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Abstract: A sampling strategy to define elementary sampling units (ESUs) for an entire site 

at the kilometer scale is an important step in the validation process for moderate-resolution 

leaf area index (LAI) products. Current LAI-sampling strategies are unable to consider the 

vegetation seasonal changes and are better suited for single-day LAI product validation, whereas 

the increasingly used wireless sensor network for LAI measurement (LAINet) requires an 

optimal sampling strategy across both spatial and temporal scales. In this study, we developed 

an efficient and robust LAI Sampling strategy based on Multi-temporal Prior knowledge (SMP) 

for long-term, fixed-position LAI observations. The SMP approach employed multi-temporal 

vegetation index (VI) maps and the vegetation classification map as a priori knowledge. The 

SMP approach minimized the multi-temporal bias of the VI frequency histogram between 

the ESUs and the entire site and maximized the nearest-neighbor index to ensure that ESUs 

were dispersed in the geographical space. The SMP approach was compared with four sampling 
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strategies including random sampling, systematic sampling, sampling based on the land-cover 

map and a sampling strategy based on vegetation index prior knowledge using the PROSAIL  

model-based simulation analysis in the Heihe River basin. The results indicate that the ESUs 

selected using the SMP method spread more evenly in both the multi-temporal feature space 

and geographical space over the vegetation cycle. By considering the temporal changes in 

heterogeneity, the average root-mean-square error (RMSE) of the LAI reference maps can be 

reduced from 0.12 to 0.05, and the relative error can be reduced from 6.1% to 2.2%. The SMP 

technique was applied to assign the LAINet ESU locations at the Huailai Remote Sensing 

Experimental Station in Beijing, China, from 4 July to 28 August 2013, to validate three 

MODIS C5 LAI products. The results suggest that the average R2, RMSE, bias and relative 

uncertainty for the three MODIS LAI products were 0.60, 0.33, −0.11, and 12.2%, 

respectively. The MCD15A2 product performed best, exhibiting a RMSE of 0.20, a bias of 

−0.07 and a relative uncertainty of 7.4%. Future efforts are needed to obtain more long-term 

validation datasets using the SMP approach on different vegetation types for validating 

moderate-resolution LAI products in time series. 

Keywords: leaf area index; wireless sensor network; sampling optimization; a priori 

information; heterogeneous vegetated areas; temporal variations 

 

1. Introduction 

The leaf area index (LAI) is defined as half of the total foliage area per unit ground surface area [1,2]. 

The LAI is an important biophysical variable in land-surface processes, such as photosynthesis, transpiration 

and energy balance [3]. Several remotely sensed global LAI products have been produced from multiple 

sensors, such as TERRA and AQUA/MODIS, SPOT/VEGETATION, ENVISAT/MERIS, TERRA/MISR 

and AVHRR [4–9]. Ground-based validation is critical for assessing the uncertainties and evaluating the 

accuracies of these satellite-derived products [10–13]. In the general “bottom-up” products validation 

framework, selection of the sampling strategy to define elementary sampling units (ESUs) for the entire 

site at the kilometer scale is an important step because the chosen sampling strategy results in different 

coefficients of the up-scaling function that ultimately affect the accuracy assessment of the LAI  

product [13–15]. The widely used random sampling or systematic sampling approaches in prior validation 

programs are simple and easy to carry out [16–19], but these approaches may not be appropriate over 

heterogeneous areas due to their low efficiency and the laborious and time-consuming nature of LAI field 

measurements [20]. To capture the surface heterogeneity, more efficient sampling strategies are designed 

with available a priori knowledge, such as vegetation types, vegetation index or soil types [21–24]. These 

methods are widely applied in the VALERI project field campaigns, the Ruokolahti forest observations 

in Finland and the Barrax cropland observations in Spain [25–27]. 

To study the seasonal variation of vegetation growth, much attention has recently been paid to  

the continuous observing of LAI time series and the long-term multi-temporal validation of LAI  

products [28–30]. The wireless sensor network (WSN) designed for LAI measurement (LAINet) provides 

a feasible and efficient scheme for continuous LAI observing from in-situ downward solar radiation and 
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transmitted radiation measurements [31,32]. The LAINet has the potential to continuously monitor temporal 

variability in harsh conditions, such as at high altitudes or in cold temperatures, and is increasingly being 

used in ground observation programs [31–35]. Due to budget constraints, the number of LAINet nodes 

for an observation area is typically fixed. Therefore, the main freedom is the choice of locations for the 

LAINet nodes. Once established, the node locations are typically fixed for performing continuous 

observations [30]. Thus, the sampling strategy for the assignment of LAINet nodes requires optimization 

for the entire observation period, rather than for a specific or short observation period. One of the limitations 

of the currently employed LAI sampling strategies is that they are not designed for extended dynamic 

vegetation growth and are better suited for single-day LAI product validation. It is necessary to account 

for surface temporal changes to achieve the optimal sampling across both spatial and temporal scales. 

The objective of this study is to introduce the temporal domain into the sampling strategy for observing 

long-term LAI with temporal changes in spatial heterogeneities. The proposed sampling strategy employs 

multiple species and multi-temporal a priori information. This paper is organized as follows. Section 2 

describes the methodology of the Sampling strategy based on Multi-temporal Prior knowledge (SMP) 

and the sampling strategy evaluation procedure. The study sites and the data processing procedure are 

described in Section 3. In Section 4, the SMP method is compared with four alternate sampling strategies 

using the PROSAIL model-based simulation analysis in the Heihe River basin, and Section 4 also 

presents the application of the SMP method in the LAINet observations at the Huailai Remote Sensing 

Experimental Station in Beijing, China, from 4 July to 28 August 2013. Finally, conclusions and directions 

for needed future research on the SMP method are presented in Section 5. 

2. Methodology 

2.1. Sampling Strategy Based on Multi-Temporal a Priori Knowledge 

The LAINet within an ESU (~30 m) contains three different types of sub-nodes: one to multiple evenly 

distributed “below” sub-nodes, which are deployed below the canopy to receive the transmitted solar 

radiation; one “above” sub-node, which is above the canopy to receive the downward radiation; and one 

central sub-node, which is used for data reception and control. Each below sub-node calculates the LAI 

from multi-angle transmittance using a vegetation gap probability model, and all the below sub-node 

observations within an ESU are averaged as the field-measured LAI value of the ESU. In general, the 

site-specific relationship (transfer function) between the field-measured LAI of each ESU and fine-resolution 

VI values is either a univariate exponential or a linear regression function. The goal of proposing an 

optimal sampling strategy for validating LAI products in time series is to improve the accuracy of the 

multi-temporal LAI reference maps at the given number of ESUs. 

The feature space, or attribute space, is a virtual space bounded by the range of variables [36]. The axes 

of the feature space include continuous variables such as the vegetation index and categorical variables 

such as the land-cover types. The SMP method is designed to ensure the even spread of ESUs in both 

multi-temporal feature space and geographical space, and the objective function (OF) is defined as follows: 

OF Bias /NNI (1)

where NNI is the nearest neighbor index which is given in Equation (5), and BiasTotal is defined as follows: 
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Bias Bias Bias  (2)

where BiasVI is the multi-temporal average bias between the VI frequency distribution histogram of the 

ESUs and the entire site and is given by the following relation: 

Bias |
η 1

| (3)

where n is the number of ESUs, and t is the number of the corresponding multi-temporal vegetation index 

(VI) maps. The entire site contains N fine-resolution pixels. X (N × T) is the population of multi-temporal 

VI values, while x (n × T) is the group of ESUs selected from X. The frequency distribution histogram of 

X is divided into n intervals, and each interval has an equal number of pixels. The quantiles are defined 

as , ⋯ , ,⋯ , , where t = 1, …, T, and i = 1, …, n + 1. η  is the 
number of times that  appears in the interval [ , ]. 

BiasLC is the bias between the land-cover histogram of the ESUs and the entire site and is calculated 

as follows: 

Bias |
η

| (4)

where η  is the number of times x occurs in class j in the sampled pixels,  is the proportion of class 

j in X, and c is the number of land-cover classes. 

NNI represents the nearest neighbor index and is computed as follows [37]: 

NNI
∑

0.5 /
 (5)

where min(dij) is the distance between each ESU and its nearest neighbor, n is the number of ESUs,  

and A is the area of the site. The NNI is one of the most widely used distance statistics in the point 

pattern-distribution analysis [37] and has been used as a good indicator to measure the dispersion of the 

ESUs over the entire site in the SSVIP approach [24]. The dispersal of the ESUs spatial distribution 

increases with increasing values of NNI. The NNI is equal to one when the ESUs spatial distribution is 

random. An NNI value less than one indicates spatial aggregation, whereas a value greater than one 

indicates a dispersed distribution. 

The six necessary steps for applying the SMP method are as follows: 

(1) Acquire multi-temporal VI images and the vegetation classification map from historical  

a priori knowledge. 

Multi-temporal VI maps and the vegetation classification map can be acquired from fine-resolution 

multi-spectral images at the same period in recent history. The required number of multi-temporal VI maps 

depends on the changes in heterogeneity over the entire sampling period. If the temporal changes in the 

surface heterogeneity are continuous, three fine-resolution VI maps properly distributed over the green-up, 

maturity and senescence periods are generally sufficient for agricultural fields. If the heterogeneity exhibits 

more temporal changes, the VI maps from each time interval when the changes occur are required to 

ensure the representativeness of the ESUs for this time interval. The Normalized Difference Vegetation 
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Index (NDVI), Simple Ratio (SR), or Enhanced Vegetation Index (EVI), which is sensitive to the 

vegetation growth levels for the specific area, can be employed. 

The use of historical knowledge to guide the LAI sampling requires that the inter-annual change in 

vegetation growth is not as significant as the seasonal variability, which is more reasonable for natural 

vegetation and cropland with no sudden changes in tillage management according to the vegetation 

phenology [38,39]. The application of this approach will be limited if the vegetation has high abnormal 

inter-annual variations due to water shortages or crop species changes, etc. 

(2) Randomly select a group of n ESUs from all the fine-resolution pixels of the entire site. 

(3) Calculate the OF for the group of ESUs based on Equations (1)–(5). 

(4) Start the simulated annealing algorithm to search for the optimal group of ESUs. 

To avoid being trapped in local optimum, the simulated annealing algorithm accepts some of the 

changes that worsen the OF, and the probability of accepting a worse group of ESUs is given by the 

following relation [22]: 

exp ∆OF/  (6)

where ∆OF is the change in OF between two iterations, and T is the cooling temperature which starts at 

1 and is decreased by a factor of 0.95 at every ten iterations. The process then generates a random number 

R between 0 and 1. If R < P, the new group of ESUs is accepted, and otherwise, the change is discarded. 

(5) Perform the change of an ESU in the group. 

For the change, if R < 0.5, an ESU in the group is randomly swapped with a random ESU outside the 

group. Otherwise, one of the ESUs from x in Equation (3) which has the largest  

η  is randomly selected and replaced by a random ESU outside the group. 

(6) Repeat steps (3)–(5) until the OF value falls beyond the given stopping criterion OF < 0.01, or the 

defined maximum number of iterations 10,000 is reached. 

Theoretically, there exists the extreme case in which more than one group of ESUs may have the same 

minimum OF, and in this case, one of these groups will be randomly selected as the optimal group of ESUs 

using the SMP method. 

2.2. Sampling Strategy Evaluation Procedure 

Directly validating the accuracy of a sampling strategy is challenging because the true LAI value of 

the entire study area can seldom be obtained in practice due to the limited manpower. To ensure that the 

true LAI values and the spectral images were simultaneously available, the direct evaluation procedure 

proposed by Zeng, et al. [24] was adopted here (Figure 1). This procedure was based on the PROSAIL 

model with a “bottom-up” LAI product-validation process [14], and the simulated images had to be similar 

to the satellite images in the vegetation structure and growth seasonal cycle. 

In the proposed evaluation procedure, the PROSAIL model required multi-temporal fine-resolution 

LAI base maps and a vegetation classification map to simulate multi-temporal fine-resolution reflectance 

images. The LAI base maps were considered to provide the true LAI values for evaluating the accuracy 

of the different sampling strategies. Different sampling strategies were applied and resulted in different 
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transfer functions that ultimately generated different LAI reference maps. The LAI of the non-vegetated 

areas, such as roads, buildings and bare soil, was set as zero in the LAI reference maps. The LAI reference 

maps were degraded to a moderate resolution to compare with the original LAI base map. The only difference 

among the evaluation procedures was the sampling strategy. Therefore, the accuracy of the different 

sampling strategies can be evaluated based on the accuracy of the multi-temporal LAI reference maps. 

The SMP method was compared with four current widely used sampling strategies: random sampling, 

systematic sampling, sampling based on the land-cover map and Sampling Strategy based on Vegetation 

Index Prior knowledge (SSVIP). For all the sampling strategies, non-vegetated areas were masked in the 

sampling. For simple random sampling, the ESU locations were selected using a series of random numbers. 

For systematic sampling, a series of rectangular grids were generated, and the ESU locations were chosen 

in the center of each grid. For sampling based on the land-cover map, the number of ESUs in each vegetation 

type was proportionally allocated according to the area, and the ESUs were randomly distributed within 

each type. For the SSVIP approach, only the first fine-resolution VI map was used as a priori knowledge. 

This approach was in fact a type of stratified sampling, and the number of strata for SSVIP was set equal 

to the number of ESUs to achieve the maximal stratification [24]. For the SMP sampling strategy, all the 

acquired fine-resolution VI maps during the observation periods and the land-cover map were incorporated 

as the input dataset to generate the optimal group of ESUs. 

 

Figure 1. Sampling strategy evaluation framework based on the PROSAIL model [24]. 

3. Study Sites and Data Processing 

The different sampling strategies were evaluated and compared over a 3 km × 3 km agricultural  

area in the Heihe River basin, Gansu province, China (38°51′N, 100°21′E), and then, the proposed SMP 

approach was applied to select the optimal group of ESUs for the LAINet at the Huailai Remote Sensing 

Experimental Station (40°22′N, 115°46′E) in Beijing, China, from July to August in 2013. 



Remote Sens. 2015, 7 1306 

 

3.1. Data Acquired and Processed for the Sampling Strategy Evaluation 

The vegetation classification map of the Heihe site was obtained using a supervised classification 

method of an HJ-1/CCD image and the ground-observed cover types of typical objects, as shown in 

Figure 2. The proportions of corn, wheat and rape were 76.8%, 13.7% and 9.5%, respectively. All  

non-vegetated areas, such as roads, buildings, and bare soil, were masked in the sampling, and thus,  

no ESUs are located on these areas. Four 15-m resolution ASTER images acquired on 24 June, 10 July, 

11 August, and 12 September 2012, were used as the historical a priori knowledge to guide the sampling 

design during the growing season from June to September 2013. All images in this study were radiance 

calibrated and atmospherically corrected using the 6S model [40] and were previously geometrically 

corrected with the spatial error controlled within 0.5 pixels. 

 

Figure 2. The land-cover map of the 3 km × 3 km study area in the Heihe River basin, China. 

The major cover types were corn (green), wheat (yellow), rape (cyan) and non-vegetated areas 

(red). The projection is UTM 47 North, WGS84. 

At the Heihe site, 14 ESUs were field measured by LAI-2000 on 13 July 2012, which included 11 corn 

ESUs, two wheat ESUs and one rape ESU. The size of the ESU was 15 m × 15 m, and nine single points 

measured by LAI-2000 were evenly distributed within each ESU. The transfer function was generated 

by the 14 ESUs and the ASTER image that was acquired on 10 July 2012, and the formula of the transfer 

function was LAI 0.4191 SR 0.1137, with an R2 value of 0.52 and RMSE of 0.33. Thus, the four 

15-m resolution LAI base maps from June to September 2012 were derived from the ASTER images 

and the transfer function, and the four generated LAI base maps would be used to drive the PROSAIL 

model in the sampling strategy evaluation in Figure 1. 

The input parameters in the PROSAIL model were set at typical values for the specific vegetation type, 

as shown in Table 1 [41]. The soil reflectances in the red and near infrared bands were 0.195 and 0.297, 

respectively. Considering the variability of biochemical vegetation parameters, Cab and Cm were perturbed 

with ±10% Gaussian noise. The error or noise in the spectral response, atmospheric correction and LAI 

ground measurements in the LAI product-validation process were considered in the evaluation procedure 
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as follows. The relative uncertainties for the atmospherically corrected reflectance in the green, red and 

near-infrared bands were 0.1, 0.2 and 0.05, respectively [42], and the corresponding Gaussian noise was 

added to the reflectance image. In the generation of the transfer functions, 20% Gaussian noise was 

added to the LAI base maps to account for the error by LAI optical instruments [43]. 

Table 1. The typical values of the input parameters for the specific vegetation type in  

the PROSAIL model [41]. N is the leaf-structure parameter that denotes the number of 

homogeneous layers; Cab is the chlorophyll a and b content; Cw is the equivalent water 

thickness; Cm is the dry matter content; and ALA is the average leaf-inclination angle. 

Class Type N Cab (μg/cm2) Cw (cm) Cm (g/cm2) ALA (°) 

Corn 2.275 31.5 0.0075 0.0058 63.24 

Wheat 1.518 53.2 0.0131 0.0037 57.3 

Rape 2.656 44.8 0.0003 0.0066 26.76 

3.2. Data Acquired and Processed for the Sampling Strategy Application 

The Huailai site encompasses an area of 2 km × 2 km and is covered with corn (93.1%) and the  

non-vegetated cover types (6.9%), including roads, bare soil and water. Four HJ-1/CCD images acquired 

on 11 June, 11 July, 22 August, and 30 September 2012, were used as a priori knowledge. One to eight 

LAINet below sub-nodes were located within each ESU according to the spatial variability, and the locations 

of the 12 ESUs are shown in Figure 3. The LAINet collected observations every day from 4 July to 28 

August 2013. To compare with the MODIS LAI products, the daily observed LAI was averaged over 

eight days at each ESU, and the observation date was translated into the DOY (day of year) format. 

 

Figure 3. The spatial distribution of the ESUs over the 2 km × 2 km study area at the Huailai 

Remote Sensing Experimental Station, China. The projection is UTM 50 North, WGS84. The 

background image is a false-color composite image from Landsat8/TM that was acquired on 

6 July 2013. 
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During each eight-day interval, two Landsat8/TM images were acquired on DOY 187 and 212, and 

four HJ-1/CCD images were acquired on DOY 193, 205, 231 and 237 in 2013. Both the exponential and 

the linear regression by NDVI and the linear regression by SR were tested to construct the transfer 

function, and the relationship with the lowest RMSE was selected as the final transfer function. The transfer 

functions were applied to the Landsat8/TM or HJ-1/CCD images to generate the 30-m resolution LAI 

reference maps, which were then degraded to a resolution of 1 km. Due to potential errors introduced by 

geolocation uncertainties and the point spread function (PSF) of the moderate-resolution sensors [44,45], 

the degraded LAI reference was averaged over 2 × 2 pixels to compare with the MODIS LAI products. 

Three types of eight-day MODIS C5 LAI products–MOD15A2, MYD15A2 and MCD15A2, which were 

derived from Terra/MODIS, Aqua/MODIS, and combined Terra and Aqua/MODIS, respectively [46], 

were collected during the observation periods. All the MODIS LAI pixels had quality control (QC) values 

that were less than 64, indicating that all the pixels were retrieved based on the main algorithm. 

4. Results and Discussion 

4.1. Evaluation of the ESUs Spreading in the Multi-Temporal Feature Space 

The frequency distribution histograms of the 30 selected ESUs generated by different sampling strategies 

and the histograms of the entire site were compared from June to September (Figure 4). The ESUs selected 

by the random sampling method were over-sampled by 12.3% at interval 8.5–9.5 in June and by 15.9% 

at 6.5–7.5 in July, while these ESUs were under-sampled by 14.5% at interval 6.5–7.5 in June. The ESUs 

selected using the systematic sampling method were over-sampled by 12.3% at interval 8.5–9.5 in June, 

by 19.0% at 6.5–7.5 in August and by 15.4% at 4.5–5.5 in September but were under-sampled by 11.8% 

at interval 5.5–6.5 in June and by 10.0% at 2.5–3.5 in September. The ESUs selected by the  

land-cover-map-based method were over-sampled by 16.9% at interval 4.5–5.5 in August and by 10.0% 

at 2.5–3.5 in September but were under-sampled by 11.5% at interval 5.5–6.5 in August and by 11.4% 

at 3.5–4.5 in September. In June, the difference between the SR histogram of the ESUs selected using 

the SSVIP method and the histogram of the entire site was not significant. This pattern was found 

because the SR map in June was used as a priori knowledge for the SSVIP method. However, from July 

to September, the ESUs were over-sampled by 13.5% at interval 4.5–5.5 in August, but these ESUs were 

under-sampled by 16.0% at interval 4.5–5.5 in July. The histogram difference for the SMP approach was 

controlled within 5% at all the intervals from June to September, which was the lowest among the five 

different sampling strategies. 

Four statistical indices, including the mean, standard deviation, skewness and kurtosis of the histograms, 

were compared in Figure 4. Compared with the entire site, the ESUs selected by the random sampling 

method had a larger mean by 0.67 in June, a larger skewness by 1.10 in September and a smaller kurtosis 

by 1.10 in August. The ESUs selected using the systematic sampling method had a larger mean by 0.53 in 

June and a larger kurtosis by 1.06 in August, while the land-cover-map-based method had a smaller mean 

by 0.48 in June and a smaller kurtosis by 1.04 in September. The SSVIP approach had similar statistical 

indices compared to that of the entire site in June, while this approach had a smaller mean by 0.31 in 

September, a smaller skewness by 0.38 in July and a smaller kurtosis by 1.05 in September. The SMP 

approach controlled the deviation of the mean, skewness and kurtosis from that of the entire site within 
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0.3, 0.2 and 0.5, respectively, which achieved the best performance among the five sampling strategies. 

These results suggest that sampling strategies attempting to achieve the optimal sampling in mono-temporal 

observations, such as the SSVIP method, may not be appropriate for long-term observing because of 

vegetation growth dynamics. The ESUs selected by the SMP method and the entire site had the most 

similar frequency distribution in the multi-temporal feature space. 

 

(a)

 

(b)

 

(c) 

 

(d)

 

(e) 

 

(f) 

Figure 4. SR frequency distribution histograms for the ESUs selected using (a) the random 

sampling method; (b) the systematic sampling method; (c) the land-cover map; (d) the SSVIP 

method and (e) the SMP method and for (f) the entire site from June to September with 30 

ESUs. The horizontal axis indicates the SR within the interval [i − 0.5, i + 0.5], and the four 

statistical indices are mean (Mean), standard deviation (Std.), skewness (Skew.) and kurtosis 

(Kurt.). 

Figure 5 shows the average bias of the frequency distribution between the selected ESUs and the entire 

site in four images from June to September with different numbers of ESUs. The random sampling and 

systematic sampling methods had similar performance, but these two approaches were outperformed by 
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the other three methods. The random sampling and systematic sampling methods exhibited a mean bias 

that exceeded 0.15 when the number of ESUs was 50. The other three methods exhibited biases of less 

than 0.07, 0.06 and 0.04 with 50 ESUs. The mean biases of the land-cover-map-based sampling method 

and the SSVIP approach exceeded that of the SMP method by at least 0.04 and 0.03, respectively. The 

mean bias of the SMP method was always the lowest when the number of ESUs ranged from 30 to 50, 

which suggests the stability of the SMP method at different numbers of ESUs. 

 

Figure 5. Mean bias between the ESUs and the entire sites in four images generated using the 

random sampling, systematic sampling, sampling based on the land cover map, SSVIP and 

SMP methods at different number of ESUs. 

4.2. Evaluation of the ESUs Spreading in the Geographical Space 

Figure 6 displays the spatial distribution of ESUs selected using the different sampling strategies. The 

random sampling approach produced clustering in the upper right-hand side with large blank areas over 

both the lower left-hand and lower right-hand portions of the image. Similar phenomena occurred for 

the ESUs selected using the land-cover-map-based method: the ESUs were aggregated near the right 

border, whereas there was only one ESU located at the upper and lower left-hand sides of the area. In 

contrast, the ESUs selected using the systematic sampling, SSVIP and SMP methods produced good spatial 

coverage of the entire area in geographical space. Figure 7 shows the NNI values for different sampling 

strategies with the number of ESUs varied from 30 to 50. Figure 7 indicates that the spatial distributions 

of the ESUs selected using random sampling and the land-cover-map-based method were similar to that 

of the random distribution, with the NNI values within the interval (0.9, 1.2). Systematic sampling 

exhibited the most dispersed spatial distribution, with the NNI value within the interval (1.6, 1.9). The 

SSVIP and SMP methods had NNI values within the intervals (1.5, 1.8) and (1.5, 1.7), respectively, 

which also indicates a dispersed distribution pattern. The results indicate that the ESUs selected using the 

systematic sampling, SSVIP and SMP methods were more dispersed across the area in geographical space 

than those generated using random sampling and the land-cover-map-based method. 
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(a) (b) (c) 

 
(d) (e) 

Figure 6. The spatial distribution of ESUs obtained using the (a) random sampling;  

(b) systematic sampling; (c) land-cover map; (d) SSVIP and (e) SMP methods with 30 ESUs. 

ESUs located in non-vegetated areas were removed in the systematic sampling approach. 

 

Figure 7. The NNI values for the ESU pattern using the random sampling, systematic sampling, 

sampling based on the land-cover map, SSVIP and SMP with different numbers of ESUs. 

4.3. Accuracy Analysis of the LAI Reference Maps 

Figure 8 shows the RMSE and the relative error (RE) between the aggregated LAI reference map and 

the benchmark from June to September with 30 ESUs. The LAI reference maps generated using random 

sampling performed the worst among the five sampling strategies, with an RMSE exceeding 0.17 and RE 

exceeding 10.1%. The reference map generated using the systematic sampling approach exhibited the 

second-worst accuracy, with the RMSE and RE exceeding 0.10 and 5.8%, respectively. The accuracy of 

the LAI reference map produced using the land-cover-map-based sampling method was better than the 
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former two methods, exhibiting relatively low RMSEs of 0.08–0.15 and REs of 5.0%–7.2%. The SSVIP 

method had the lowest RMSE (0.05) and RE (1.7%) in June, which was similar to the performance of 

the SMP approach (i.e., RMSE of 0.05 and RE of 1.8%). However, the SSVIP method performed much 

worse than the SMP method from July to September, exhibiting RMSEs of 0.07–0.14 and REs of  

4.3%–6.7%. This result was consistent with the results presented in Figure 4, which demonstrate that the 

difference between the SR frequency distribution of the ESUs selected using the SSVIP method and the 

entire site was not significant in June, while the SR frequency distributions of the ESUs were biased in 

some intervals from July to September. The SMP method exhibited the best performance compared with 

the other four methods. The RMSEs and REs were 0.04–0.06 and 1.8%–2.7%, respectively, from June 

to September. Compared with the land-cover-map-based method and SSVIP sampling approaches, the 

SMP method was able to reduce the average RMSE and RE from 0.12 and 0.10 to 0.05 and from 6.1% 

and 4.8% to 2.2%, respectively. 

(a) (b) 

Figure 8. The (a) RMSE and (b) average relative error (RE) between the aggregated LAI 

reference maps generated by different sampling strategies and the reference data with 30 ESUs 

from June to September 2012. 

4.4. Application to LAINet Observations at Huailai Site 

The SMP method was applied to the LAINet observations at Huailai site for the time-series validation 

of the MODIS C5 LAI products. Figure 9 shows the transfer functions, and the RMSEs on DOY 201 and 

233 were 0.83 and 0.72. The average RMSEs on the other four days were 0.42, which was much lower than 

that on DOY 201 and 233. Figure 10 shows the 30-m resolution LAI reference maps at each eight-day 

interval, which suggests that the vegetation growth levels and the spatial heterogeneities of the area 

experienced significant temporal changes due to different soil, irrigation or fertilization conditions, etc. 

Figure 11 shows the time-series comparison between the LAI reference maps and the corresponding 

MODIS LAI products at Huailai site from 4 July to 28 August. The three MODIS LAI products exhibited 

similar trends to those of the reference data. MOD15A2 and MCD15A2 were better correlated with the 

reference data than the MYD15A2 product. MODI5A2 overestimated LAI by 0.05–0.33 from DOY 193 

to 225 and underestimated LAI by 0.26 on DOY 233. MCD15A2 underestimated LAI by 0.09–0.23 from 

DOY 185 to 193 and from DOY 209 to DOY 233 and overestimated LAI by 0.34 on DOY 201. MYD15A2 
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underestimated LAI by 0.58 and 0.27 from DOY 185 to 193. MYD15A2 had the lowest accuracy, with 

a bias that exceeded −0.59 when the crop LAI began to slightly decrease from DOY 225 to 233. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 9. Transfer functions for generating the LAI reference maps at 30-m resolution on 

(a) DOY 185; (b) DOY 193; (c) DOY 201; (d) DOY 209; (e) DOY 225 and (f) DOY 233. 

  
(a) (b) (c) 

  
(d) (e) (f) 

Figure 10. The generated multi-temporal LAI reference maps at 30-m resolution on  

(a) DOY 185; (b) DOY 193; (c) DOY 201; (d) DOY 209; (e) DOY 225 and (f) DOY 233. 
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Figure 11. Time series comparison between the mean of the LAI reference maps at Huailai 

site and the corresponding LAI of the three MODIS products from 4 July to 28 August 2013. 

The error bars represent the standard deviation of the four pixels at Huailai site from the 

MODIS LAI products (black) and the LAI reference maps (red). 

Figure 12 shows a scatter plot comparing the mean MODIS LAI values with the mean from the LAI 

reference maps at Huailai site from 4 July to 28 August. The relative uncertainty was defined as the ratio 

of the RMSE to the mean LAI. The R2, RMSE, bias and relative uncertainty were 0.60, 0.33, −0.11 and 

12.2%, respectively, for the combination of the three MODIS LAI products. Table 2 shows the statistical 

results on the accuracy of the three products. MCD15A2 exhibited the best performance with an RMSE 

of 0.20, bias of −0.07 and relative uncertainty of 7.4%. MYD15A2 had the lowest accuracy. 

 

Figure 12. Comparison between the mean MODIS LAI values and the mean of the LAI 

reference maps at Huailai site from 4 July to 28 August 2013. 

Table 2. The accuracy of the MODIS LAI products at Huailai site. 

LAI Product R2 RMSE Bias Relative Uncertainty 

MOD15A2 0.78 0.21 0.10 7.6% 

MYD15A2 0.58 0.50 −0.36 18.3% 

MCD15A2 0.82 0.20 −0.07 7.4% 
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5. Conclusions 

Focusing on the ESU assignment for the LAINet continuous observing over heterogeneous vegetated 

areas, a spatial sampling strategy called SMP was proposed using a combination of multi-temporal vegetation 

index maps and a vegetation classification map as a priori knowledge. Considering the dynamic vegetation 

growth processes, the SMP approach performed better than the other four sampling strategies over the 

vegetation cycle and was more suitable for multi-temporal LAI product validation. The PROSAIL 

model-based simulation analysis in the Heihe River basin demonstrated the good performance of the 

SMP method considering the following aspects: (1) The ESUs selected using the SMP method spread more 

evenly in the multi-temporal feature space and geographical space during the entire observation period. 

The mean bias decreased from 0.08 and 0.11 by the SSVIP method and the land-cover-map-based method, 

respectively, to 0.04 by the SMP method; (2) The LAI reference maps generated using the SMP method 

were more accurate than those generated using the other four sampling strategies over the vegetation 

cycle. Compared with the land-cover-map-based method and the SSVIP approaches, the average RMSE 

and relative error of the LAI reference maps produced with the SMP method were reduced from 0.12 and 

0.10 to 0.05 and from 6.1% and 4.8% to 2.2%, respectively. The performance of the SMP method was 

robust to variations in the number of ESUs and to different time intervals. These improvements generate 

more accurate LAI reference maps and promise more accurate long-term validation over heterogeneous 

vegetated areas for moderate- and coarse-resolution LAI products.  

The SMP approach was applied to determine the locations of observation nodes for the LAINet at  

the Huailai Remote Sensing Experimental Station in Beijing, China, from 4 July to 28 August 2013. 

Multi-temporal LAI reference maps were generated to validate three MODIS C5 LAI products. The 

validation results suggested that the R2, RMSE, bias and relative uncertainty were 0.60, 0.33, −0.11 and 

12.2%, respectively, for the combination of the three MODIS LAI products. Among the three products, 

MCD15A2 exhibited the best performance with an RMSE of 0.20, bias of −0.07 and relative uncertainty 

of 7.4%. MYD15A2 exhibited the lowest accuracy. Future efforts are needed to obtain more long-term 

validation datasets using the SMP approach on different vegetation types for validating moderate-resolution 

LAI products in time series. 
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