Table 4 presents the descriptive statistics of canopy biophysical characteristics. As expected, the 

irrigation treatments induced a wide variation in LAI, FW, DW, CWC, and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. In addition, the two 

differently managed irrigation methods occurring at different stages for maize significantly affected 

maize growth and development. LAI in 2013 varied and this variation was obviously higher than the 

variation in 2014 (Table 4). The values of leaf FW/DW, CWC, and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ were all higher in 2013 than in 

2014 (Table 4). In general, compared with 2013, drought affected crop growth more in 2014. 

Table 4. Summary statistics of canopy biophysical characteristics of maize acquired in situ under 

different irrigation treatments during the 2013 (n = 72) and 2014 (n = 64) growing seasons. 

Canopy Biophysical 

Characteristics 
Year 

Range 

(Min–Max) 
Mean Median SEM 

Std. 

Deviation 
CV 

LAI (leaf area index) 
2013 0.23–3.60 1.75 1.89 0.11 0.95 0.54 

2014 0.06–2.78 0.89 0.75 0.09 0.71 0.80 

FW (fresh weight, g∙m−2) 
2013 44.3–917.2 412.2 414.8 27.9 236.5 0.57 

2014 12.7–668.7 186.0 143.8 20.0 160.3 0.86 

DW (dry weight, g∙m−2) 
2013 7.2–206.8 91.2 95.7 6.5 55.3 0.61 

2014 3.3–174.3 46.5 35.6 5.2 41.3 0.89 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (mean leaf equivalent water 

thickness at canopy level, g∙cm−2) 

2013 0.014–0.026 0.018 0.018 0.00028 0.0024 0.13 

2014 0.010–0.023 0.016 0.016 0.00039 0.0032 0.20 

CWC (canopy water content, g∙m−2) 
2013 36.9–761.4 320.9 322.2 21.7 183.7 0.58 

2014 9.4–494.4 139.5 105.3 15.0 119.7 0.86 

SEM is the standard error of mean and CV is coefficient of variation. 

3.2. Relationships between CWC, 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and Biophysical Properties and RSWC 

Table 5 summarizes the correlated relationships between CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ with LAI, FW, DW, and 

RSWC for 2013 and 2014. In 2013, CWC showed an extremely significant linear correlation with FW, 

LAI, and DW. Significant linear relationships were also observed between CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ as well as 
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𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and RSWC. Similarly, CWC had extremely significant linear relationships with FW, DW, and LAI 

in 2014. However, the position of the relative importance between the relationships of CWC and DW and 

LAI changed. In comparison, the relationship between CWC and DW in the drier year was slightly closer 

than that of CWC and LAI. In addition, significant linear relationships existed between 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and 

RSWC, but not between CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. Comprehensively considering the data sets in 2013 and 2014, 

CWC had extremely significant linear relationships with FW, LAI, DW, and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅; and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ also had a 

significant linear relationship with RSWC. Although there were better water conditions in 2013 and it 

was relatively drier in 2014, CWC was always closely correlated with FW, LAI, and DW. However, it 

was never significantly linearly correlated with RSWC. Furthermore, it is important to note that the 

relationship between CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ varied with inter-annual eco-hydrological status. That is, CWC 

had significant linear relationship with 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅  in 2013, although it was never significantly linear 

correlated with 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ in 2014. 

Table 5. Spearman’s rank correlation coefficients between CWC, 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅  and canopy 

biophysical variables and soil moisture during the 2013 and 2014 growing seasons. 

 
RSWC (Relative Soil Water 

Content, %) 
𝑬𝑾𝑻̅̅ ̅̅ ̅̅ ̅ LAI FW DW 

  2013 (n = 72) 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (mean leaf equivalent water 

thickness at canopy level, g cm−2) 
0.441 ***     

LAI (leaf area index) −0.054 0.360 **    

FW (fresh weight, g m−2) 0.027 0.472 *** 0.984 ***   

DW (dry weight, g m−2) −0.078 0.347 ** 0.962 *** 0.963 ***  

CWC (canopy water content, g m−2) 0.046 0.514 *** 0.977 *** 0.997 *** 0.944 *** 

  2014 (n = 64) 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (mean leaf equivalent water 

thickness at canopy level, g cm−2) 
0.513 ***     

LAI (leaf area index) 0.030 −0.048    

FW (fresh weight, g m−2) 0.113 0.126 0.977 ***   

DW (dry weight, g m−2) 0.015 0.027 0.988 *** 0.987 ***  

CWC (canopy water content, g m−2) 0.143 0.156 0.970 *** 0.998 *** 0.978 *** 

  Total (n = 136) 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (mean leaf equivalent water 

thickness at canopy level, g cm−2) 
0.525 ***     

LAI (leaf area index) 0.054 0.317 ***    

FW (fresh weight, g m−2) 0.126 0.438 *** 0.987 ***   

DW (dry weight, g m−2) 0.027 0.333 *** 0.981 *** 0.980 ***  

CWC (canopy water content, g m−2) 0.153 0.466 *** 0.981 *** 0.998 *** 0.969 *** 

All correlations are significant at * p < 0.05, ** p < 0.01 level, or *** p < 0.001. 

3.3. Relationships between CWC, 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and VIs 

The linear/logarithmic relationships were constructed between CWC and ten VIs including the 

normalized indices (NDVI, NRred edge), water-related indices (WI, NDWI, LSWI), chlorophyll indices 

(CIgreen, CIred edge), and the normalized reflectance curve area indices (Area680–780, Area1015–1050, and 
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Area1110–1170; Figure 3). Among them, CIgreen, NRred edge, Area680–780, and CIred edge increased significantly 

with increasing CWC, and showed better sensitivities to the variation of CWC. The relationships 

between CWC and Area680–780, NDVI, and LSWI could be described well by logarithmic equations. In 

addition, significantly linear relationships were also found between CWC and WI, LSWI, Area1015–1050, 

NDWI, and Area1110–1170 (Figure 3). 
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Figure 3. Relationships between (A) normalized difference vegetation index (NDVI), (B) 

red edge normalized ratio (NRred edge), (C) water index (WI), (D) normalized difference 

water index (NDWI), (E) land surface water index (LSWI), (F) green chlorophyll index 

(CIgreen), (G) red edge chlorophyll index (CIred edge), (H) normalized red edge reflectance 

curve area (680–780 nm; Area680–780), (I) normalized reflectance curve area (1015–1050 nm; 

Area1015–1050), and (J) normalized reflectance curve area (1110–1170 nm; Area1110–1170) vs. 

canopy water content (CWC) for maize during the growing seasons of 2013–2014. 

Thus, based on the relationships between VIs and CWC, the ten VIs that were related to water content 

and tested in this study were split into three categories. The first VI type had significant linear 

relationships with CWC instead of logarithmic ones, including CIgreen, NRred edge, and CIred edge. To some 

degree, they could effectively overcome the saturation effects at moderate to high CWC values. The 
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second VI type had predominantly logarithmic relationships with CWC, rather than linear relationships, 

such as Area680–780, NDVI, and LSWI. This type of VI inevitably had saturation effects to high CWC 

values, which were difficult to overcome. For the third VI type, the linear/logarithmic relationships had 

equal regression effects, and they also tended to saturate with increasing CWC, and included WI, 

Area1015–1050, NDWI, and Area1110–1170. 
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Figure 4. Relationships between (A) NDVI, (B) NRred edge, (C) WI, (D) NDWI, (E) LSWI, 

(F) CIgreen, (G) CIred edge, (H) Area680–780, (I) Area1015–1050, and (J) Area1110–1170 vs. 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ 

(CWC/LAI) for maize during the growing seasons of 2013–2014. Figures 2 and 3 provide the 

definitions of acronyms. 

CWC reflects not only the magnitude of the difference between FW and DW, but also the information 

related to canopy architecture, i.e., LAI. To evaluate the effects of LAI on water content related VIs, the 

linear relationships between 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (i.e., CWC/LAI) and ten VIs were also constructed, respectively 

(Figure 4). Among them, CIred edge, CIgreen and NRred edge showed the most sensitivity to the variation of 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. 

In addition, significantly linear relationships were also found between 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and NDVI, Area680–780, 
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NDWI, WI, and LSWI (Figure 4). Figure 4 also shows that VIs had no saturation effects with 

increasing 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. 

4. Discussion 

4.1. Relationships between CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and Soil Moisture 

Figure 5 shows relationships between CWC with 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and RSWC during the growing seasons of 

2013 and 2014. These reflected the transfer of water stress between the soil and crop canopy, and the 

sensitivity of the soil and crop canopy to the variations in soil moisture when soil water conditions 

exhibited drought stress. Soil water was the main source of water needed for crop growth and 

development. No direct relationship was evident between CWC and RSWC (Table 5). However, soil 

moisture status, especially during the early stage of maize growth, is clearly a critical factor affecting the 

magnitude of CWC, which determines crop growth and development in the entire growing season. CWC 

presented a single peak seasonal trend in 2013 and 2014; however, the overall average level in 2013 was 

obviously higher than the same period in 2014. This occurred because 2013 had better soil water 

conditions than 2014. In addition, the starting dates of irrigation gradients was later in 2013 (24 July 

occurred at the seven-leaf stage) than in 2014 (1 July at the three-leaf period stage). Therefore, to explore 

the relationship between CWC and RSWC, not only soil moisture level, but also the starting dates of 

irrigation and its control levels should be comprehensively considered. When irrigation was initiated 

later, fewer effects were produced for crop growth and development. 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (CWC/LAI) could reflect available leaf water conditions at the canopy level and was closely 

related to plant photosynthesis and the transfer of photosynthetic matter. Figure 5 shows that 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and 

RSWC were significantly related in both 2013 and 2014, although the relationship between CWC and 

RSWC was not significant in both 2013 and 2014. However, when comprehensively considering the data 

sets of these two years, the relationship between CWC and RSWC was significant, but RSWC could 

explain only 4.2% of the variation in CWC. However, RSWC determined 28.9% of the variation in 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ 

and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ explained 21.7% of CWC. CWC-RSWC obviously exhibited a two-dimensional trapezoid 

space (Figure 5). This indicated that the pixels of crops that had been well-supplied with water and 

well-developed could reach the upper-right positions of this space. Although the maize plants were at the 

peak of growth, the plants were restricted by water deficiency. That is, CWC was also affected by crop 

developmental stages if crops were well-supplied with water (Figure 5). CWC was affected by both the 

stage of crop growth and development as well as by soil water conditions, and was located in the two 

dimensional coordinates of CWC-RSWC. In the CWC-RSWC two-dimensional trapezoidal space, the 

2013 data sets with plants that were well-supplied with water and were well-developed lay in the 

upper-right of that space. The 2014 data sets had relatively less water and were more poorly-developed; 

these were located in the lower-left of the trapezoidal space (Figure 5). The sensitivity of CWC to the 

variation of soil water conditions was weakened because of the regulation of crop growth and 

development. In fact, the variation information related to CWC was an important biophysical property 

and was relatively easy to be monitored by remote sensing information. This study showed that the 

relationship between 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and RSWC was relatively stable, and RSWC could explain 23.5%–28.9% of 

the variation in 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅, although the CWC-𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ relationship varied with inter-annual water condition 
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status. The CWC-𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ relationship was weaker in a drier year, and there was no significantly linear 

relationship between CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ in the drier year of 2014. 
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Figure 5. Relationships between CWC, 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (CWC/LAI), and RSWC for maize during the 

growing seasons of 2013–2014. Figure 2 provides the definitions of acronyms. 

4.2. Effects of Different Years on the Relationships between VIs with CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ 

Studies of the relationships between VIs with CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ showed that in 2013 the most sensitive 

VIs were CIgreen, NRred edge, Area680–780, and LSWI for the variation of CWC and with CIred edge, CIgreen, and 

NRred edge for the variation of 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. In 2014, the most sensitive VIs were CIgreen, NRred edge, Area680–780, and 

LSWI for CWC and CIred edge, CIgreen, and NRred edge for 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. In addition, the most sensitive VIs were 

CIgreen, NRred edge, Area680–780, and CIred edge for CWC and CIred edge, CIgreen, and NRred edge for 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ when 

comprehensively considering both years. Therefore, at an inter-annual scale, different water control 

conditions did not affect the sensitivity of VIs to the variations of CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. Moreover, the 

differences of crop development resulted in stretching of CWC gradients. Therefore, the VIs-CWC 

relationships were more closely related. In this study, different irrigation treatments led to a wide range 

variation of CWC, including not only the well-developed crop canopy in the field control and the plot 
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control under well-supplied rainfed conditions, but also the less-developed crop canopy with dry and 

bare soils in drought-simulated conditions. In comparison, the relationships between CWC with CIgreen, 

CIred edge and NRred edge, as well as 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ with CIgreen, CIred edge and NRred edge in both 2013 and 2014 

showed that the linear relationships in 2013 were more similar to that of 2013 plus 2014. Meanwhile, the 

CWC-CIgreen, CWC-CIred edge and CWC-NRred edge relationships in 2014 were more notable than that in 

2013. In contrast, the 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅-CIgreen, 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅-CIred edge and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅-NRred edge relationships in 2013 were more 

closely related than those in 2014 (Figure 6). In addition, to some extent, Figure 6 shows that when 

CIgreen was compared with CIred edge and NRred edge, CIgreen was not affected by different soil moisture 

conditions and different crop growth status. These differences resulted from the differences in soil water 

content, and more stably reflected the variation of CWC. However, CIred edge was the best sensitivity 

index for the variation of 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ when compared with CIgreen and NRred edge. 
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Figure 6. Relationships between CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (CWC/LAI) vs. CIgreen, CIred edge, and 

NRred edge for maize during the growing seasons of 2013–2014. (A) CWC-CIgreen, (B) 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ -CIgreen, (C) CWC-CIred edge, (D) 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ -CIred edge, (E) CWC-NRred edge, and (F) 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅-NRred edge; Figures 2 and 3 provide the definitions of acronyms. 
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4.3. Performance of Various Indices for Indicating CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ 

Based on the wide variation in CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ and the corresponding observational datasets of their 

canopy reflectance spectra, the present study investigated the sensitivities of VIs to CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. The results 

showed that among the ten VIs tested, the most sensitive VIs were: CIgreen > NRred edge > Area680–780 > CIred edge 

for CWC. For 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ they were: CIred edge > CIgreen > NRred edge. In particular, the chlorophyll index CIgreen 

was the best suited for CWC estimation although CIred edge was the best predictor for 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ retrieval. In 

this study, the CIred edge was slightly less effective than CIgreen when estimating CWC. In contrast, it was 

better than CIgreen when assessing 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅, but their predictive powers were also better. In view of the 

calculating equation, the algorithm for CIgreen is retrieved from the contrast of near-infrared and green 

information, and is calculated by the following equation (ρ750/ρ550) – 1. However, the NRred edge was 

calculated as (ρ750 – ρ710)/(ρ750 + ρ710) and is based on near-infrared and red edge information. In 

addition, CIred edge and NRred edge were actually based on the same spectral information, with a longer 

spectral domain (750 nm) and shorter range (710 nm) in red edge region; they only had different 

algorithm formations. Studies have shown that empirical models used for the prediction of chlorophyll 

content are largely based on the reflectance at near 550 nm or 700 nm where higher chlorophyll content 

is required to saturate the absorption wavelength. Therefore, indices formulated with these bands had 

better estimation accuracy [21]. That is, when spectral information around 750 nm remained 

consistent, reflectance near 550 nm in the green region and red edge region at 710 nm were more 

difficult to saturate at the absorption wavelength than reflectance around 680 nm. Therefore, VIs based 

on these spectral data could effectively improve the accuracy for the estimate of chlorophyll, LAI and 

biomass [21]. Viña et al. [15] showed that CIred edge was the only index that was not sensitive to crop type 

(maize and soybean) among the indices they tested (CIgreen, CIred edge, and the MERIS Terrestrial 

Chlorophyll Index). Therefore, it was a suitable and accurate index for the remote estimation of green 

LAI. Additionally, studies showed that NRred edge was the best index for the estimation of fAPAR [17]. In 

fact, studies usually showed that when estimating vegetation canopy biophysical properties the 

performances of CIgreen and CIred edge were basically consistent. However, in this study the prediction of 

CIgreen for CWC was better than that of CIred edge (Figure 7). Although the sensitivities of R710 to the 

variations of CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ were more obvious than those of R550, CIgreen was still the most suitable 

index for estimating CWC (Figure 7). In addition, CIred edge was the most sensitive index for retrieving 

𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. This study demonstrated that the chlorophyll indices CIgreen and CIred edge and the normalized index 

(NRred edge) were good predictors of both CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. 

Water exhibits a number of absorption features in the wavelengths of optical radiation, notably 

around 970, 1200, 1450, and 1950 nm. Among them, the features at 1450 and 1950 nm are the most 

pronounced. However, strong water vapor absorption in the atmosphere reduces the effectiveness of 

these spectral information to essentially zero [6,44]. Studies have been conducted on the remote 

estimation of CWC using first derivative reflectance spectra, spectral reflectance indices, and continuum 

removed spectra analysis. However, this study tried to concentrate on whether the normalized 

reflectance curve area index was suitable for estimating CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. Ren et al. [41] showed that the 

performance of the normalized red-edge reflectance curve area in the 680–780 nm region was better 

when used to estimate green aboveground biomass in arid and semi-arid areas. In this study, gradient 

irrigation treatments resulted in different levels of drought stress. The crop canopy appeared to be sparse 
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and less-developed; therefore, here we introduced Area680–780 and tested its performance for estimating a 

wide range variation of CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. Clevers et al. [6] showed that the derivative of the reflectance 

on the right slope of the canopy water absorption feature at 970 nm can best be used for estimating CWC. 

Furthermore, Clevers et al. [25] showed that the first derivative over the 1015–1050 nm interval and the 

right slope of the 970 nm water-absorption band can be used for estimating CWC. Based on the 

algorithm method of Area680–780, this study newly constructed Area1015–1050 and Area1110–1170 on the right 

and left slopes of the canopy water absorption feature at 970 and 1200 nm, respectively. This study 

showed that the linear relationship between Area680–780 and CWC was the third best, only being inferior 

to CIgreen and NRred edge. However, it had the best logarithmic relationship. In comparison, the prediction 

ability of the three area-based VIs for the variation of CWC showed that with increasing CWC, the 

sensitivity was successively greater as expressed best by Area680–780 > Area1015–1050 > Area1110–1170. This 

result demonstrated that the canopy water information at the red edge of 680–780 nm was more 

pronounced than that of the right or left slopes of the canopy water absorption feature at 970 nm or 1200 

nm, respectively. Certainly, it is worth noticing that Area680–780 still had a saturated inclination at 

moderate-high vegetation conditions in the actual application. Ren et al. [41] provides a good 

example of the reason this occurs, showing that Area680–780 is better in sparsely vegetated conditions. 

It was also demonstrated that Area680–780 had better predictive power for the variation in 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ 

compared with Area1015–1050 and Area1110–1170 (Figure 4). However, this study still indicated that the 

normalized reflectance curve area indices were actually more suited for estimation of biomass or LAI 

rather than 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. 
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Figure 7. Relationships between CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (CWC/LAI) vs. reflectance (R550 and R710) 

and CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅ (CWC/LAI) vs. VIs (CIgreen, CIred edge, and NRred edge) for maize during 

the growing seasons of 2013–2014. Figures 2 and 3 provide the definitions of acronyms. 



Remote Sens. 2015, 7 15220 

 

This study was a new exploration of the chlorophyll indices (CIgreen and CIred edge) and the normalized 

index (NRred edge). We tested to see whether the chlorophyll indices and NRred edge that had previously 

proved to be well suited for monitoring chlorophyll content, LAI, fAPAR, and biomass could perform 

well when monitoring vegetation status and stress, especially in relation to water stress, and allow us to 

obtain satisfactory results. Eventually, this study revealed that the cause of the saturation effects of VIs 

in relation to the variation of CWC at middle to high vegetation conditions was the effects of LAI, but not 

because of the effects of water information. Moreover, this study also showed that CIgreen could explain 

78.4% of the variation in CWC and only 27.0% of variation in 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅, i.e., CWC/LAI. In addition, CIred edge 

explained 73.0% of the variation in CWC and 28.8% of variation in 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅, and NRred edge explained 

75.3% of CWC and 26.4% of 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅, which demonstrated that around 44.2%–51.4% of the variation in 

CWC explained by spectral information was derived from the variation in LAI. It is well known that LAI 

and CWC are very highly correlated, this study emphasized again that LAI determined most of the 

variation in CWC. 

5. Conclusions 

In this study, the performances of ten water content related VIs were examined when used to estimate 

CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. We found that: (1) ten VIs showed great sensitivity to a wide range of variation in 

CWC, and indicated relatively weak sensitivity to the variation in 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅; (2) the chlorophyll indices 

(CIgreen and CIred edge) and the normalized index (NRred edge) were the most sensitive VIs to the variations 

in CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅; (3) simulated drought under in situ conditions in two differently managed irrigation 

years did not distinctly affect the sensitivity of VIs to the variations of CWC and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅; however, the 

degree of correlation for the relationship models changed; and (4) the CWC-RSWC two-dimensional 

trapezoidal space clearly revealed that CWC was not only closely related with soil water status but also 

was determined by crop growth and development stages; and (5) nearly half of the variation in CWC 

explained by spectral information was derived from the variation in LAI. 

Inevitably, crop canopy biophysical properties were obviously interrelated. However, estimation of 

CWC using hyperspectral remote sensing data was determined by spectral information from three 

aspects of crop growth: crop greenness (chlorophyll), canopy architecture (LAI) and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅. Therefore, in 

the future, when constructing models for estimating CWC, we should not only take into account spectral 

information sensitivity to the variation of canopy greenness and 𝐸𝑊𝑇̅̅ ̅̅ ̅̅ ̅, but also understand the stages of 

crop growth and development. 
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