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Abstract: During the last decade, great progress has been made by the scientific community 

in generating satellite-derived global surface soil moisture products, as a valuable source of 

information to be used in a variety of applications, such as hydrology, meteorology and 

climatic modeling. Through the European Space Agency Climate Change Initiative (ESA 

CCI), the most complete and consistent global soil moisture (SM) data record based on active 

and passive microwaves sensors is being developed. However, the coarse spatial resolution 

characterizing such data may be not sufficient to accurately represent the moisture 

conditions. The objective of this work is to assess the quality of the CCI Essential Climate 

Variable (ECV) SM product by using finer spatial resolution Advanced Synthetic Aperture 

Radar (ASAR) Wide Swath and in situ soil moisture data taken over three regions in Europe. 

Ireland, Spain, and Finland have been selected with the aim of assessing the spatial and 
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temporal representativeness of the ECV SM product over areas that differ in climate, 

topography, land cover and soil type. This approach facilitated an understanding of the extent 

to which geophysical factors, such as soil texture, terrain composition and altitude, affect the 

retrieved ECV SM product values. A good temporal and spatial agreement has been observed 

between the three soil moisture datasets for the Irish and Spanish sites, while poorer results 

have been found at the Finnish sites. Overall, the two different satellite derived products 

capture the soil moisture temporal variations well and are in good agreement with each other. 

Keywords: ESA Climate Change Initiative; essential climate variable; soil moisture; 

ENVISAT ASAR WS; temporal variability; spatial variability 

 

1. Introduction 

The amount of water stored in the soil is a key parameter for the energy and mass fluxes at the land 

surface-atmosphere boundary and is of fundamental importance to many agricultural, meteorological, 

biological and biogeochemical processes [1–3]. For these reasons, soil moisture (SM) has been  

identified as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS) 

secretariat [4]. Monitoring such a complex phenomenon over wide areas is not trivial. In fact, it has  

been observed that particular meteorological conditions, geological characteristics, topography and  

land cover can affect the soil moisture variation in a small area as much as in a large region [5–7]. 

Moreover, the amount of water stored in the top layer of the soil can change significantly within a few 

hours [8] due to the influences of the atmosphere. 

Spaceborne remote sensing has shown itself to be a suitable tool to monitor soil moisture over large 

regions at regular time intervals. Great progress has been made by the scientific community in the last 

three decades aiming at developing soil moisture retrieval techniques by using optical, thermal infrared 

(TIR) and microwave (MW) sensors [9,10]. Since the late 1970s, coarse resolution (25–50 km) soil 

moisture products derived from past and present microwave radiometers (Advanced Microwave 

Scanning Radiometer (AMSR-E) [11] and WindSat [12]) and scatterometers (European Remote Sensing 

satellites (ERS) scatterometer (SCAT) [13] and Meteorological Operational satellite (MetOp) Advanced 

Scatterometer (ASCAT) [14,15]) have been available on an operational basis. A first global soil moisture 

product meeting the requirements set by GCOS was created within the framework of the European Space 

Agency (ESA) Water Cycle Multi-mission Observation Strategy (WACMOS) project [16], by merging 

soil moisture products derived from multi-frequency radiometer and C-band scatterometer observations 

into a single dataset covering the period from 1979 to 2010 [17–19]. The WACMOS soil moisture 

product is currently being extended and enhanced in the framework of the ESA-funded Climate Change 

Initiative (CCI) program [20]. Despite the advantageous high temporal frequency (up to daily data 

available) of such a product, its relatively coarse spatial resolution (0.25 × 0.25 deg) may not be suitable 

to represent the soil moisture variation within a quite large area. Increasing confidence in the use of the 

CCI ECV SM product (we will refer to it as “ECV SM” in this paper) can be achieved by assessing its quality 

through inter-comparisons with independent soil moisture datasets. Commonly, ground measurements, 

models or other satellite acquisitions are used to provide validation soil moisture datasets ([21,22]). 
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In situ data-based validation has generally been achieved over small temporal and spatial scales but has 

been significantly advanced since the establishment of the Global Soil Moisture Data Bank [23] and the 

International Soil Moisture Network [24]. Such an approach was used in [25], where three global soil 

moisture products, including the WACMOS time series, have been validated using a combination of 196 

in situ stations taken from five soil moisture networks across the world. Similarly, in [26] and [27], over 

600 in situ stations have been used for validating ASCAT and ECV SM products, respectively, finding 

general good agreement between the satellite-derived and in situ observations. However, soil moisture 

records provided by the in situ networks represent only single point locations and usually cover limited 

observation periods. The necessity of a comprehensive characterization of in situ representativeness 

errors when considering satellite-derived and in situ soil moisture inter-comparison has been highlighted 

in [28], where the quality of over 1400 in situ stations of the ISMN for representing soil moisture at 

satellite footprint scales (~25 km) has been investigated on a global basis by adopting a triple 

collocation approach. 

The higher spatial resolution and the regular coverage provided by spaceborne Synthetic Aperture 

Radars (SARs) make them a promising additional data source for measuring seasonal and long-term 

variations in surface soil moisture content and for a better understanding of coarse scale soil moisture 

products ([29,30]). For instance, the advanced synthetic aperture radar (ASAR) instrument onboard the 

ENVISAT satellite was capable of providing global measurements at 1 km and 150 m spatial resolution 

every four to seven days, depending on the acquisition plan. However, the comparison of time series of 

soil moisture datasets acquired by different sources and representing different spatial scales is 

challenging due to the scale differences between products and/or observations [31]. However, given the 

temporal stability of soil moisture patterns, their inter-comparisons are useful where soil moisture values 

at smaller scales are representative of the mean soil moisture content over larger areas [32]. 

This study is focused on investigating the capability of the coarse scale ECV SM product in capturing 

the temporal and spatial variations in surface soil moisture, as recorded by in situ instruments and 

retrieved from ASAR Wide Swath (WS) acquisitions. It is an extension of the work presented in [33], 

where the first released version of the global ECV SM product was validated over three sites in South 

Ireland. This former study proved that despite the adopted validation method do not make use of dense 

in situ station networks, nor hydrological models, it has the potential to be an efficient and cost-effective 

approach, whose reliability was proved by the consistency of the achieved results with those reported in 

other papers using different sensors and classical methods. Although a quite good quality of the first 

version of the ECV SM product in South Ireland has been observed in [33], the study highlighted also 

its poor capability in capturing the driest and wettest soil conditions, as well as a decrease in its reliability 

in the presence of particular types of soil and at higher altitudes. Because this former work was carried 

out over a limited and quite homogeneous region, the influence of other factors (e.g., land cover, complex 

topography, climate zone) on soil moisture behavior and on the accuracy of the global ECV SM dataset 

could not be investigated. However, the actual advantage for climate change studies, which can be 

derived from the availability of such a long, temporally frequent and global SM product, has to be further 

tested. Aiming at a more comprehensive understanding of the ECV SM product, which would lead to an 

increase in the confidence in its use, the study presented in [33] needs to be extended to other areas 

worldwide, especially focusing on those which could be representative of specific climate zone and 

characterized by a variety of land cover, soil type, and different topography. 
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Recently, the ECV SM dataset has been temporally extended and enhanced, and a new version has 

been made available in July 2014. Continuing and extending the validation activity of this global SM 

product, a more comprehensive analysis is presented in this study, which shows the results of the quality 

assessment of the latest released ECV SM product carried out over three different countries characterized 

by contrasting climate conditions: Spain, Ireland and Finland. 

2. Test Sites Description 

The quality assessment of the ECV SM product has been focused on three different areas located in 

the Duero basin in Spain, in southern Ireland, and in Finland (see Figure 1). The choice has been driven 

by the interest in investigating the capability of the ECV SM data in describing the soil moisture 

dynamics in different scenarios especially in terms of climate and land cover. 

 

Figure 1. Areas and sites under investigation in Spain (REMEDHUS soil moisture network), 

Ireland (soil moisture network from AEON project) and Finland (FMI and GTK soil 

moisture network). 
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The Duero basin is characterized by a semi-arid continental Mediterranean climate, with an average 

annual precipitation of 385 mm and a mean temperature of 12 °C [34]. This quite flat region (slope: 

<10%; altitude: 700–900 msl) is mainly covered by cereal fields and vineyards, but patchy areas of forest 

and pasture can also occur. The soil texture is mainly sandy, with a mean sand content of about 71%. 

The Irish region under investigation is characterized by a humid mild temperate climate, with  

a mean annual precipitation of ~1200 mm·yr−1 and a mean temperature of 10 °C. The in situ stations are 

installed in grassland areas, which represent almost 80% of the agricultural area of Ireland (4.4 million 

hectares) [35]. The region is typically low lying, with altitudes ranging between 15 m and 104 m above 

sea level, and relatively flat (slope lower than 6°). On the basis of the United States Department of 

Agriculture (USDA) classification, the soil texture is classified as sandy loam in Kilworth and as loam 

in Pallaskenry and Solohead. 

The Finnish sites are mainly distributed along the eastern edge of the country, with the exception of 

Pori, on the south-west, and Sodankylä, which is located in Northern Finland, north of Arctic Circle [36]. 

All the sites are in low-lying regions (altitude: <400 msl), typically covered by boreal forests, open and 

forested bogs and tundra highlands. Due to the boreal climate characterizing this area, winters are very 

cold and snow precipitations are very common. Along its eastern border with Russia, and in the northern 

areas the snow coverage is often deep, with some remaining on the ground into early May, and much 

later to the north of the Arctic Circle. The annual amount of rain precipitation varies between 500 mm 

in Northern Finland and 650 mm in south-east of the country. The annual mean temperature varies from 

more than 5 °C in Southwestern Finland, to a couple of degrees below zero in Northern Finland. 

3. Material and Methods 

3.1. In Situ SM Data 

In situ soil moisture data have been used in this study as reference for the validation of the soil 

moisture products retrieved from the satellite acquisitions. The ground-based measurements in Spain 

and Finland have been obtained through the International Soil Moisture Network (ISMN) ([24,37]) 

freely available at http://ismn.geo.tuwien.ac.at/. Sixteen stations belonging to the REMEDHUS  

(Red de MEDición de la HUmedad del Suelo) network have been considered for the validation activity 

in Spain. In situ soil moisture time series have been collected at three Irish sites, belonging to a network 

of seven stations installed in 2007 under the framework of the Aeon project (http://aeon.ucc.ie/). In situ 

soil moisture data from the FMI (Finnish Metereological Institute) and GTK (Geological Survey of 

Finland) networks have been used for the analysis in the Finnish area, where a total of five sites have 

been studied. 

3.1.1. REMEDHUS Network 

The REMEDHUS soil moisture network [34] includes twenty-four in situ stations located in the 

Duero Basin. Since ground-based measurements have been used to assess the quality of both ASAR WS 

and ECV SM products, the selection of the sites has been carried out by considering the availability of 

SAR acquisitions over the study area. Therefore, soil moisture data from sixteen in situ stations have 

been finally collected (see Table 1). The Corine Land Cover (CLC2006) map and the Digital Elevation 

http://aeon.ucc.ie/
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Model (DEM) corresponding to the four ECV cells analyzed, each including one or more labeled in situ 

stations are provided as supplementary material provided with this paper (Figure S2). 

Table 1 provides geographic coordinates and land cover information for each site. Since March 2005 

soil moisture values expressed in volumetric units (m3·m−3) are measured by Stevens Hydra Probe 

instruments horizontally installed at a 5-cm depth of a mainly sandy soil. The quality and the amount of 

data makes such long time series suitable for several applications, particularly for the validation of either 

soil moisture models or retrieval algorithms applied to remote sensing data ([25,38–41]). 

Table 1. REMEDHUS in situ stations, grouped according to the ECV size pixel to which 

they belong. The land cover information is provided by the Corine Land Cover 2006.  

The porosity values are provided by the Harmonized World Soil Database 2012. 

ECV Cell Site SMS Lat. Lon. Land Cover 

ECV-A  

Porosity: 0.51 m3·m−3 

Carretoro K10 41°16′N −5°22′E Non irrigated arable land 

Casa Periles M05 41°24′N −5°19′E Agriculture/natural vegetation areas 

El Coto I06 41°22′N −5°25′E Non irrigated arable land 

Granja G K09 41°18′N −5°21′E Non irrigated arable land 

Granja Toresana I03 41°28′N −5°27′E Non irrigated arable land 

Guarrati H09 41°17′N −5°25′E Non irrigated arable land 

Las Brozas L03 41°27′N −5°21′E Agriculture/natural vegetation areas 

La Cruz de Elias M09 41°17′N −5°18′E Non irrigated arable land 

Las Victorias K04 41°25′N −5°22′E Non irrigated arable land 

Llanos de la Boveda L07 41°21′N −5°19′E Agriculture/natural vegetation areas 

Paredinas J03 41°27′N −5°24′E Vineyards 

ECV-B  

Porosity: 0.31 m3·m−3 
Las Arenas F06 41°22′N −5°33′E Non irrigated arable land 

ECV-C  

Porosity: 0.47 m3·m−3 

Casa Gorrizo H11 41°14′N −5°28′E Non irrigated arable land 

La Atalaya J14 41°9′N −5°24′E Non irrigated arable land 

Las Bodega H13 41°10′N −5°28′E Coniferous forest 

ECV-D  

Porosity: 0.37 m3·m−3 
Zamarron F11 41°14′N −5°32′E Non irrigated arable land 

3.1.2. Irish Network 

Three out of seven in situ stations available in Ireland have been selected for the ECV SM product 

validation activity. These are located in Kilworth, Pallaskenry and Solohead, whose characteristics in 

terms of soil porosity, location and land cover are reported in Table 2. The CLC2006 and DEM maps of 

the studied areas are shown in the Supplementary Material provided with this paper (Figure S3). 

Campbell Scientific CS616 time domain reflectometers (TDR), installed horizontally at each of the 

three study sites, recorded soil moisture measurements at 30-min intervals, together with precipitation 

and soil temperature, since 2007. The in situ instruments provide soil moisture values to a depth of 5 cm 

from the surface, and are expressed as the soil water-filled pore space (SM%). Since the SM ground 

measurements taken at the Spanish and Finnish sites are expressed as m3·m−3, we converted the soil 

moisture observations taken at the Irish sites to the same volumetric units. To achieve this, the following 

equation has been applied: 
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𝜃𝑣 = 𝑆𝑀%

𝑓

100
 (1) 

where f is the soil porosity. The network, which also measured precipitation and soil temperature, has 

been used predominantly for modeling N2O fluxes from agricultural grasslands, but has been recently 

used also for the validation of soil moisture products [33]. 

Table 2. Irish Soil Moisture in situ stations. The land cover information is provided by the 

Corine Land Cover 2006. The porosity values are provided by the Harmonized World Soil 

Database 2012. 

Site Porosity (m3·m−3) Lat. Lon. Land Cover 

Kilworth 0.59 52°10′N −8°14′E Pastures 

Pallaskenry 0.61 52°39′N −8°51′E Pastures 

Solohead 0.63 52°30′N −8°12′E Pastures 

3.1.3. FMI Network 

The Sodankylä in situ station (Figure S4 in the Supplementary Material, Table 3) belonging to the 

Finnish Meteorological Institute (FMI) network has been considered for this study [36]. Soil moisture 

and temperature are provided each hour since January 2007. Volumetric soil moisture at 2 and 10 cm 

depth is estimated from the measurement of the apparent dielectric constant taken by five TE Theta 

Probe ML2X instruments, installed in a sandy soil in a forest free area. Only the observations taken  

at 2 cm depth have been used in this study. 

Table 3. FMI and GTK in situ stations. The land cover information is provided by the  

Corine Land Cover 2006. The porosity values are provided by the Harmonized World Soil 

Database 2012. 

SM Network Site Lat. Lon. Land Cover 

FMI  

Porosity: 0.55 m3·m−3 
Sodankylä 67°21′N 26°37′E Shrub 

GTK  

Porosity: 0.47 m3·m−3 

Ilomantsi 62°46′N 30°58′E Agricultural area 

Kuusamo 66°19′N 29°24′E Shrub 

Suomussalmi 64°55′N 28°45′E Mixed forest 

Pori 61°30′N 21°48′E Non irrigated arable soil 

3.1.4. GTK Network 

Four out of seven stations belonging to the Geological Survey of Finland (GTK) network have been 

selected for the quality assessment of the ECV SM product (Figure S5 in the supplementary material, 

Table 3). Soil moisture and temperature time series from May 2001 to May 2012 were collected. Water 

content reflectometers (CS616, CS615) were used to estimate volumetric soil moisture at various depths, 

deeper than 10 cm. For this work, only top soil measurements, taken at 10 cm depth, have been used for 

the validation activity. 
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3.2. Remotely Sensed Data 

3.2.1. ECV SM Product 

Building on the WACMOS project [16], the ECV SM global time series has been extended and 

enhanced, by improving the retrieval and merging algorithms, in the context of the ESA-funded Climate 

Change Initiative (CCI) programme. The latest version of the global soil moisture product has been 

released by the Vienna University of Technology (TUW) in July 2014, and it is freely available at 

http://www.esa-cci.org/. By extending the time series, which currently covers 35 years, from 1978 to 

2013, new microwave sensors have been exploited to create the most consistent global soil moisture  

data archive. Specifically, WindSat and AMSR-2 have been added to the list of exploited  

multi-frequency radiometers, which already includes SMMR, SSM/I, TMI, AMSR-E. Data acquired by 

these passive systems have been processed by using the VUA-NASA (Vrije Universiteit Amsterdam and 

NASA) Land Parameter Retrieval Model (LPRM) software package in order to retrieve the soil moisture 

data. Aiming at removing calibration differences and other structural biases between data acquired by 

different sensors, the passive soil moisture time series have been rescaled into common reference 

climatology. Since AMSR-E provides the most reliable climatology for the passive soil moisture 

product, it has been chosen as the reference for data rescaling. Afterwards, a homogenized product (i.e., 

“Passive Product”) has been created by merging the rescaled passive datasets [42]. 

Concerning the generation of the soil moisture time series from data acquired by the C-band ERS-1/2 

and ASCAT scatterometers, the Water Retrieval Package (WARP) developed at TUW has been used for 

the retrieval processing. Successively, the ensemble of active data has been rescaled to the ASCAT 

climatology. Finally, a unique soil moisture product (i.e., “Active Product”) has been generated by 

merging the previously processed active datasets [43]. 

The “Active Product” and the “Passive Product” have further undergone a rescaling phase, by using 

as reference a globally-consistent climatology, that is the GLDAS-Noah (Global Land Data Assimilation 

System) data assimilation system [44]. This has been performed using the cumulative distribution 

function (CDF) matching approach ([17,45–47]). Finally, the “Active Product” and the “Passive 

Product” have been blended together, and a “Combined Product” has been generated ([17–19,48]). To 

combine the merged active and merged passive datasets, data availability (at a daily time step) and data 

sensitivity to vegetation have been taken into account. The average vegetation optical depth (VOD) over 

transitional regions (i.e., regions between sparsely and moderately vegetated areas) has been calculated 

and used as the threshold for separating sparsely from moderately vegetated regions outside of the 

transition zones. Active soil moisture data have been used for regions with moderate vegetation density 

(a VOD value higher than the threshold), whereas the passive product has been used for (semi-) arid 

regions (a VOD value lower than the threshold) [49]. When, at a given location in transition zones, the 

correlation coefficient (R) between the merged active and passive soil moisture products was greater 

than 0.65, both products have been used [50]. This has been done by simply averaging merged passive 

and merged active products for time steps where both products were available; if only one product type 

was available, that one was used [49]. 

http://www.esa-cci.org/
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The SM time series maps are provided on an almost daily basis, with a spatial resolution of 

approximately 0.25 degrees. Data are provided in volumetric units (m3·m−3), together with quality flags 

indicating the possible presence of dense vegetation, snow or a temperature below 0 °C. 

Three separate long-term soil moisture datasets are available at http://www.esa-cci.org/: (1) “Active 

Product”; (2) “Passive Product”; and (3) “Combined Product”. In this study only the “Combined 

Product” has been used. 

3.2.2. ENVISAT ASAR WS SM Data 

The quality assessment of the ECV SM dataset has been carried out by using the finer spatial 

resolution satellite soil moisture product retrieved from the ENVISAT ASAR acquisitions. Funded by 

the European Space Agency (ESA), the ENVISAT mission operated for ten years, from 2002 to 2012, 

during which the C-band (5.3 GHz) ASAR sensor acquired images in multiple modes, polarizations and 

at various incidence angles [51]. In this work, data acquired in the ScanSAR mode have been used in 

order to cover wide areas (405 km swath widths). Although ASAR Global Monitoring (GM) images 

have been preferred in a number of soil moisture studies ([52–54]), the finer spatial resolution (150 m) 

of the Wide Swath (WS) mode and its better radiometric accuracy (less than 0.6 dB), led us to focus on 

this product. Both ascending and descending orbits (i.e., daytime and night-time observations) have been 

considered in order to collect a larger dataset to be used for the quality assessment of the almost daily 

ECV SM product. In fact, the theoretical capability of ASAR WS of acquiring images of the same region 

up to 3–5-times a month improved by combining ascending and descending orbits, allowing image 

acquisitions up to 10-times a month. As active sensors are only marginally affected by the sun-induced 

radiation at these electromagnetic frequencies, the accuracies of soil moisture products retrieved from 

ascending and descending observations are likely to be very similar. As regards the ASAR WS 

polarization, on the basis of the archive data availability, VV images were considered for the Spanish 

and Irish test sites, whereas both VV and HH acquisitions were used for the study in the Finnish regions. 

Several algorithms have been developed to retrieve soil moisture from remotely-sensed data [29].  

In particular, the use of multi-temporal SAR acquisitions allows, with few assumptions, to effectively 

estimate soil moisture by analysing changes in the backscattering over time [55]. Therefore, a change 

detection approach has been adopted in this work, by applying the algorithm developed by TUW 

originally for ERS scatterometer images [56], and successively adapted for ENVISAT ASAR GM data 

(1-km spatial resolution) [52]. Bearing in mind that the radar backscattering depends on both sensor 

parameters (i.e., incidence angle, polarization) and land characteristics (i.e., surface roughness, 

vegetation cover and soil moisture), such technique adopts assumptions and approaches whose  

complete explanation can be found in [52]. For instance, the influence of the incidence angle on the SAR 

backscattering is addressed by carrying out a pixel-wise multi-temporal incidence angle normalization 

by using a linear model and a reference angle of 30°. In fact, in [52], it has been observed that within the 

incidence angle range covered by ASAR (20°–40°), changes in backscattering due to vegetation growth 

are, in general, much smaller than changes due to soil moisture. The sensitivity of the backscatter 

coefficient to soil moisture variations is estimated as the difference between the highest and lowest 

historical values, which represent the historical wettest and driest observations, respectively. The relative 

soil moisture index 𝜗 is then expressed as: 

http://www.esa-cci.org/
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𝜗 =
𝜎°(30°) − 𝜎𝑑𝑟𝑦

° (30°)

𝜎𝑤𝑒𝑡
° (30°) − 𝜎𝑑𝑟𝑦

° (30°)
 (2) 

where σ°(30°) is the normalized backscatter coefficient, σdry°(30°) and σwet°(30°) are the driest and 

wettest backscattering values extracted from the σ°(30°) time series per pixel. 

The adopted change detection algorithm is based on the assumption of the time-invariance of surface 

roughness and vegetation cover, which allows differences in the backscatter to be directly related to the 

soil moisture variations. Unfortunately, despite the better radiometric accuracy of the ASAR WS product 

compared to the ASAR GM product, the noise level affecting such high-resolution imagery still does 

not allow estimating a seasonal vegetation correction as it is the case of coarse-resolution data (e.g., 

ASCAT). Therefore, the hypothesis of the time-invariance of vegetation cover is a necessary assumption 

for the retrieval of soil moisture from ASAR observations. However, it has been observed that this 

assumption is reasonable over a large variety of land cover types, in particular over areas with sparse or 

low vegetation cover, such as those characterising the Spanish cropland and natural areas, or the Irish 

grassland, as there is little influence on the C-band backscattering signal and can generally be neglected [57]. 

This change detection algorithm has been used in several studies, providing promising results when 

applied to ASAR GM data ([58,59]). On the basis of such outcomes, and given the similarity of the 

ASAR GM and WS products, the same technique has been adopted to handle also the finer spatial 

resolution SAR data (150-m spatial resolution) [33]. Each ASAR WS scene has undergone a  

pre-processing phase, which includes geocoding, calibration and resampling to a regular grid 

characterized by a sampling interval of 15 arcsec. Although this last step of the pre-processing chain 

causes a degradation of the ASAR WS spatial resolution (1 km after resampling), it significantly 

improves the signal to noise ratio of the images. On the other hand, assuming a regular grid for the 

resampling of data acquired at sub-polar latitudes, such as at the Finnish sites, generates a loss of 

accuracy in the estimation of the backscattering, and hence it introduces a further error in the retrieval 

of soil moisture. 

Aiming at the selection of the most reliable soil moisture time series, two masking processes have 

been carried out. The first one made use of the Corine Land Cover 2006 Map, which allowed the 

identification of those classes where the soil moisture values are not reliable (i.e., urban, evergreen 

broadleaf forest, water bodies, barren or sparsely vegetated areas, snow or ice). Pixels belonging  

to these land covers have been masked out from each soil moisture map, and excluded from the  

subsequent analysis. 

The second masking process had the objective of selecting only the pixels where the adaptation of 

the algorithm to the ASAR data works better. The temporal stability of soil moisture fields gives rise to 

an associated temporal stability in the backscatter signal [41]. A strong correlation between local and 

regional backscatter is usually a good indicator of the capability of local SM datasets in representing the 

soil moisture dynamics at the regional scale. At locations with a weak correlation, either the backscatter 

response to soil moisture dynamics is dominated by noise and speckle or the backscatter characteristics are 

adversely influenced by factors, such as dense vegetation, complex topography or soil structure/texture 

characteristics, which inhibit the retrieval of reliable soil moisture estimates. Therefore, for each 1 km × 1 km 

ASAR pixel, the correlation between the time series of the local σ0 and the average of the backscattering 
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over the 25 km × 25 km area covering the ASAR one has been evaluated. Pixels exhibiting a coefficient 

of determination R2 lower than 0.3 have been masked out. 

The change detection algorithm applied to the ASAR WS images provides soil moisture values 

expressed as degree of saturation, whereas the datasets available through the ECV SM product represent 

the volumetric moisture content of the soil. In order to compare time series characterized by the same 

measurement units, the soil moisture values retrieved from ASAR acquisitions have been transformed 

using Equation (1). 

3.3. Regional Scale Analysis of SM Temporal Variability 

In this study we investigated how well the ECV SM product represents local soil moisture dynamics, 

despite covering quite large areas, whose size is the same as of an ECV pixel (i.e., 0.25 × 0.25 deg). The 

actual extension of such regions depends on their geographical location. Therefore, in the Boreal 

Hemisphere, ECV cells located at lower latitudes are larger than those located close to the North Pole. 

Specifically, the dimension of the Spanish ECV pixels is approximately equal to 21 km × 28 km, while 

smaller cells (i.e., 17 km × 28 km) occur at the Irish latitudes, and the narrowest ones (i.e., 13 km × 28 km) 

include the Finnish sites. Each ECV cell has been identified by plotting the geographical position of the 

in situ stations on a georeferenced grid. Then, the surrounding areas, which exactly coincide with the 

ECV pixels, have been considered. It has to be observed that, after the masking process, the number of 

accessible ASAR pixels in each grid cell is smaller than the maximum obtainable (i.e., 61 × 61 pixels). 

In Table 4, the percentage of available 1 km × 1 km (after resampling) pixels in each area under study is 

reported. Moreover, the amount of ASAR soil moisture data in the same cell could differ due to the 

variability of the satellite coverage. In order to make the analysis statistically consistent, only the ASAR 

acquisitions that cover the ECV pixels for more than 50% of the available pixels (after masking) were 

considered in the study. It can be observed that at the higher latitude of the Finnish sites, the shorter 

revisit time of the ASAR sensor allowed the collection of a larger number of images. 

While the ECV SM time series is provided on an almost daily basis, ground measurements are taken 

every hour or half an hour, and ASAR WS acquisitions are much less frequent. Given the different 

temporal frequency of each dataset, only the ECV SM and in situ SM data corresponding to the ASAR 

WS acquisition dates have been considered. 

Soil moisture temporal variability has been studied on a regional scale in each area of interest, by 

comparing the ECV SM product with the finer spatial resolution ASAR WS SM data and in situ 

measurements. The mean value of soil moisture retrieved from each SAR image has been evaluated 

within the corresponding ECV cell, and the time series of averaged ASAR SM data has been used for 

the datasets comparison. Moreover, the daily averages of ground measurements have been used for the 

analysis. Despite daily variability in the moisture content, it has been observed that the standard  

deviation of SM evaluated within the twenty-four hours of observation is generally negligible in all the 

sites. Specifically, the daily soil moisture standard deviation is on average equal to 0.007 m3·m−3 in 

Spain, 0.006 m3·m−3 in Ireland, and 0.003 m3·m−3 in Finland. Therefore, using the average daily in situ 

soil moisture values does not affect the results of the study. 
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Table 4. Number of ASAR WS acquisitions temporally compatible with the ECV and in situ 

soil moisture data at each site. For each ECV cell, it is also shown the percentage of 

corresponding ASAR pixels (1 km × 1 km after resampling) still available after the land 

cover and correlation based masking process. 

Region Site Temporal Interval % Available ASAR Pixels N. Data 

Spain 

ECV-A 

K10 16/03/2005–29/03/2010 

99.6% 

52 

M05 01/04/2005–29/03/2010 52 

I06 01/04/2005–29/03/2010 47 

K09 19/03/2005–29/03/2010 49 

I03 06/05/2005–05/04/2006 14 

H09 16/03/2005–29/03/2010 55 

L03 01/04/2005–29/03/2010 52 

M09 16/03/2005–29/03/2010 55 

K04 06/05/2005–29/03/2010 51 

L07 16/03/2005–29/03/2010 55 

J03 01/04/2005–29/03/2010 53 

ECV-B F06 01/04/2005–29/03/2010 99.4% 59 

ECV-C 

H11 16/03/2005–05/04/2006 

92.5% 

18 

J14 16/03/2005–30/12/2009 43 

H13 16/03/2005–29/03/2010 53 

ECV-D F11 19/03/2005–10/03/2010 75.4% 50 

Ireland 

Kilworth  27/06/007–15/09/2009 92.1% 77 

Pallaskenry  26/08/2007–15/09/2009 80.5% 63 

Solohead  23/05/2007–15/09/2009 94.7% 70 

Finland 

Sodankylä 09/05/2007–17/11/2009 100.0% 120 

Kuusamo 09/05/2007–21/10/2009 100.0% 67 

Suomussalmi 18/10/2005–21/10/2009 90.3% 101 

Ilomantsi 16/06/2007–23/11/2009 86.7% 49 

Pori 13/04/2007–13/04/2010 83.7% 111 

Since the three time series are provided in different dynamic ranges, the data have been firstly scaled 

into a common climatology. A typical method based on the Cumulative Distribution Function (CDF) 

matching has been applied ([17,45,60]). Through this technique, the satellite data are rescaled so that 

both ASAR CDF and ECV CDF match the CDF of the in situ SM dataset. 

Furthermore, a seasonal based analysis has been carried out to investigate the capability of the satellite 

soil moisture products in capturing the annual cycle and short-term variability of surface SM. Because 

of the frozen soil conditions occurring during the winter season in Finland, we limited the seasonal based 

study to SM time series collected in spring, summer and autumn. 

The temporal agreement between each pair of soil moisture time series has been characterized through 

the Pearson correlation coefficient (R). The actual reliability of the evaluated statistics has been 

examined through the Student’s t-test, by estimating the probability (p-value) of the achieved correlation 

to be a coincidence, i.e., not significant. The threshold for accepting such a hypothesis (null hypothesis) 

has been set to 0.05. 
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Note that even though many studies evaluate soil moisture products in terms of both the correlation 

coefficient (R) and the root mean square difference (RMSD) [61,62], we omit the investigation of the 

RMSD in this study as it, due to the prior application of the CDF-matching, does not provide additional 

information. In fact, the (unbiased) RMSD is solely determined by R, scaled with the variance of the 

reference dataset [63], which hampers a meaningful interpretation of spatial patterns [64,65]. 

3.4. Analysis of SM Spatial Variability 

Soil moisture is known to be a very complex phenomenon, not only concerning its temporal dynamics, 

but also its spatial distribution. Variations in the terrain composition, land cover and topography affect the 

moisture content of the soil, which can be highly variable even over short distances [66]. Such behavior is 

mitigated in the ECV SM product, due to the coarse spatial resolution. However, it is important to 

understand the local scale variability within the ECV SM pixel areas as well as to investigate which local 

geophysical characteristics (e.g., terrain composition, altitude and slope, land cover) mainly lead to this 

variability. These issues have been addressed here by studying the SM spatial variability at the resampled 

ASAR scale (1-km spatial resolution). A first analysis has been carried out by comparing the average of 

the retrieved ASAR SM within each ECV-size cell with the coefficient of variation (CV): 

𝐶𝑉𝑗 =
𝜎𝑗

𝜗𝑗
=

√ 1

𝑁−1
∑ (𝜗𝑖𝑗−𝜗𝑗)

2𝑁
𝑖=1

𝜗𝑗
 j = 1, …, M (3) 

where N is the number of ASAR pixels within the ECV cell, 𝜗𝑖𝑗 is the soil moisture estimated at time j 

in the ASAR pixel i, 𝜎𝑗 is the SM standard deviation and 𝜗𝑗 its mean. 

In a second study, the ASAR SM datasets retrieved in each 1 km × 1 km pixel have been compared 

with the corresponding ECV SM time series, and with the ground measurements taken in each of the 

stations belonging to the same cell under investigation. When multiple in situ stations were located 

within a single ECV size pixel, the average values of the ground measurements were considered for the 

comparison. Such analyses have provided correlation maps, which are a quite suitable and effective tool 

to highlight the presence of correlation patterns, and for a better understanding of their possible 

relationship with geophysical features. 

4. Results 

4.1. Soil Moisture Temporal Variability 

4.1.1. Spain 

The temporal variability of soil moisture provided by ASAR WS acquisitions, ECV product and  

in situ continuous measurements in the Spanish sites under study can be observed in Figure 2. Where 

multiple stations were located within the same cell, i.e., in the ECV-A and ECV-C, the average of the 

daily ground soil moisture values has been plotted. It can be observed that most of the temporally 

compatible data have been collected from August 2008 until March 2010 due to a lack of ASAR data 

availability from 2006 to 2008. Daily ground measurements highlight a typical periodical variation of 

soil moisture, with almost dry conditions in summer and wetter soil in winter. Such seasonal variability 

is less evident in the ECV-D, where despite the soil moisture, reaches the lowest values in summer;  
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quite dry conditions also persist in winter, when the highest in situ SM measurements do not  

exceed 0.12 m3·m−3. On the contrary, the north area corresponding to the ECV-A and ECV-C, is 

characterized by slightly wetter conditions in summer, but much higher soil moisture values in winter. 

In particular, the wettest winter occurred in 2005 in the ECV-B, where the in situ instrument at the 

Zamarron station recorded soil moisture values up to 0.4 m3·m−3. For a clearer understanding of the 

differences in the capability of each SM product in capturing such seasonal SM behavior, please refer to 

the provided supplementary material, where the temporal evolution of ASAR, ECV and in situ SM 

anomalies evaluated considering the whole period of observation are shown in Figure S9. 

Correlation values between each pair of SM datasets are shown in Table 5 for each ECV pixel.  

In order to verify the reliability of the statistics, the p-values have been also evaluated and reported in 

Table 5. Because of the necessity of collecting ASAR WS images including each of the in situ stations, 

the size of the datasets varies even within the same ECV cell. Moreover, the parameters used to scale 

the satellite datasets depend on the CDF of the in situ SM time series. For these reasons, ASAR and ECV 

SM datasets are slightly different in each site, and therefore the inter-comparison results differ from site 

to site. 

Table 5. Correlation values evaluated between each pair of soil moisture datasets. 

Correlation levels are statistically significant (p-values < 0.05). When more than one in situ 

station was included in a single ECV size pixel (i.e., ECV-A and ECV-C cells), the average 

values of SM recorded by all the in situ stations within these cells have been also considered 

for the inter-dataset comparisons. Results referred to this type of analysis are reported in the 

table at rows named “mean”. 

Cell Site 
ASAR vs. ECV ASAR vs. In situ ECV vs. In situ 

R p R p R p 

ECV-A 

K10 0.73 <0.001 0.60 <0.001 0.82 <0.001 

M05 0.58 <0.001 0.67 <0.001 0.66 <0.001 

I06 0.66 <0.001 0.56 <0.001 0.49 <0.001 

K09 0.63 <0.001 0.52 <0.001 0.81 <0.001 

I03 0.69 0.003 0.80 <0.001 0.82 <0.001 

H09 0.78 <0.001 0.45 <0.001 0.71 <0.001 

L03 0.61 <0.001 0.45 <0.001 0.82 <0.001 

M09 0.65 <0.001 0.62 <0.001 0.90 <0.001 

K04 0.68 <0.001 0.52 <0.001 0.83 <0.001 

L07 0.58 <0.001 0.54 <0.001 0.89 <0.001 

J03 0.72 <0.001 0.53 <0.001 0.81 <0.001 

 mean 0.69 <0.001 0.59 <0.001 0.87 <0.001 

ECV-B F06 0.80 <0.001 0.56 <0.001 0.64 <0.001 

ECV-C 

H11 0.59 0.005 0.70 <0.001 0.87 <0.001 

J14 0.79 <0.001 0.54 <0.001 0.71 <0.001 

H13 0.60 <0.001 0.52 <0.001 0.79 <0.001 

 mean 0.73 <0.001 0.63 <0.001 0.87 <0.001 

ECV-D F11 0.77 <0.001 0.71 <0.001 0.86 <0.001 
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Figure 2. Time series of in situ (continuous black line), ASAR (descending (blue triangle) 

and ascending (green triangle) passes), and ECV (red square) soil moisture values for each 

Spanish ECV cell. 

The evaluation of the correlation (R) between each pair of SM datasets provided quite high values in 

all the ECV size pixels and sites (Table 5). Specifically, a good agreement between ASAR WS SM and 

ECV SM has been found, with R values within the interval 0.58–0.80 (p-values < 0.05). 

The validation of the retrieved SM from ASAR WS time series through the comparison with the  

in situ SM dataset provided slightly lower values of correlation. In fact, R generally varies between 0.45 

and 0.67 (p-values < 0.001) in the ECV-A, with the only exception being the I03 station, whose  

ASAR-in situ SM comparison provided R = 0.80 (p-value < 0.001). Similarly, a reasonable correlation 

(R = 0.56, p-value < 0.001) was obtained between ASAR SM and ground SM measurements in the ECV-B 
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pixel. Better results were achieved in the ECV-D (R = 0.71) and in the H11 (R = 0.70) station belonging to 

ECV-C (Table 5). 

The ECV SM datasets have been compared with the in situ SM time series, highlighting very good 

agreement in all the sites under investigation (Table 5). Correlation values were mainly higher  

than 0.80 in the ECV-A, with the only exceptions represented by the M05 (R = 0.66, p-value < 0.001), 

I06 (R = 0.49, p-value < 0.001) and H09 (R = 0.71, p-value < 0.001). High correlation values were also 

evaluated for all the sites in ECV-C (R > 0.71, p-values < 0.001) and ECV-D (R = 0.86, p-value < 0.001). 

In contrast, a poorer agreement was found between ECV SM and ground SM datasets in the ECV-B, 

with an R equal to 0.64 (p-value < 0.001). 

The same comparisons have been carried out in ECV-A and ECV-C by considering the average  

values of soil moisture recorded by all the in situ stations within these cells. Results are consistent with 

those obtained by using the actual ground measurements recorded by each instrument installed within 

the same areas. The highest agreements have been observed by comparing the ECV SM datasets  

with the averaged in situ SM time series (R = 0.87, p-value < 0.001 in both the ECV cells), whereas 

poorer results have been obtained by comparing the ASAR SM datasets with the averaged ground 

measurements (R = 0.59, p-value < 0.001 in ECV-A; R = 0.63, p-value < 0.001 in ECV-C). Relatively 

high correlation values have been evaluated by relating the two satellite SM products: R = 0.69,  

p-value < 0.001 in ECV-A and R = 0.73, p-value < 0.001 in ECV-C. 

4.1.2. Ireland 

Similar to the study of the Spanish sites, and to the regional based analysis reported in [33], the 

representativity of the ECV SM product has been explored by using ASAR SM time series and in situ 

SM datasets collected over Kilworth, Pallaskenry and Solohead in Ireland. Figure 3 shows the temporal 

behavior of three soil moisture datasets in each analyzed ECV cell during the period of observation, 

while we recommend referring to the supplementary material (Figure S10) for a more complete overview 

of similarities and differences in the seasonal SM variability described through the anomalies evaluated 

for each dataset. The latest and improved version of the ECV SM product has been used in this work, 

whereas in [33] the performance of the WACMOS soil moisture dataset [16] was investigated. In 

addition, a different approach has been used in the present study, where the CDF matching technique 

has been applied to scale both the satellite time series to the in situ SM dataset. Such a method leads to 

a significant reduction of the bias between the datasets, which exhibit the same periodic behavior, with 

wetter soil condition in winter, and drier states in summer. However, a few exceptions occur, which are 

particularly evident in winter 2008, when high soil moisture values recorded by the in situ instruments 

in all the sites are not always well represented by the ASAR acquisitions or the ECV SM products where 

some very low SM values have been retrieved. Similarly, in summer 2008, some quite high ASAR and 

ECV soil moisture values do not agree with the lower SM ground measurements. Despite these 

occurrences, we can state that an enhanced capability of the ECV SM dataset in representing extreme 

dry and wet conditions has been achieved by the new version of the CCI product [33]. 
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Figure 3. Time series of in situ (continuous black line), ASAR (descending (blue triangle) 

and ascending (green triangle) passes), and ECV (red square) soil moisture values for each 

Irish ECV cell. 

By comparing the three SM datasets, an actual improvement has been observed with respect to the 

results reported in [33]. In fact, results reported in Table 6 show that the correlation between the new 

ECV SM dataset and both ASAR SM and in situ time series increased in all the sites. Good agreements 

have been also found between the ASAR SM datasets and ground measurements in all the Irish sites  

(R = 0.70–0.73, p-values < 0.001). 

Table 6. Correlation values evaluated between each pair of soil moisture dataset. Correlation 

levels are all statistically significant (p-values < 0.05). 

Site 
ASAR vs. ECV ASAR vs. in situ ECV vs. In situ 

R p R p R p 

Kilworth 0.82 <0.001 0.70 <0.001 0.76 <0.001 

Pallaskenry 0.79 <0.001 0.71 <0.001 0.67 <0.001 

Solohead 0.79 <0.001 0.73 <0.001 0.83 <0.001 

4.1.3. Finland 

Frozen soil conditions, which typically occur during the Finnish winter, make the retrieval of soil 

moisture from satellite acquisitions unreliable. These cases are highlighted through a specific flag 
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associated to the corresponding daily ECV SM value, and they are not used in this validation study.  

In Figure 4 the time series of soil moisture recorded by the FMI and GTK in situ instruments are plotted 

together with those retrieved from ASAR acquisitions and those provided by the ECV SM product. The 

temporal evolution of the SM anomalies evaluated by considering the whole period of observation is 

displayed in Figure S11 of the supplementary material. 

 

Figure 4. Time series of in situ (continuous black line), ASAR (descending (blue triangle) 

and ascending (green triangle) passes), and ECV (red square) soil moisture values for each 

Finnish ECV cell. 
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By comparing the ECV SM product with the FMI and GTK soil moisture ground measurements,  

it has been found that in a few cases (9 in Sodankylä, 2 in Ilomantsi, 5 in Kuusamo, 6 in Suomussalmi 

and 27 in Pori) local frozen soil conditions detected by the instruments installed in each in situ station 

have not been flagged in the ECV SM product. In order to understand if and to what extent local frozen 

soil conditions affect the quality of the ECV soil moisture product, two different approaches have been 

adopted. Firstly only the frozen conditions highlighted in the ECV SM product have been excluded from 

the datasets comparison. Results obtained by comparing ASAR, ECV and in situ SM time series are 

shown in Table 7. In a second study, in situ soil moisture values corresponding to soil temperature below 

0 °C have also been rejected, reducing further the size of the datasets. Results showed that the 

correlations between each pair of SM datasets are rather low in all sites, irrespective of the method used 

for excluding frozen soil condition observations (please note that results achieved by adopting the second 

approach are reported in Table S1 of the Supplementary Material). 

Table 7. Correlation values evaluated between each pair of soil moisture dataset. 

ISMN Site n 
ASAR vs. ECV ASAR vs. In situ ECV vs. In situ 

R p R p R p 

FMI Sodankylä 120 0.52 <0.001 −0.18 0.02 −0.24 0.004 

GTK 

Ilomantsi 49 0.43 0.001 0.05 0.37 0.06 0.34 

Kuusamo 67 0.50 <0.001 −0.27 0.03 −0.30 0.02 

Suomussalmi 101 0.41 <0.001 −0.09 0.18 0.14 0.08 

Pori 111 0.32 <0.001 0.05 0.30 −0.04 0.34 

4.2. Soil Moisture Seasonal Based Analysis 

A seasonal based comparison has been carried out between satellite retrieved SM datasets and  

ground measurements. Table 8 reports the resulting statistics in terms of correlation. Due to the winter 

frozen soil condition in the Finnish sites, no values have been included in the analysis in these months. 

It can be observed that generally the poorer agreement between datasets occurs in winter in all sites. 

However, a high winter correlation value, equal to 0.76, has been estimated between the ECV SM 

product and in situ time series in the ECV-C grid cell. Similarly to the long period datasets comparisons, 

also the seasonal comparisons provided the lowest correlation values at the Finnish sites where, aside 

from a few exceptions, R generally lies below 0. The best agreement between both ASAR and ECV SM 

and ground measurements in the FMI and GTK stations occur in autumn. Particularly high R value, 

equal to 0.8 has been evaluated between ECV SM and in situ SM time series in Ilomantsi. In Ireland, the 

best agreement between satellite time series and in situ SM measurements has been observed in spring. 

In this season, very high correlation values (R > 0.9) have been evaluated between ECV and in situ SM 

time series. In Spain, quite high correlations have been found between the ECV SM time series and the 

ground measurements in autumn (ECV-A and ECV-C) and spring (ECV-B and ECV-D). Differently, 

the comparison between the ASAR SM and the in situ datasets highlighted the best agreement in spring 

for the ECV-A, in summer for the ECV-B and the ECV-D, and in autumn for the ECV-C. 

  



Remote Sens. 2015, 7 15407 

 

 

Table 8. Seasonal correlation values (R) between in situ SM measurements and both ASAR 

and ECV SM datasets, evaluated in each ECV cell under study. 

ECV Cell 
Winter Spring Summer Autumn 

ASAR ECV ASAR ECV ASAR ECV ASAR ECV 

ECV-A 0.02 0.46 0.67 0.68 0.04 0.01 0.57 0.85 

ECV-B −0.21 −0.01 0.71 0.83 0.78 0.23 0.47 0.13 

ECV-C −0.69 0.76 0.60 0.78 −0.08 0.75 0.78 0.87 

ECV-D 0.49 0.34 0.78 0.92 0.83 0.91 0.73 0.78 

Kilworth 0.25 0.26 0.91 0.94 0.43 0.59 0.77 0.75 

Pallaskenry −0.08 −0.15 0.78 0.90 0.32 0.48 0.58 0.66 

Solohead −0.03 0.14 0.83 0.93 0.60 0.73 0.75 0.76 

Sodankylä - - −0.41 −0.53 −0.01 0.26 0.29 0.45 

Kuusamo - - 0.18 0.32 −0.29 −0.04 −0.22 −0.38 

Ilomantsi - - −0.17 −0.23 0.46 0.30 0.49 0.80 

Suomussalmi - - −0.50 0.18 0.12 0.42 0.48 0.65 

Pori - - 0.24 0.17 −0.08 −0.09 0.25 0.23 

4.3. Soil Moisture Spatial Variability 

4.3.1. Spain 

The spatial variability of soil moisture within each ECV size pixel has been analyzed through the 

evaluation of the coefficient of variation (CV) of the ASAR SM datasets. The plots in Figure 5 show  

the trend of the CV for increasing soil moisture values. Different colors have been used to distinguish 

data taken at each season. 

In all the sites drier conditions lead to higher soil moisture spatial variability. In contrast, when the 

mean soil moisture over the region is higher, the area is more homogeneously wet. Such a behavior is 

well described through a decreasing power function, with a coefficient of determination generally higher 

than 0.8. A similar trend has been observed in the Irish areas, as reported in [33] and shown also in 

Figure S12 in the Supplementary Material for sake of comparison, where it has also highlighted that 

above values of 0.2 m3·m−3, the CV tends to vary linearly with the mean of the soil moisture [67,68]. 

Such an observation is clearly applicable also to the Spanish sites under investigation. 

Correlation maps depicted in Figure 6a have been generated by comparing each ASAR SM local time 

series and the corresponding ECV SM dataset. It can be noted that correlation values larger than 0.5 

occur across all the four ECV cells. By comparing these maps with the CLC2006 (Figure S2a in 

supplementary material), there is a quite good correspondence between patches of higher correlation  

and the “non-irrigated arable land” class. The best agreement between the two datasets has been found 

in the ECV-B, where R is generally higher than 0.7, reaching peaks of 0.9 in the south-east area.  

On the contrary, a very small number of ASAR pixels within all the ECV cells exhibit a poor correlation. 

However, in ECV-A five larger patterns of pixels characterized by R lower than 0.4 occur. Such areas 

are covered by vineyards and fruit trees cultivations. The C-band signal backscattered from these regions 

mainly interacts with the canopy of such plantations, without reaching the soil underneath. This is likely 

to be the reason of a less accurate retrieval of soil moisture from satellite acquisitions, and therefore of 

a lower performance of the soil moisture product. 
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Figure 5. Coefficient of variation (CV) of the ASAR SM mean, evaluated for each ASAR 

acquisition over the Spanish ECV-sized pixels, during the observation period 2005–2010. 

Seasonal-based values are highlighted by different colors. (Winter: DJF; Spring: MAM; 

Summer: JJA; Autumn: SON). 

 

Figure 6. (a) ASAR SM vs. ECV SM and (b) ASAR SM vs. in Situ SM correlation maps 

evaluated for each ASAR WS pixel (1 km × 1 km after resampling). The soil moisture ground 

measurements in ECV-B and ECV-D are provided by a single instrument installed in each 

of the ECV cell areas. For the analysis in ECV-A and ECV-C, where multiple soil moisture 

stations are located, the daily mean values of soil moisture recorded by each instrument 

within a single ECV cell has been considered. 
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A further analysis has been carried out by comparing the local ASAR SM datasets and the in situ  

time series collected within the same ECV cell. Where multiple stations are included within the same 

ECV pixel size, the average of soil moisture records has been considered. Results shown in Figure 6b 

are consistent with those in Figure 6a. In fact, despite general lower correlation, there is a quite good 

correspondence between patterns of pixels having similar R values. Therefore, groups of ASAR pixels 

showing higher correlation values are the same in both the maps displayed in Figure 6. 

4.3.2. Ireland 

In [33], the study of the spatial variability of SM retrieved from ASAR WS acquisitions over the Irish 

sites has been already presented. Since the same ASAR WS dataset has been used in the present work, 

here we do not replicate such analysis. However, for sake of comparison with the results achieved over 

the other regions under study, we show the CV trend plots published in [33] in the supplementary 

material provided with this manuscript (Figure S12). On the contrary, we repeated the study presented 

in [33], assessing the performance of the latest released version of the ECV SM product throughout the 

comparison of ASAR SM local time series and the corresponding ECV SM datasets. Furthermore, in 

this study, soil moisture values retrieved in each ASAR pixel have been correlated with the ground 

measurements recorded at the in situ station located within the associated ECV cell. The outcomes of 

this analysis are represented in Figure 7a as correlation maps. With respect to the results observed in [33], 

the correlation maps depicted in Figure 7a exhibit the same patterns of quite homogeneous correlation 

values. While very similar correlation maps have been obtained in the Solohead cell, a significant 

improvement has been observed in the other sites and particularly in the Pallaskenry ECV pixel size, 

where R reaches values higher than 0.7 in most of the ASAR pixels. 

 

Figure 7. (a) ASAR SM vs. ECV and (b) ASAR SM vs. in situ SM correlation maps 

evaluated for each ASAR WS pixel (1 km × 1 km after resampling). 
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Given the consistency of such outcomes with those found in [33], it is possible to confirm what has 

been observed in this previous work: the combination of altitude and soil type affects the soil moisture 

variations and hence the representativity of the ECV SM product. It has been noted that the soil moisture 

behavior over those areas characterized by lower altitudes is better described by the ECV SM dataset 

(high correlation values), and that these regions mainly correspond to zones where the soil type is 

classified as deep well-drained mineral and mineral alluvium [33]. 

Correlation maps generated by comparing ASAR and in situ SM dataset exhibit lower R values on 

average (Figure 7b). However, highest and lowest correlation patterns are consistent with those observed 

by comparing ASAR and ECV SM datasets. This is particularly evident in Solohead, where the results 

achieved from both analyses are rather similar. 

4.3.3. Finland 

The spatial variability of soil moisture within the Finnish ECV cells is presented in Figure 8. The CV 

values have been plotted as a function of the average of the soil moisture retrieved from ASAR 

acquisitions over the areas of interest, where either the FMI or the GTK in situ stations are located. As 

it has already been observed for the Spanish and Irish sites [33], drier soil conditions in Finland mean 

higher SM spatial variability, which is described by larger CV values. Also in these case studies, such 

behavior can be represented quite well by a decreasing power function. The dependency of the spatial 

variability of SM on the spatial average of soil moisture in Ilomantsi is however less meaningful, as the 

behavior is described by a decreasing power function with a coefficient of determination equal to 0.4. 

 

Figure 8. Cont. 



Remote Sens. 2015, 7 15411 

 

 

 

Figure 8. Coefficient of variation (CV) of the ASAR SM mean, evaluated for each ASAR 

acquisition over the FMI and GTK ECV sized pixels, during the observation period  

2007–2009 for Sodankylä, Ilomantsi and Kuusamo, 2007–2010 for Pori, and 2005–2009  

for Suomussalmi. Seasonal based values are highlighted by different colors. (Spring: MAM; 

Summer: JJA; Autumn: SON). 

By comparing the ASAR retrieved SM time series in each 1 km × 1 km pixel and the ECV SM  

dataset corresponding to the Sodankylä cell, as well as the ground measurements collected in this  

station, the correlation maps in Figure 9 have been created. It can be observed that locally, at the ASAR 

pixel scale, the correlation between the satellite datasets reaches values larger than 0.4 almost all over 

the area under study. The lowest correlation (0.1 < R < 0.3) can be associated to the closeness to the 

water course, which crosses the region (Figure S4b in the supplementary material). With respect to the 

Spanish and Irish sites, the Sodankylä cell exhibits poorer spatial agreement between the satellite  

SM time series. A possible reason may be the forest coverage characterizing this area, as well as the 

unsuitability of the SM retrieval algorithm in handling data acquired at near-boreal latitudes. 

 

Figure 9. (a) ASAR SM vs. ECV SM and (b) ASAR SM vs. in situ SM correlation maps 

evaluated for each ASAR WS pixel (1 km × 1 km after resampling) within the Sodankylä 

(FMI) ECV size cell. 
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By comparing the correlation maps displayed in Figure 9, the same patterns of pixels characterized 

by similar correlation values can be observed. Nevertheless, the highest correlation patterns obtained  

by relating the ASAR SM time series with the in situ SM measurements (Figure 9b) are those where the 

poorest agreement is achieved between ASAR and ECV SM. On the contrary, the large higher 

correlation zones in Figure 9a correspond to those where the representativity of the ground SM 

measurements is worst (Figure 9b). Very low and negative correlation values (R < −0.4) can be noted in 

the central area of the ECV cell (Figure 9b) where peat bogs occur (Figure S4b). 

Figure 10 shows the correlation maps resulting from the study carried out over the ECV cells 

including the GTK in situ stations. The capability of the ECV SM product in representing the  

soil moisture conditions at the ASAR pixel scale is quite variable. The soil moisture trend is better 

represented by the ECV SM datasets in Ilomantsi and Kuusamo, where a large percentage of the ASAR 

size pixels exhibits R values larger than 0.7 (Figure 10a). Nevertheless, the Ilomantsi cell exhibits also 

patterns characterized by low correlation (R = 0.3), that could be possibly related to the peat bog 

coverage (Figure S5b in the supplementary material) or to the proximity to water bodies. The correlation 

between ASAR and ECV SM time series is rather homogenous and poor over the Pori and Suomussalmi 

cells, equal to 0.3 on average. An even lower correlation area can be observed in Pori (−0.14 < R < 0.09), 

which is classified as peat bog in the CLC2006 map (Figure S5b in the supplementary material). 

 

Figure 10. (a) ASAR SM vs. ECV SM and (b) ASAR SM vs. in situ SM correlation maps 

evaluated for each ASAR WS pixel (1 km × 1 km after resampling) within the GTK ECV 

size cells. 

The spatial analysis of soil moisture through the comparison between the ASAR SM time series and 

the ground measurements provided consistent results (Figure 10b): the highest correlation values belong 

to the ASAR pixels within the Ilomantsi cell, while the poorest agreement between the datasets occurs 

in Suomussalmi, where negative R values characterize most of the pixels. Some small negative 
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correlation patterns occur also in the south-west corner of the Ilomantsi ECV cell (Figure 10b), possibly 

due to the presence of peat bogs, or to the proximity to water bodies. 

5. Discussion 

This work has focused on the quality assessment of the latest released version of the global soil 

moisture product provided through the ESA CCI program. The long SM time series (up to five years of 

observations) collected over three regions in Spain, Ireland and Finland have been temporally and 

spatially compared to the finer spatial resolution SM product retrieved from ASAR WS acquisitions, and 

to in situ soil moisture datasets. 

The suitability of using ASAR WS data for the purpose of this study has been proved by comparing 

the retrieved SM time series with the ground measurements. In fact, high correlation values have been 

observed both in Spain and Ireland. In contrast, poor agreement has been found by comparing the ASAR 

SM datasets and in situ measurements recorded at the Finnish sites. Such outcomes can be possibly due 

to the unsuitability of the soil moisture retrieval algorithm in accurately processing satellite acquisitions 

taken at latitudes higher than 60° north. In fact, data are resampled on a regular grid, regardless of the 

geolocation of the observed areas. Such an approach leads to a less precise backscattering estimation at 

the Northern latitudes, and therefore it introduces a further error in the retrieval of soil moisture. Indeed, 

all the dataset inter-comparisons carried out in this study provided the weakest correlations at the Finnish 

sites. Beside the algorithm related issues, several other possible reasons could be associated to this poor 

performance. Firstly, the area contained within these ECV cells is dominated by forests. Dense 

vegetation cover attenuates the backscattered signal and decreases the sensitivity of the radar backscatter 

to soil moisture [69]. Secondly, the GTK in situ soil moisture sensors are buried at a depth of 0.1 m 

which is beyond the depth at which the satellite is sensitive to surface soil moisture. Nevertheless, no 

significantly improved correlation values have been found for the FMI Sodankylä ECV cell, where the 

in situ sensor is buried at a depth of 0.02 m. Similar low correlations have been observed in [26] using 

ASCAT data and in [21] for the northern latitudes. Conversely, in [70] relatively high correlations have 

been evaluated in Norway between both ASCAT (0.68 < R < 0.72) and AMSR-E (0.52 < R < 0.64) SM 

retrieved data and in situ measurements taken by sensors buried at a depth of 0.1 m. However, the 

analysis carried out in the present work displayed reasonable agreement between the ASAR and ECV 

SM datasets, with R values varying between 0.41 and 0.51 in all the Finnish study areas. In [26], the 

authors hypothesize that the poor correlation found between SM measurements taken at the FMI in situ 

station and ASCAT retrieved soil moisture values may be partly explained by improper freeze/thaw 

flagging. They achieved increased correlation by excluding from the dataset comparisons of those 

measurements recorded in early spring, when soil moisture is still artificially low due to frozen soil. In 

order to verify whether an inaccurate flagging of the ECV SM product occurred, we exploited the soil 

temperature information provided together with the soil moisture data in situ, and we excluded from the 

validation exercise those observations taken over frozen soil (temperature below 0 °C). However, such 

an approach did not lead to any significant improvement or variation in terms of correlation. A possible 

reason could be the small number of observations taken over frozen soil that did not lead to any major 

change of the SM datasets. 
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Quite high correlation values between the ECV SM and ASAR SM time series in the Spanish and 

Irish regions demonstrated the capability of the ECV SM product in describing the soil moisture temporal 

dynamics, despite its coarser spatial resolution. Even better agreement has been observed between the 

ECV SM datasets and the ground measurements recorded at the Irish Solohead station and at many of 

the Spanish sites. Such results are consistent with the outcomes provided in previous works dealing with 

the validation of satellite SM products by using ground measurements taken at the REMHEDUS stations. 

For instance, in [25,27], the authors compared the earlier version of the ECV SM dataset and in situ SM 

measurements recorded at a number of REMHEDUS stations. In [25], the average correlation was 

evaluated equal to 0.63 (±0.036). In [27] results are provided in terms of Spearman correlation, which 

varies within the interval 0.6–0.7. It is worth noting the fact that the quality assessment of the latest 

released version of the merged ECV SM product exhibited higher correlations in all the Spanish ECV 

size pixels. In fact, we found correlation values generally higher than 0.7. Similar results have been 

observed in previous works where the SM time series recorded at the REMHEDUS stations have been 

compared to only ASCAT [26], or both ASCAT and AMSR-E SM products [71]. 

The actual improvement of the ECV SM product has been observed also by carrying out the analysis 

at the Irish sites, where the SM datasets inter-comparisons provided enhanced results in terms of 

correlation, with respect to the findings published in [33]. In [60,72], correlation values calculated 

between ASCAT SM and in situ values taken in humid regions are similar to those calculated at the Irish 

sites between ECV SM data (in our work, generated by using only ASCAT acquisitions) and in situ 

measurements. Our results are also consistent with those presented in [52], where the soil moisture 

retrieved from ASAR GM acquisitions has been compared with that derived from ERS scatterometer 

data and in situ measurements. 

The typical seasonal variation of soil moisture has been quite well captured by the in situ SM time 

series. By carrying out the comparison between the three SM datasets on a seasonal basis, in [33] it was 

observed that the ECV SM product failed in capturing the wettest and driest conditions in Ireland, as the 

poorest agreement between satellite derived SM time series and ground measurements was found in 

winter (wettest season) and summer (driest season). Despite the present study has shown an actual 

improvement of the ECV SM dataset in this regard, the seasonal based analysis confirmed what was 

previously observed. This is possibly due to the limited number of available satellite images for the 

retrieval of the soil moisture by applying the change detection algorithm, which is likely to lead to the 

underestimation of the sensitivity of the microwave signal to soil moisture (the difference between the 

driest and wettest signal) [73,74]. This can explain the low correlation between ASAR and in situ SM 

data in winter and summer observed in most of the sites analyzed in this study. On the other hand, the 

highest correlation values between the satellite SM time series and the in situ datasets have been  

achieved in spring and/or autumn, both in Ireland and in Spain. In spite of being located in different 

climate zones, Southern Ireland and Northern Spain are both characterized by wet winters and dry 

summer. As discussed in [33], when heavy and/or continuous precipitation occur over a poorly-drained 

soil, a water layer could persist on the surface, reducing the satellite microwave backscattering  

sensitivity to soil moisture and, hence, providing incorrect estimates of the moisture content. Typical 

poor drained soils are those with a high clay percentage content, such as Solohead in Ireland [33] (22%) 

or the REMHEDUS stations M09 (26%) and L07 (33%) within the ECV-A [38,41]. In contrast, summer 

is the driest season, during which the vegetation reaches the maximum growth in Ireland. This may affect 
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the quality of the retrieved soil moisture from SAR and scatterometer images. The seasonal correlation 

values evaluated for each Finnish site under study are generally very low or even negative. However, 

there is some consistency with the results achieved in the other areas, as the best agreements have been 

observed in spring at Kuusamo station, and in autumn in the other sites. Aiming at the understanding of 

the extent to which geophysical factors, such as soil texture, terrain composition and altitude, affect the 

retrieved ECV SM product values, the spatial distribution of soil moisture has been investigated at the 

ASAR scale (1 km) within the ECV size pixels. The approach here adopted makes use of actual 

observations covering the whole area, differently from classical methods which analyze the soil moisture 

spatial variability through geostatistical analysis by using hydrological models and in situ networks over 

wide regions. 

In [75], it was observed that heavier rains and higher mean moisture contents are often associated 

with lower spatial variability (CV). In principle, the spatial distribution of surface soil moisture content 

is controlled by environmental attributes, such as land use and topography. In this work we firstly 

analyzed the possible relationship between the average of soil moisture retrieved from ASAR WS 

acquisitions over the ECV cells and the CV. In [66], the authors observed that the SM spatial variability 

increases over sandy soil as the soil dries, reaching the maximum CV near the residual moisture content. 

Such behavior is well described by a decreasing power function. However, above SM values of 

0.2 m3·m−3, a decreasing linear function is an effective approximation of the relationship between soil 

moisture and CV values. A linear relationship was found also in [67,68], where the authors focused their 

study about the spatial variability of soil moisture over humid grassland. The more recent work presented 

in [33] confirmed what has been previously observed: by focusing on the spatial variability of soil 

moisture over the Irish grasslands, a decreasing power function was found to be a very good 

approximation of the relationship between SM and CV (R2 > 0.87). Results achieved by replicating the 

study over the sandy soil of the semi-arid Duero Basin region are consistent with those described above, 

with a coefficient of determination higher than 0.8 in all the ECV cells. By comparing the soil moisture 

variability in wet and dry catchments in New Zealand and Australia, respectively, the study published 

in [76] highlighted that the decreasing variability associated to the increasing moisture content, and the 

increasing variability exhibited at the drier locations, are due to differences in the seasonal patterns of 

controlling processes associated with seasonal changes in spatial mean soil moisture. While, in [33], the 

ability of ASAR WS retrieved SM data to track this full spectrum of varying moisture content and 

seasonal behavior was proved, in the Spanish sites no evidence of a specific seasonal spatial variability 

could be observed. Indeed, the driest soil conditions associated to the highest spatial variability  

(CV = 1.0–1.4) occurred in spring. However, because such extreme low soil moisture occurrences occur 

only twice along the multi-year period of observation, we could hypothesize that these dry soil conditions 

were unusual. While winter soil moisture observations are mainly associated to wetter soil conditions 

and lower CV, summer and autumn ASAR SM values are quite variable as well as the associated SM 

spatial variability over the ECV size pixels (0.19 < CV < 0.65). 

A decreasing power function has been found to estimate quite well the spatial variability of soil 

moisture associated to its amount over the Finnish sites as well. In Finland soil moisture values are 

generally lower than 0.2 and more homogenously distributed over the ECV cell (0.19 < CV < 0.4). 

The spatial variability of soil moisture has also been investigated by comparing SM time series in 

each ASAR pixel to the corresponding ECV SM dataset. High correlation (R > 0.5) values have been 
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evaluated all over the four Spanish regions, proving the capability of the coarser spatial resolution 

product in capturing the soil moisture behavior within quite large areas. Patterns of pixels exhibiting 

poorer agreement between the datasets (low R) are due to artificial surfaces which have not been 

accurately masked out in the pre-processing phase (north-west corner), or correspond to areas covered 

by forests (North and Middle East side), whose presence hinder the accurate retrieval of soil moisture 

from microwave satellite acquisitions. Similarly, vineyard and fruit trees lead to quite large patches of 

ASAR pixels characterized by low correlation (R < 0.3) in the ECV-A cell. Correlation maps generated 

by comparing ASAR SM and in situ SM datasets in each 1 km × 1 km pixel provided a picture of the 

representativity of the ground measurements over the ECV size pixels. Despite the larger spatial scale 

difference led to a slight worsening of the performance, correlation maps are consistent with those 

generated by using the ECV SM dataset. The correlation maps generated through the ASAR and ECV 

SM time series comparison at the SAR spatial scale over the Irish sites further demonstrated the 

enhancement of the CCI SM product with respect to the previous released version [33]. Although poorer 

agreement has been noted between ASAR and in situ SM datasets, the highest and lowest correlation 

patterns correspond well to those observed by comparing the satellite SM time series. 

Issues related to the adopted SM retrieval algorithm, as well as the presence of forests all over the 

Finnish regions led to generally lower correlation values between the satellite SM products at the ASAR 

spatial scale. Nevertheless, a rather good agreement between the SM time series is achieved in the FMI 

cell, where few lower correlation patterns of ASAR pixels occurred in the proximity of the water course 

crossing the ECV cell and over peat bogs. The correlation map derived from the comparison between 

ASAR and in situ SM datasets taken at Sodankylä station resulted to be almost complementary to the 

one generated from the satellite SM time series comparison. The geographic coordinates of the FMI 

station pinpoint the site in proximity of the river and in the middle of the ECV cell. Therefore, the ground 

measurements are likely to better represent the soil moisture conditions in those ASAR pixels 

characterized by the same features as the station site. 

The effect of specific land covers on the representativity of the ECV SM product has been highlighted 

also within the GTK cells, where the presence of peat bogs and the proximity to water bodies lead to 

lower correlation values associated to the corresponding ASAR pixels. 

6. Conclusions 

This paper presented an inter-comparison study of two satellite derived surface soil moisture products 

with in situ measurements in three European countries belonging to different climate zones. The main 

objective of this work was to assess the quality of the latest released CCI ECV SM product by 

investigating its ability to capture the same relative temporal behavior as the finer spatial resolution 

ASAR SM dataset. Regional (at ECV cell spatial scale) and pixel (at ASAR spatial scale) based analysis 

have been carried out. In situ soil moisture observations were also used as a reference to verify the 

accuracy of both the satellite SM products. 

Without using any hydrological model or dense in situ networks, the validation activity presented in 

this work provided results consistent with those published in previous papers using different sensors and 

classical methods. Such an outcome demonstrated that our approaches are efficient and cost-effective 

validation techniques for low-resolution SM products. 
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The study proves that the coarse scale ECV product is representative of the temporal soil moisture 

variations observed through finer scale ASAR-derived and in situ soil moisture observations at the 

selected study sites. Strong correlations were observed over humid and semi-arid sites. Specifically, the 

satellite-derived SM products inter-comparison provided correlation values ranging between 0.70 and 

0.73 in the Irish sites, and between 0.58 and 0.80 in all the analyzed Spanish ECV cells. Even better 

agreement has been observed between the ECV SM datasets and the ground measurements recorded at 

the Irish Solohead station (R = 0.83) and at many of the Spanish sites (0.70 < R < 0.86). Weaker 

correlations between ASAR and ECV SM time series were observed over the Finnish sites (R < 0.5), 

irrespective of the method used for excluding frozen soil condition observations. Poorer results, 

highlighted by even negative correlation values, have been observed when comparing satellite SM 

products with ground measurements. 

The quality assessment of the ECV SM product through the ASAR pixel-based analysis exhibited R 

values larger than 0.55 all over the Spanish and Irish ECV cells, where also very high correlation  

patterns have been observed. Poorer agreement generally occurred over the FMI and GTK regions, 

where R lies below 0.5, with the exceptions of Ilomantsi and Kuusamo where quite large patterns of 

ASAR pixels characterized by very high correlation values (0.7 < R < 0.95) have been observed. 

The effect of geophysical factors, such as soil type, topography and land cover, on the spatial 

variability of soil moisture and on the accuracy of satellite-derived soil moisture products, has been also 

investigated. In terms of soil type, it has been found that less accurate SM values are estimated over soil 

with higher clay content. Although the areas under study are characterized by quite low complex 

topography, it has been observed that the quality of the satellite-derived SM datasets decreases over the 

Irish regions located at higher altitudes [33]. Concerning the influence of specific land cover on the ECV 

SM quality, we found that the presence of forests (tall or dense vegetation), peat bogs or the proximity 

to water bodies, lead to a poorer representativity of the satellite-derived SM product. 

On the basis of the overall outcomes of this work, we can state that the ECV SM product is a good 

representation of the soil moisture condition over the 0.25° × 0.25° cell. Moreover, an improvement of 

the quality of the latest released version of the ECV SM dataset has been proved by comparing the results 

reported in the present manuscript with those published in [33]. However, although providing confidence 

in the use of the ECV SM product, results and observations presented in this work highlighted also the 

need of further investigating on the source of error related to SM retrieval algorithms, particularly over 

high latitude areas (i.e., north of 60 deg), as well as on the sensitivity of the accuracy of satellite-derived 

SM datasets to the soil type and clay content, forest coverage and complex topography. Future studies 

addressing these issues may benefit from the results presented in this work to be used as a benchmark 

for a better understanding of soil moisture products. 
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