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Abstract: The knowledge about spatial distribution of plantation forests is critical for forest 

management, monitoring programs and functional assessment. This study demonstrates the 

potential of multi-seasonal (spring, summer, autumn and winter) Landsat-8 Operational Land 

Imager imageries with random forests (RF) modeling to map larch plantations (LP) in a 

typical plantation forest landscape in North China. The spectral bands and two types of 

textures were applied for creating 675 input variables of RF. An accuracy of 92.7% for LP, 

with a Kappa coefficient of 0.834, was attained using the RF model. A RF-based importance 

assessment reveals that the spectral bands and bivariate textural features calculated by 

pseudo-cross variogram (PC) strongly promoted forest class-separability, whereas the 

univariate textural features influenced weakly. A feature selection strategy eliminated 93% 

of variables, and then a subset of the 47 most essential variables was generated. In this subset, 

PC texture derived from summer and winter appeared the most frequently, suggesting that 

this variability in growing peak season and non-growing season can effectively enhance 
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forest class-separability. A RF classifier applied to the subset led to 91.9% accuracy for LP, 

with a Kappa coefficient of 0.829. This study provides an insight into approaches for 

discriminating plantation forests with phenological behaviors. 

Keywords: larch plantations; forest type classification; multi-seasonal imageries; texture; 

random forests; variable assessment 

 

1. Introduction 

Natural forests have been destroyed for more than a century worldwide due to human activity, and 

plantation forests are planted to meet the demand of timber as a substitution for natural forests [1]. 

Accounting for 36% of the country’s total forested area, China possesses the largest area of planted 

forests (PF) in the world [2]. Larix spp. is one of the most important planted timber tree species.  

Since the 1950s, about 3.78 million ha of larch plantations (LP) have been planted in North China, which 

provides essential ecosystem services, including timber production, water resource conservation and 

carbon sequestration [3]. With a continuing increase in planted LP area, some problems have been reported 

regarding LPs such as the poor natural regeneration capability [4,5], and a decline in soil fertility [6,7]. 

The knowledge about spatial patterns of LP is of prime importance to forest management, monitoring 

programs and ecological services functional assessment, which services for the strategic goals of 

managing plantation forests [1,8,9]. Nevertheless, due to the extensive area and long-period of planting 

LPs in North China, its spatial distribution pattern remains unclear. 

Remote sensing is particularly useful for forest mapping, as it provides a large coverage at relatively 

high levels of detail [10–14]. Nevertheless, for specific tree species during mono-temporal stage (e.g., 

growing season), an accurate remote sensing-based classification is still particularly challenging, as the 

spectral signal from trees may be very hard to distinguish from one another. Multi-seasonal remote 

sensing images are used to introduce temporal variability of objects as a feature to increase  

class-separability [15–17]. In the process of global land-cover mapping, for example, Gong et al. found 

multi-temporal Landsat images useful in investigating land-cover classification [18]. This  

multi-temporal images-based classification has been applied to map land cover [17,19], wetlands [16] 

and forest biomass [20]. Although this idea has received increasing interest, the multi-seasonal  

imagery-based classification that allows for the separation of different forest types, is still lacking. 

The spatial variability of vegetation cover patterns can be incorporated into the mapping process to 

distinguish objects more effectively [17,21]. Image texture, which describes the visual spatial variability, 

has been widely used in identifying vegetation types [22,23]. Various texture measures aiming to 

quantify smoothness, symmetry, regularity, etc., of an image have been developed based on the grey 

level co-occurrence matrix (GLCM) and geostatistical functions [24]. Among these texture approaches, 

the geostatistical approach derived from variogram functions cannot only be calculated for a single 

image band (univariate mono-seasonal texture), but for a set of bands which describe the covariances 

between bands of an image for a time series representing different seasons (bivariate multi-seasonal 

texture). It is especially useful in certain situations where the seasonal differences between the forest 

types are important for class discrimination. Larch is a deciduous and coniferous tree species, which has 
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remarkable seasonal changes. In summer, spectral signal from coniferous forest is different from 

broadleaf forest; in winter, larch shed their leaves and it hereby can be discriminated from the other 

evergreen coniferous tree species. Furthermore, most of LPs in China are a single species monoculture [5]. 

These multi-seasonal textures measures may help to extract the seasonal dynamic of pure forests more 

accurately. However, little attention has been paid to the phenological texture-based classification of 

forest types. 

Although a number of input variables derived from multi-seasonal spectral data and textures can 

identify features of forest types and improve classifier accuracy, this may lead to the concomitant curse 

of dimensionality which may be generated due to the application of various transformations to the 

original satellite images and hinder the expected increase in accuracy related to the inclusion of 

redundant features [25]. Two methods were used to address this problem: Selecting a robust classifier 

capable of handling a large number of variables, or selecting only the most informative ones by evaluating 

individual input variables [17,26]. Random Forests (RF) is an ensemble learning algorithm that has been 

documented as an excellent performer for the analyses of many complex remote sensing datasets [27–29]. 

It exhibits many desirable properties, including high accuracy, processing thousands of input variables, 

integrated measures of variable importance, and so on [30,31]. The RF-based variable importance 

measure can be applied to reduce data dimensionality and further improve classifier efficiency. The 

previous studies have reported on the RF-based classification approaches with multi-seasonal imageries 

for land cover mapping [17,19]. However, these studies mostly focused on specific seasons (e.g., spring 

and summer). For a given forest type discrimination, a time series data set throughout the growing cycle 

of trees can efficiently identify phenological behaviors of different forest types, thus it may be quite 

applicable for LP discrimination. Additionally, although the previous studies examined the RF-based 

importance assessment of remote sensing variables for land cover classification [17,32], the variable 

applicability for forest type classification is uncertain. 

The objectives of this study are to (1) assess performance of the RF learning algorithm in the 

discrimination of LP; (2) quantify the importance of input variables; (3) map spatial distribution of LP 

at a local scale. To achieve these goals, multi-seasonal (spring, summer, autumn and winter) Landsat-8 

Operational Land Imager (OLI) imageries, texture models and ancillary data were employed to adopt a 

RF-based feature selection (FS) method. Based on the evaluation of these input variables, a RF classifier 

was developed to map LP distribution. 

2. Materials and Methods 

2.1. Study Area 

This study was conducted at the Saihanba Forestry Center (SFC) in Hebei Province, Northern China 

(116°52′E–117°39′E, 42°04′N–42°36′N; ca. 93,000 ha; Figure 1). It is located in the transition between 

the Inner Mongolian Plateau and North Hebei Mountain, with an elevation ranging from 1042 m to 1936 m. 

The climate features semi-arid and semi-humid, with a short growing season of May to September. 

Annual mean air temperature and precipitation were −1.2 °C and 530 mm, respectively. SFC consisted 

of six sub-forestry centers. Since 1960s, SFC has planted over 74,000 ha of planted forest, which is the 

largest planted forestry center in China; at present the forest cover of SFC reaches as high as 80%. The 
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main planted forest types are Larix principis-rupprechtii plantations (LP), Pinus sylvestris var. 

mongolica plantations (MP), Picea asperata plantations (AP) and Pinus tabulaeformis plantations (PP); 

the main natural secondary tree species is Betula platyphylla forests (BF) and rare hardwood deciduous 

forests (HDF). SFC is a typical area of plantation forests in Northern China, with forest types consisting 

of coniferous and deciduous tree species; thus it is a suitable location for investigating LP mapping. 

 

Figure 1. Location of Saihanba Forestry Center. 

2.2. Data Acquisition and Preprocessing 

Remotely sensed imagery used for this study is Landsat-8 OLI, which is a new sensor of the Landsat 

series. Landsat-8 extends the Landsat series records and has enhanced capabilities including new spectral 

bands, improved sensor signal-to-noise performance and associated improvements in radiometric 

resolution, etc., [33]. In this study, six bands of Landsat-8 were utilized, including OLI2 (blue,  

0.45–0.51 μm), OLI3 (green, 0.53–0.59 μm), OLI4 (red, 0.64–0.67 μm), OLI5 (near infrared, 0.85–0.88 μm), 

OLI6 (shortwave infrared, 1.57–1.65 μm) and OLI7 (shortwave infrared, 2.11–2.29 μm). Four  

Landsat-8 OLI scenes (Path: 123/Row: 31), captured in spring (green-up stage; 15 May 2014), summer 

(growing peak stage; 29 July 2013), autumn (defoliating stage; 4 October 2013), and winter (leafless and 

snowless stage; 4 November 2013), were employed to characterize temporal LP phenological variations. 

Geometric correction was performed by approximately 50 ground control points to reduce the error 

to less than 15 m for the 4-scene Landsat OLI images. Then, atmospheric correction of the images was 

performed using the Fast Line-of Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

software package in ENVI 5.0. 

Accurate and sufficient training plot data are crucial for a supervised classification. A reference 

dataset was obtained from forest inventory data of SFC in 2011. The ground data derived from two field 

surveys in 2013 and high-resolution aerial imagery (0.5 m) from 2012 were applied to verify the 
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reference dataset of SFC; a few polygons (ca. 5% of the total area) were adjusted to obtain an improved 

ground reference dataset. Then, a random sampling approach was directly used with the improved forest 

map of SFC. A total of 9909 homogeneous areas were selected to identify forest types to train and test 

the classifier (Table 1). Each site was confined by a 90 m by 90 m homogeneous area, following 

recommendations by Congalton and Green [34]. Additionally, the forest map of SFC was also employed 

as a base forest map for exclusion of the other land covers. 

Table 1. The total number of samples for the six forest types LP, Larix principis-rupprechtii 

plantations; MP, Pinus sylvestris var. mongolica plantations; BF, Betula platyphylla 

secondary forests; AP, Picea asperata plantations; PP, Pinus tabulaeformis plantations; 

HDF, hardwood deciduous secondary forests. 

ID Forest Type Total Samples 

1 LP 5831 
2 BF 2912 
3 MP 949 
4 AP 102 
5 HDF 86 
6 PP 29 

Total  9909 

Plantation forests tend to be planted in a flat area, while natural forests distribute in a rugged terrain. 

Considering the topographic effects on the distribution of forest types, three topographic features were 

used as input ancillary variables for the RF classifier. Altitude was derived from Shuttle Radar 

Topography Mission (SRTM) digital elevation models (DEM) raster with a spatial resolution of 30 by 

30 m. Slope and aspect were generated from the DEM. 

2.3. Textural Analysis 

Image texture carries useful information for discriminating forest types. The multi-scale textural 

features which combined geostatistical texture and GLCM texture, were calculated from Landsat-8 

multi-seasonal OLI bands (band 2 to band 7) to introduce textural variables into the LP discrimination. 

It should be noted that selection of the window size is a practical problem, depending on the spatial 

resolution of the image and the characteristics of the land cover [17,24,35]. The proper window size can 

ensure obtaining a robust textural estimator. Rodriguez-Galiano et al. [17] suggested that a small window 

size provide a more representative description of the most heterogeneous environments with high local 

variance, while larger window sizes may provide an accurate representation of a homogeneous pattern 

of spatial variability of large areas. By referring to the previous studies and considering patch size of 

forest in SFC, three different window sizes were tested, including 5 × 5 pixels (150 × 150 m),  

9 × 9 pixels (270 × 270 m) and 13 × 13 pixels (390 × 390 m). 

2.3.1. Geostatistical Texture 

The geostatistics approach is a textural analysis tool used to measure spatial variation (e.g., spatial 

autocorrelation) in remotely sensed data [36]. Implementation of variograms is one of the most promising 
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techniques of geostatistics and it has been widely used in image texture characterization [37]. It can be 

applied not only to calculate the texture contrast within a single spectral band (univariate analysis) but 

also to describe the relationships between pairs of spectral bands (bivariate analysis) [32]. For the latter, 

the bivariate analyses can be performed with two bands of mono-season or same band of coupled 

seasons. In order to identify characters of LP in SFC, three geostatistical measures (variogram, 

madogram and pseudo-cross variogram) were applied to mono-seasonal and multi-seasonal images. The 

direction of variogram computation and the lag distance h are the two important parameters affecting 

texture values. In this study, the four main directions (N–S, E–W, NE–SW and NW–SE) were averaged 

to produce an omnidirectional variogram texture [36,37]. Because different lag distances have a limited 

effect on classification results [17,32], one lag (h = 1) were selected for the three window sizes. More 

detailed descriptions about variogram functions and definitions of parameters can be found in previous  

studies [36–38]. All the prediction variables derived from geostatistical texture were showed in Figure 2. 

2.3.2. GLCM Texture 

GLCM is an alternative texture analysis tool, which is widely used to describe the specific textural 

characteristics of an image [39]. This texture features calculated from a matrix containing relative 

occurrence frequencies gray level (digital numbers) of pairs of pixels at a fixed relative position in an 

image [22,32]. Similarly, some parameters should be defined to process the calculation of GLCM 

texture. For explanation of the GLCM parameters (window sizes, lag distance and orientation), refer to 

the definition of geostatistical textures (Section 2.3.1). There are a variety of GLCM measures employed 

in current studies. In order to avoid correlation between textural features as well as reduce data 

dimensionality, we referred Coburn et al. study and selected the three GLCM measures [39]. The defined 

parameters and texture features of GLCM are shown in Figure 2. 

2.4. Random Forests Classification and Feature Selection 

2.4.1. Random Forests Classifier 

The machine learning technique RF is an improved version of the Classification and Regression Tree 

that can be viewed as an ensemble of individual tree-like classifiers [27,40]. RF algorithm shows neither 

sensitivity to noise nor overfitting than other classifiers based on bagging or boosting [32,41].  

It can handle a thousand of input variables and evaluate their importance in classification [27]. In this 

study, a RF classifier was used to discriminate LP from the other forest types and estimate the importance 

of 675 input variables. 

In a process of RF classification, two basic parameters are required to generate a prediction model, 

the number of trees in a forest (ntree) and the number of prediction variables for use at each split to grow 

a decision tree (mtry). Although Breiman [27] suggested that adding more trees to RF model does not 

induce over-training, redundant trees can introduce the increase of computational time. For a number of 

prediction variables, its reduction causes a less robust individual tree, while reduces the correlation 

between trees, which increases the classifier accuracy [42]. Therefore, the parameters of the RF model 

should be optimized for obtaining a high-efficient RF classifier. Considering computation time of RF, 

ntree is set to the upper limit of 1000. A number of RF models based on possible values of ntree and 
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mtry were created and evaluated to analyze the effect of the two parameters on classification accuracy. 

The optimal parameters would be applied to improve the RF classifier efficiency. 

 

Figure 2. Flowchart describing the process of calculating the input variables of RF classifier. 

The total 675 potential variables consisted of spectral bands, textual variables and topographic 

data. The six bands of multi-seasonal OLI images and topographic variable (altitude, slope and 

aspect) derived from DEM were directly utilized as RF input variables. For geostatistical textures 

(GT), both mono-seasonal (univariate and bivariate) and multi-seasonal (bivariate) images were 

employed. The mono-seasonal GTs were calculated by single band (variogram and madogram, 

24 bands × 2 GTs) and pair of bands (pseudo-cross variogram, 15 band combinations × 4 

seasons); multi-seasonal GT was calculated by single band for different combinations of 

coupled seasons (6 bands × 6 seasonal combinations). All the texture variables were 

generated by omnidirection (averaged by the four main directions), one lag distance (h = 1) 

and different scales (window sizes equal to 5 × 5 pixels, 9 × 9 pixels and 13 × 13 pixels). 

The ground reference data (Table 1) was divided randomly into 70% and 30% for training and testing 

of RF model, respectively (Section 2.2), which the number of training sites per class was kept roughly 

equal [17]. A confusion matrix was generated to assess classification accuracy. 
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2.4.2. Feature Selection 

The three kinds of data which derived from original satellite spectral bands, textural measures and 

topographic data produced 675 predictive variables for RF (Figure 2). The original spectral variables are 

informative and often been directly used in remote sensing-based classification [26,43]. Additionally, in 

order to identify the monoculture and phenological behaviors of LP, two textural methods (GLCM and 

geostatistical texture) were employed. Since textual measures with multiple parameter combinations 

(e.g., window size, direction or lag) can dramatically increase variables, many efforts have been carried 

out to reduce the data dimensionality (Section 2.3). 

The textural variables may increase the classification accuracy, but these variables may highly correlate 

sometimes as well as generate an excess of computational time and the “curse of dimensionality” [25]. It is 

important to know how each predictive variable influences the RF model and further identify the 

efficiency of variables for LP discrimination. An assessment of variable importance produced by the RF 

model can help to select the more effective variables with little reduction in classification accuracy.  

In this process, by random permuting of values of the variable in the out-of-bag (OOB) samples, the 

increase of estimation error for the modified and original OOB data is measured for determining the 

variable importance [44]. Based on the importance assessment, the optimal subsets of variables were 

selected to produce the high-efficiency RF model, which is applied to mapping LP at SFC. All the input 

predictive variables of RF were exhibited in Figure 2. The RF model was performed using statistical 

software R 2.15.2. 

3. Results 

3.1. Performance of Random Forests Classifier 

The 675 input variables generated by the multi-seasonal spectral data, two textural measures and 

topographic data, were used in RF classification to discriminate LP from the other forest types. The accuracy 

of the RF classifier for all forest types is 91.0%, with a Kappa coefficient of 0.834 (The mtry and ntree of 

the RF classifier were assigned to 15 and 1000, respectively). To assess the effect of input parameters 

(mtry and ntree) on classification accuracy, numerous RF classifiers were created for various mtry and 

ntree. As shown in Figure 3, when mtry is greater than 5, its effect on the overall accuracy of RF classifier 

is very limited. On the other hand, the overall accuracy increased with an increasing ntree; but this 

increasing trend is rather weak after 100 trees were grown. 

3.2. Importance Measure of Variables 

The two textual measures were employed in RF classification directly together with the multi-seasonal 

spectral data. The result indicates that the classification accuracy difference derived from separate season 

variables was very minor (Figure 4a). Furthermore, Figure 4b shows the accuracy of RF classifiers using 

summer bands (main growing season), multi-seasonal bands and all variables, respectively. Comparing 

the accuracy of RF classifier with summer bands, the inclusion of the extra three season spectral bands 

produced an increased accuracy of 4.06% for all categories and 3.06% for LP (an increasing Kappa 

coefficient of 10.19), respectively. Furthermore, adding textural variables to RF model of multi-season 
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spectral bands increases an accuracy of 2.92% for all categories and 1.86% for LP (an increasing kappa 

coefficient of 3.02), respectively. When the three classes of subsets (spectral bands, GLCM and GT 

features) were considered in isolation, the subsets of GT features produced the highest accuracy of 

90.33% and 91.15% for all categories and for LP, respectively, with a Kappa coefficient of 0.817; the 

importance of spectral variables and GLCM variables are relatively lower (Figure 4c). 

 

Figure 3. Effect of number of trees and number of random split variables (mtry) on the 

overall accuracy. 

The importance of the three types of variables determined by the RF classifier is shown in Figure 5. 

It is clear that the importance of multi-seasonal spectral bands was greater than the variables of GLCM 

and GT (p < 0.05, Figure 5a). Nevertheless, if the most ten effective variables of each subsets were 

considered, multi-seasonal spectral bands as well as GT measures produced more important variables 

for the RF classifier (p < 0.05, Figure 5b). The textural variables derived from GLCM measures resulted 

in consistently less accurate classifications than spectral bands and GT variables (p < 0.05). 

The importance of each variable regarding spectral bands, seasons, textural measures and window sizes 

was assessed in the same way (Figure 6). Figure 6a lists the efficiency of multi-seasonal spectral bands for 

LP. Several spectral bands appeared to be much more important in summer, autumn and winter than for 

the rest of the spectral bands, although these important spectral bands varied in different seasons. The 

bands located in green (OLI3) and red (OLI4) of summer and autumn and those located in shortwave 

infrared (OLI7) in winter had more predictive power. The difference in importance of spring bands was 

relatively small. As can be seen, the pattern of important variables for all categories were roughly similar 

as that for LP, and the most important variables appeared in shortwave infrared-band of winter, red- and 

green-band of summer and green-band of autumn (Figure 6b). 
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Figure 4. (a) Spider charts representing the user’s accuracies of RF classifier for the separate 

season variables; (b) the increase variables; (c) the three separate subsets of variables. The 

figure includes four forest types: LP, Larix principis-rupprechtii plantations; MP, Pinus 

sylvestris var. mongolica plantations; BF, Betula platyphylla secondary forests; OT, the 

other forest types. The tree species of OT are Picea asperata, Pinus tabulaeformis and 

hardwood deciduous trees. Due to their very low proportion (ca. 2%) of forest types in SFC, 

they are merged as one class in these figures. 

 

Figure 5. (a) the importance of three types of variables determined by the RF model; (b) the 

importance of the most ten effective variables determined by the RF model. Bands refer to 

multispectral bands; GLCM and GT refer to GLCM variables and GT variables, respectively. 

Topographical variables (altitude, slope and aspect) were not listed due to their relatively 

low importance. All of the listed results were averaged by the importance of corresponding 

bands. One-way ANOVA test was applied to compare the importance among the three 

subsets of input variables. The importance values (bars) with the different letters indicate 

significant difference (p < 0.05). 
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Figure 6. Variable importance of the multi-seasonal spectral bands and texture functions.  

(a) Variable importance of multi-seasonal spectral bands for LP and (b) all categories;  

(c) variable importance of textural functions and window sizes for LP and (d) all categories. 

OLI refer to multispectral bands; CON., ENT. and SM. refer to contrast, entropy and second 

moment, respectively (GLCM textures); VAR., MAD. and PC. refer to variogram, madogram 

and pseudo-cross variogram, respectively (geostatistical textures). Each value of the  

multi-seasonal spectral bands repents a single band importance (a,b). The other listed results 

were averaged importance by corresponding textural measures. One-way ANOVA test was 

applied to compare the importance of various subsets of input textural variables. The 

importance values (bars) with the different letters indicate significant difference (p < 0.05). 
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Various textural measures and window sizes also affected classification accuracy. Figure 6c,d show 

the importance of textual variables calculated by GLCM and GT measures. In general terms, it was clear 

from these figures that the importance of bivariate variables derived from PC was greater than that of 

other univariate variables for LP (p < 0.05). The difference of importance among five kinds of univariate 

variables with the three window sizes was not significant for both LP and all categories. For bivariate 

variables, the most relevant window size was 5 × 5 pixels of PC for LP (p < 0.05); however, the effect 

of window sizes on variable importance was not significant for all categories (p > 0.05, Figure 6d). 

3.3. Mapping LP by Feature Selection of Random Forests 

Based on variable importance described in Section 3.2, we attempt to select the most important 

variables for a RF classifier with little decrease in classification accuracy. Figure 7 illustrates the changes 

in accuracy and Kappa coefficient for RF models in which the least informative variables were removed 

gradually. As shown from this figure, the Kappa coefficient and classification accuracy of all categories 

and LP experienced similar trend, and a well-marked turning point was found (93%). The results shows 

that the accuracy fluctuated with no significant trend before the turning point (p > 0.05); however, after 

this turning point, a dramatic decrease in classification accuracy could be observed (R2 = 0.78, p < 0.05). 

 

Figure 7. The effect of variable reduction on classification accuracies. 

Based on FS of the RF model, a subset of the most informative variables (47 variables) was applied 

to a RF model to mapping distribution of LP in SFC (mtry and ntree were assigned to 3 and 200, 

respectively). The confusion matrix (Table 2) shows that the classification accuracy was similar to the 

accuracy of RF classifier based on the overall variables (675 variables). The user’s accuracy was 91.9% 

for LP, which was higher than the other main forest types (Betula platyphylla secondary forests and 

Pinus sylvestris var. mongolica plantations). Comparing with the user’s accuracy of LP, its producer’s 

accuracy is marginally higher (94.8% vs. 91.9%). The overall accuracy is 90.7% with a Kappa coefficient 

of 0.829. Finally, this classifier was applied to produce the LP distribution of SFC. The mapping results 

were shown in Figure 8. LP had the widest distribution in SFC (47,176 ha, 62.0% of the total forest 

area), followed by BF (21,094 ha, 27.7% of the total forest area) and MP (7642 ha, 10.0% of the total 
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forest area). The pixels classified represented over 99% of SFC forest area for just these three categories. 

Less than 1% pixels were classified as AP, PP and HDF (162 ha, 0.2% of the total forest area). 

Table 2. Confusion matrix of the RF classifier for the 6 forest types using validation samples. 

The total accuracy was the percentage of correct-classified samples in total testing samples. 

LP, Larix principis-rupprechtii plantations; MP, Pinus sylvestris var. mongolica plantations; 

BF, Betula platyphylla secondary forests; AP, Picea asperata plantations; PP, Pinus 

tabulaeformis plantations; HDF, hardwood deciduous secondary forests. 

Reference Data 
Classify as 

BF HDF LP MP PP AP Total Prod. Acc. 

BF 781 0 94 5 0 0 880 0.888 
HDF 23 0 2 0 0 0 25 0 
LP 80 0 1671 11 0 0 1762 0.948 
MP 1 0 27 233 0 0 261 0.893 
PP 0 0 2 2 4 0 8 0.500 
AP 1 0 22 5 0 7 35 0.200 

total 886 0 1818 256 4 7 2971  
User’s acc. 0.881 0 0.919 0.910 1 1  0.907 

 

Figure 8. Forest types map of SFC using a RF classifier. LP: Larix principis-rupprechtii 

plantations; MP: Pinus sylvestris var. mongolica plantations; BF: Betula platyphylla 

secondary forests; AP: Picea asperata plantations; PP: Pinus tabulaeformis plantations; 

HDF: Hardwood deciduous secondary forests. LP area is 47,176 ha, representing 62.0% of 

the total forest area; BF area is 21,094 ha, representing 27.7% of the total forest area; MP 

area is 7642 ha, representing 10.0% of the total forest area; the area of other three forest 

types area is 162 ha, representing 0.2% of the total forest area. 
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4. Discussion 

4.1. Importance of Input Variables 

The 24 multi-seasonal spectral bands improve the classification accuracy substantially, suggesting 

these original variables carry lots of information about multi-temporal characteristics of different forest 

types. For spring, summer and autumn, bands at visible wavelengths showed higher importance; 

however, the near-infrared band importance, which is a key band for vegetation discrimination, is 

relatively weak. The previous study reported the high efficiency of the near-infrared band in land cover 

classification [17,32], because it can differentiate vegetation from the other land cover types. The object of 

our study is forested area (other land cover is excluded), which may be a main reason causing the low 

importance of near-infrared band in classification. Although the importance of the mono-seasonal  

near-infrared band is low, its multi-seasonal variability (textural variables calculated by PC) showed a 

significant importance (Section 4.2). Furthermore, shortwave infrared (OLI7) in winter is the most 

important of the all multi-seasonal spectral bands. The difference of water content in the canopy and soil 

among the main forest types may help to explain the high effectiveness of shortwave infrared [45]. 

The effect of window sizes on textural variable importance differed between univariate texture and 

bivariate texture. For univariate textural variables, the effect of window sizes on variable importance 

was not significant; for bivariate textural variables, however, smaller window size outperformed significantly 

the larger ones (for LP). Generally, larger windows sizes may provide a more accurate representation for 

homogeneous area [17]. In this study, the bivariate texture tended to describe temporary correlation 

between the same bands for coupled seasons (multi-seasonal PCs). The partial temporary variability is 

probably ignored in a large window, whereas a smaller window size may be more representative. 

Therefore, a small window size should be suggested to obtain a more accurate representation for 

bivariate textural measures. 

4.2. Feature Selection of the most Important Variables 

The classification results, which were derived from the subset of the 47 informative variables, suggest 

that RF-based FS is a reliable approach for reducing redundant variables and improving the classifier 

efficiency. The subset of the “best” variables included 7 spectral bands, 19 multi-seasonal PCs and 21 

multi-band PCs. Although topographic variables were not ranked in this subset, they were high on the list 

of variable importance; none of univariate textural variables calculated by the two GT (variogram and 

madogram) and the three GLCM functions (contrast, entropy and second moment) were selected. Previous 

studies have also reported the good performance of PC for land cover classifications [17,32,37]. 

Synthetically, these results imply that PC textural measures may have more extensive potential for use 

in remote sensing-based mapping. 

In the subset of the “best” variables, the variables derived from PC textural measures have the greatest 

influence on class-separability, followed by spectral bands. The most important textural variable was the 

PC textural variable calculated between the blue and green visible bands of autumn, and that calculated 

between summer and autumn near-infrared was the most important multi-seasonal textural variables. 

The near-infrared band was also the most frequent variable appearing in the subset of multi-seasonal 

textural variables (9 times), although the importance of mono-seasonal near-infrared band is relatively 
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low. Since the near-infrared band is very sensitive to green biomass of forests [33,46], it can cause 

greater inter-class discriminations with temporal variability in different forest categories. Furthermore, 

in order to enhance the separability of LP, a time series data set throughout growing cycle of LP was 

highlighted in this study. We found that the summer variables are the most informative, followed by 

autumn and winter. The textural variables derived from summer and winter were also the most frequent 

multi-seasonal PC, probably because of characteristic phenology of forests in SFC, which mainly consisted 

of LP (deciduous and coniferous forest), MP (evergreen-coniferous forest) and BF (deciduous broad-leaved 

forest). The variability between growing peak season and non-growing season can maximize the  

class-separability with a remarkably seasonal behavior [47,48]. 

4.3. The Accuracy and Uncertainty of Random Forests Classification 

RF classifiers derived from the different parameters (mtry and ntree) showed minor differences in 

classification accuracies when certain value ranges were assigned (mtry was greater than 5 and ntree 

was greater than 100). It provided highly reliable accuracies for forest type classification [43,49].  

The mapping result indicates that LP and MP mainly appeared in the western part and northern part of 

SFC, while BF was distributed in the eastern and southern part of SFC. This spatial pattern was related 

to topography of SFC. LP and MP were probably planted in a relatively flat area, whereas natural forest 

(BF) distributed in a rugged terrain (Figure 8). 

Although an encouraging classification result was obtained, the uncertainty in RF classifier was 

observed. There is a discrepancy between the producer’s and user’s accuracy: For LP, the user’s accuracy 

was lower than producer’s accuracy; in contrast, for the other forest types, user’s accuracy was greater 

than producer’s accuracy. This difference suggests that the map produced by RF model tended to 

misclassify other forest types as LP. The similar misclassification of the RF model has been also reported 

by previous studies, but the reasons for the misclassifications differed [15,26]. For the present study, the 

misclassification was probably due to unbalanced proportions of ground samples for different forest 

types (LP samples accounted for over half of the total ground reference dataset), although a RF classifier 

can handle unbalanced data well [50]. This problem seems to be hardly resolved due to forest spatial 

patterns of SFC. We suggest that more studies in various areas should be undertaken to examine the 

applicability of this method. 

5. Conclusions 

This study aimed to evaluate the performance of the RF classifier for forest classification and map 

LP in a typical planted forest area. Multi-seasonal spectral bands as well as textual variables extracted 

from Landsat-8 OLI were used as input to RF models. The results indicate that using a RF model 

provided reliable classification results, with minor sensitivity when the certain parameters value ranges 

were assigned. A RF-based importance assessment was employed. These importance measures show 

spectral bands and bivariate variables strongly influence forest type-separability in SFC, while the 

importance of univariate variables is weak. On the basis of importance assessment, a FS strategy was 

applied to produce a subset of the most important variables. This subset consisted of spectral bands and 

PC variables. The most effective variable was the PC texture calculated between the blue and green visible 

bands of autumn. PC texture derived from summer and winter was the most frequent multi-seasonal PC, 
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highlighting that this variability between peak growing season and non-growing season can effectively 

enhance the forest class-separability. A RF classifier created with the subset of the most important  

47 variables produced 91.9% accuracy for LP and 90.7% accuracy for overall forest types, with a Kappa 

coefficient of 0.829. It should be noted that this classification accuracy was approximately equal to the 

classification accuracy produced by the RF with all the 675 variables. The main uncertainty of this study, 

however, would be a tendency of misclassification LP caused by unbalanced proportions of ground samples. 

The study provides a reference of predictive variables selection of remote sensing and an insight into 

approaches for mapping plantation forests with phenological behaviors at a regional scale. 
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