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Abstract: The rising attention to energy consumption problems is renewing interest in the 

applications of thermal remote sensing in urban areas. The research presented here aims to 

test a methodology to retrieve information about roof surface temperature by means of a high 

resolution orthomosaic of airborne thermal infrared images, based on a case study acquired 

over Bologna (Italy). The ultimate aim of such work is obtaining datasets useful to support, 

in a GIS environment, the decision makers in developing adequate strategies to reduce 

energy consumption and CO2 emission. In the processing proposed, the computing of 

radiometric quantities related to the atmosphere was performed by the Modtran 5 radiative 

transfer code, while an object-oriented supervised classification was applied on a 

WorldView-2 multispectral image, together with a high-resolution digital surface model 

(DSM), to distinguish among the major roofing material types and to model the effects of 

the emissivity. The emissivity values were derived from literature data, except for some 

roofing materials, which were measured during ad hoc surveys, by means of a thermal 

camera and a contact probe. These preliminary results demonstrate the high sensitivity of 

the model to the variability of the surface emissivity and of the atmospheric parameters, 

especially transmittance and upwelling radiance. 
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1. Introduction 

The rising attention to energy consumption problems is raising the interest for the applications of 

thermal remote sensing in urban environments. In the report of the Intergovernmental Panel on Climate 

Change, it is clearly stated that the most cost-efficient way to decrease CO2 emissions is through the 

implementation of energy-efficient retrofitting measures in the building sector [1]. Furthermore, in a 

recent letter to the President of the United States, a consortium of several industrial partners requested 

that his administration adopt policies to provide householders with reliable and actionable information 

at a large scale about the energy use of their buildings [2]. It is obvious that efficient building diagnostic 

tools can make a major contribution to fulfilling these goals. 

Thermography, including all of the techniques for the analysis of the infrared radiation emitted or 

reflected by objects in the thermal infrared region of the electromagnetic spectrum, provides the 

opportunity to analyze both the thermal characteristics of the materials lying on the ground and many 

processes related to the exchange of heat between the surfaces; its importance has been demonstrated in 

a wide range of military, civil, industrial and scientific applications [3,4]. This science can be 

successfully used also for energy saving purposes in the urban environment (with particular emphasis 

on housing stocks and industrial areas) involving several types of stakeholders beside householders, such 

as public agencies and municipalities, urban planners, entrepreneurs in the field of the energy 

performance of buildings, constructors and real estate agencies. 

Thermal remotely-sensed imagery can be widely used in urban landscapes, because it provides a 

synoptic and time-synchronized grid of temperature data, even of very large areas, and therefore, it 

permits analysis at different scales of urban building materials, energy use and losses, surface energy 

budgets and urban heat island effects [3,5,6]. In particular, aerial thermographic surveys in urban areas 

can reach a very high level of spatial detail, covering, at the same time, very large areas if compared to 

traditional survey techniques [7,8], thus resulting in being very attractive for the evaluation of the 

energetic performance of buildings at an urban scale. These kinds of applications continue to increase, 

especially in continental areas or in cold climates, like the UK, Canada and northern United States [2,9]. 

The results of these studies are usually raster maps of surface temperatures, which can be easily 

implemented and processed in the Geographic Information System (GIS) for the creation of spatial 

decision support systems (SDSS) intended for decision makers. 

Although, when compared with the past, advances in thermal infrared detectors and techniques have 

facilitated obtaining high-resolution thermal images over large areas, for a correct quantitative 

evaluation of land surface temperatures (LST) and the implementation of the derived maps in the GIS 

environment, several processing phases are required. In addition, an appropriate choice of the 

instruments to be used and a detailed planning and execution of the surveys are required. In fact, it is 

necessary to correct the acquired images, taking into account the effects of the acquisition geometry, the 

topography of the scene, the influence on the measured values of the atmosphere and of the  

physical-chemical properties of the different materials lying on the ground. Moreover, several additional 
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data, besides the high-resolution thermal imagery, are required to perform all of these steps of processing 

and to compute accurate surface temperatures; among them, multispectral imagery, digital elevation 

models, atmospheric measurements, ground surveys and GNSS recordings.  

From the obtained temperature data of building surface elements, estimations about the energetic 

quality of the building shell can be assessed. In the EnergyCity project of the Central Europe  

Program [10], a spatial decision support system has been developed based on GIS maps. In the project, 

seven cities from Central Europe (Budapest, Bologna, Prague, Munich, Treviso, Velenje and 

Ludwigsburg) were surveyed by aerial thermography. The processed data were integrated into a GIS 

tool aimed at the support of decision making in urban development strategies and action programs in the 

participating cities [11]. 

Similar actions were carried out in the HEAT (Home Energy Assessment Technologies) pilot project 

conducted over the City of Calgary, Alberta, Canada. “HEAT represents a Free and Open Source (FOSS) 

Geomatics solution for residential waste heat monitoring with high-resolution airborne thermal imagery 

that is intended to: (i) support Canadian urban energy efficiency programs; (ii) evaluate and monitor 

residential thermal envelopes (i.e., waste heat) using a new Canadian thermal airborne sensor; and (iii) 

provide free online results and tools to help individuals conserve energy, save their money and reduce 

their Green House Gas (GHG) footprint.” [7]. 

In the following sections, some theoretical basics of aerial thermography are firstly discussed; then, 

a detailed description of the processing workflow executed to obtain a georeferenced map of surface 

temperature in the urban area of Bologna (Italy) is given; finally, the results of the experimentation and 

some considerations of the applicability of the mentioned techniques are reported. 

2. Basic Theory 

The temperature assessment of surfaces by using thermal imagery involves the modelling of the 

radiative properties of the surfaces and of their interactions with the surrounding environment [12,13]. 

In this section, a brief summary of the model is presented. Under the formalism adopted here, small 

letters indicate the spectral quantities, which are functions of the wavelength, while the broadband 

quantities, integrated or averaged over the spectral range to which the thermal camera is sensitive, are 

designated by capital letters. 

The investigated surfaces emit thermal radiation (lB) depending on their temperature, according to 

Planck’s law. As real surfaces are not black-bodies, their radiative behavior is controlled by the 

emissivity (ε), which is, in general, a function of the wavelength and of the observing angle. The 

emissivity is generally lower than one; then, surfaces also reflect part of the radiation received by the 

sky (ld) and by the surrounding objects (lsr). The emitted and reflected radiation coming from the 

investigated surface, together with the radiation directly emitted by the atmosphere layer (lu), are the 

main components of the radiation registered by the thermal sensor (lS). A simplified equation, written in 

terms of spectral radiances, can model the described situation, 

  srduBS lFlFlll  1  (1)

where τ is the atmospheric transmittance along the path between the investigated surface and the thermal 

sensor, F is the sky view factor representing the portion of the sky that is visible from the surface and ρ 
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is the spectral reflectance of the surface, which can be computed as 1 − ε. As a simplification, the sky 

view factor is assumed to be equal to unity, which means assuming a negligible contribution from the 

surrounding objects. 

Each thermal sensor registers the radiation within a specific portion of the electromagnetic spectrum 

(Δλ); thus, the radiance registered by the sensor is a broadband radiance, which can be defined as, 
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where s is the relative spectral response function of the sensor. By substituting Equation 1 in Equation 2 

and solving for the lB term and after some simplifications, the following equation can be written, 
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The main theoretical simplification leading to Equation 3 regards the broadband surface emissivity E 

and the broadband reflectance P [14]. In fact, a grey-body behavior is assumed for all of the surfaces, at 

least within the Δλ spectral range. This assumption is also suggested by a practical consideration, 

discussed later, about the estimation of the emissivity values for the different materials, which can be 

found in the images. Furthermore, the surface is assumed to be Lambertian, which means that the 

dependence of ε and ρ on the observing angle is neglected. 

 

Figure 1. Plot of the look-up tables used to model the relations between the surface 

temperature and the black-body radiance (red line with diamonds, left vertical axis) and 

between the apparent temperature and the radiance at sensor (blue line with circles, right 

vertical axis). Vertical axes are in units of W/m2/sr. 

To derive the surface temperature from the left side term of Equation 3, a look-up table (LUT) can be 

built and a second order polynomial relation can be fit (see Figure 1). The temperature range investigated 
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by the LUT is to be chosen according to the thermal image statistics and to the expected temperatures. 

Within this range, the integral of the radiance is calculated numerically at a step of 0.5 degrees, according 

to Planck’s law. The second order polynomial regression results in a residual sum of squares of 0.003 

and in a coefficient of determination practically equal to one. 

The information obtained from the processed data enables some possibilities for energy analysis of 

the buildings. The problems related to these applications were analyzed by Allinson [9], proving that 

“roof surface temperature from the thermal image was complicated by roof material properties, the 

intervening atmosphere and the surrounding topography. Relating roof surface temperature to insulation 

thickness was further complicated by loft space ventilation and the outside surface heat balance. The 

additional data, needed to quantify the results, produced inaccuracies caused by measurement error.” 

In spite of that, the energetic quality levels of different building elements are often interrelated, 

because at the time of the construction, the building elements were usually characterized by similar 

quality. In addition, the expected lifetime of the different building shell elements is similar; thus, often, 

the same renovation cycles and, thus, the same quality levels can be considered for roofs, facades, 

windows, etc. This statement can be concluded from the results of the Tabula/Episcope project, where 

building stock typologies were developed for 20 European countries [15,16]. The application of complex 

renovation measures is often required by support programs requiring similar quality levels for the 

different elements. Considering all of these aspects, it can be supposed that a high quality roof usually 

represents a high quality building and vice versa; thus, the roof can be a good indicator for the building 

as a whole. Based on this hypothesis, indicative information can be obtained from the airborne data. 

Certainly, this statement can be applied at district levels rather than for individual buildings, where the 

errors are balanced, providing useful information at this scale for decision makers. 

3. Materials and Methods 

According to the model presented in Equation 3, the radiometric correction procedure to obtain the 

image of the surface temperature, starting from the image of apparent (at sensor) temperature, has been 

implemented in the ENVI-IDL environment. The proposed procedure works on raster datasets on a pixel 

per pixel basis. The required inputs are the image of apparent temperature, the outputs of the radiative 

transfer simulations in the atmosphere and a raster map of the surface emissivity. The procedure returns 

a raster map of the corrected surface temperatures. 

3.1. Thermal Images 

An aerial thermal infrared survey over the city of Bologna was performed on 7 March 2011. The 

survey was carried out by the National Institute of Oceanography and Experimental Geophysics (OGS), 

in the framework of the Central Europe European Project “EnergyCity” [10]. The thermal infrared 

frames were acquired using a thermal camera, NEC TS9260, characterized by an un-cooled 

microbolometer sensor operating in the 6–17 µm spectral range, with a spatial resolution of  

640 × 480 pixels (with a corresponding field of view of 21.7° × 16.4°). The infrared camera was installed 

with a rigid mounting device on a “Piper Seneca II” aircraft, in combination with an inertial measuring 

unit (IMU), a video encoder-decoder (VED) and a GNSS receiver. The relative position between the 

GNSS antenna reference point and the optical center of the thermal camera was accurately measured in 
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order to compute with high precision the coordinates of the principal point for each photogram. In order 

to have optimal coverage, a forward overlapping factor of 60% and a transversal overlapping factor of 

20% were chosen. In addition, to obtain an average ground sampling distance of 50 cm and considering 

a time span between two adjacent shots of 2 s, an average height of the flight of 840 m and an average 

speed of the aerial platform of 110 knots were planned. The area of the city of Bologna was surveyed 

following parallel strips in the W-E direction. The entire thermal survey is formed by 1417  

infrared frames. 

To carry out the thermal survey, some recommendations about the optimal meteorological conditions, 

derived from previous studies on the thermal mapping of buildings [9], were followed. The flight was 

carried out over a few hours after sunset, minimizing the effect of solar irradiation on the surfaces. 

Furthermore, it was performed in the winter season, during a cold night, with light winds and clear skies, 

in order to both maximize the differences between the temperatures of the roofs of the buildings and the 

outside air temperature and to minimize the effects of turbulence at the flight altitude on the stability of 

the aerial platform. 

Simultaneously with the aerial survey, some ground measurements of surface temperature and 

emissivity were collected, as described in Section 3.4. 

The entire processing workflow described in this paper was performed only on a small test area of 

about 1.06 km2, covered by 30 thermal frames, in order to define the methodology and to evaluate the 

sensitivity of the model at each step of the processing chain. 

The aerial thermal orthophoto-mosaic of Bologna was generated using the Socet SetTM 5.6 digital 

photogrammetric workstation. The whole process includes several phases: after the project creation, with 

the indication of the chosen datum and reference system, the images were imported into the project, 

associating the corresponding camera calibration file (in this case, the only information available about 

the camera is the focal length and the principal point coordinates). After these steps, the image exterior 

orientation can be solved by means of a photogrammetric triangulation procedure, using tie and control 

points. The municipality technical cartography of Bologna at 1:2000 scale was used as the cartographic 

base for the individuation of the control points, which usually are the edges of buildings’ roofs; a large 

number of points was used, achieving an RMS of 1.5 pixels and residuals of some centimeters for the  

control points. 

After the image orientation, the orthophoto-mosaic, characterized by a ground sampling distance of 

0.5 m, was generated (Figure 2) by using a digital surface model (DSM), derived from an aerial LiDAR 

survey carried out in 2009 and provided by the Municipality of Bologna, with a post spacing of 1 m. 

3.2. Atmospheric Correction 

In the model presented in Equation 3, three quantities are related to the atmosphere and its physical 

condition at the time of the flight: the transmittance τ along the path from the surface to the on-board 

sensor, the upwelling radiance lu emitted by the atmospheric layer in the observing direction and the 

downwelling radiance ld emitted by the whole atmosphere toward the surface and reflected in the 

observing direction. All of these spectral quantities were computed by the Modtran 5 radiative  

transfer model [17]. 
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Figure 2. Orthophoto-mosaic of 30 thermal images acquired over the test area in Bologna. 

A rigorous parameterization of the model requires measured vertical profiles of the air temperature, 

pressure and humidity and the volume mixing ratio of each molecular species composing the 

atmosphere. Of course, such detailed knowledge is normally unavailable. For the present study, however, 

three different parameterization of the Modtran model were tested and compared. The first run used the 

profiles obtained by a daily radiosonde launched at 00:00 UTC from the station of the Regional Agency 

for Environmental Protection (ARPA) at San Pietro Capofiume, located about 30 km NE of Bologna. It 

provides vertical profiles of temperature, pressure, relative humidity and wind speed from the ground to 

an altitude of about 20 km. The second run used instead the profiles obtained by a MODIS Terra second 

level product [18], based on an image acquired at 20:30 UTC, about one hour later than the thermal 

flight. MODIS data contain also information about the total precipitable water vapor and the total ozone 

burden in the air column. Finally, the third run of the model simply used the mid-latitude winter (MLW) 

pre-defined profile, which would be the most appropriate choice, if no other data were available. A 

comparison between the vertical profiles of air temperature used in the three Modtran runs is shown in 

Figure 3. 

For the calculation of the upwelling radiance and the transmittance, the radiative transfer was 

simulated between the ground and the height of flight. Instead, for the calculation of the downwelling 

irradiance, the simulation was performed from a height of 100 km to the ground level, and it has been 

repeated, varying the impinging angle from 0 to 90 degrees by a step of 5. For these simulations, when 

using the sounding data, the vertical profiles were completed with the MLW model above a height of  

20 km; instead, the total precipitable water vapor value was used when using MODIS Terra data. 
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Figure 3. Comparison between the vertical profiles of air temperature derived respectively 

by radiosonde data (black), by the MODIS Terra second level product (orange) at the same 

location of the meteorological station and by the mid-latitude winter pre-defined  

profile (grey). 

The differences in the resulting broadband parameters, following the three approaches in the 

parameterization of the Modtran model, are summarized in Table 1, where broadband radiances are 

formally defined as in Equation 2, and the broadband transmittance T is computed as the integral average 

of the spectral transmittance, weighted by the instrument filter function (s) and by the black-body 

radiance (lB). When analyzing those differences, the spatial and time distances between the sounding 

data and the MODIS ones must be considered. 

Table 1. Broadband atmospheric parameters computed by Modtran 5 simulations, using the 

atmospheric profiles of the radiosonde data, of the MODIS Terra image and of the  

mid-latitude winter (MLW) predefined model. 

 Radiosonde MODIS Terra MLW Model 

Central wavelength (µn) 10.58 10.58 10.58 

Spectral range (µn) 6–17 6–17 6–17 

Transmittance T 0.7957 0.8052 0.8046 

Upwelling radiance Lu (W/m2/sr/µm) 1.2868 1.0969 1.0401 

Downwelling radiance Ld (W/m2/sr/µm) 2.0037 1.8243 2.0068 

3.3. Emissivity Map 

To produce an emissivity map suitable for the radiometric correction of the thermal image, the major 

roofing materials in the investigated area were identified, and for each material, a different emissivity 

value was assigned [19]. 
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To distinguish among the major roofing material types, an object-oriented supervised classification 

was applied on a WorldView-2 multispectral image acquired in 2011 (see Figure 4), which provides  

8 spectral bands at a resolution of 2 m, together with the raster DSM, resampled at a resolution of 0.5 m, 

and a DTM (digital terrain model), at a resolution of 5 m. The object-oriented image analysis was 

performed with the software eCognition 8. Before the classification procedure, the satellite image had 

been radiometrically calibrated and orthorectified. The object-oriented classification consists of two 

steps: firstly the segmentation, which divides the image into continuous and homogeneous segments, 

called image objects; and secondly, the classification of the objects generated, using not only the 

radiometry, but also information, such as texture, shape and context. In this work, at first, the objects 

corresponding to the buildings were identified; then, they were distinguished depending on their  

roofing material. 

 

Figure 4. On the left, an RGB color composite of the WorldView-2 image; in the middle, a 

grey-scale visualization of the DSM; on the right, a visualization of the slope layer derived 

by the DSM. 

A specific feature of buildings is the sudden change in elevation at their borders; in addition, buildings 

usually have a different elevation than the surrounding environment; therefore, a surface calculation 

algorithm, which works out slopes, was applied to the DSM. The slope layer has high contrast, and the 

steep and flat areas are easily recognizable. Thus, the segmentation was applied on this layer using the 

“contrast split segmentation” algorithm. In particular, two segmentation steps were necessary: the first 

to get the steep slope objects; the second to separate those with a medium slope from those with very 

steep ones. This segmentation based on slope information allowed the extraction of objects whose shape 

is very close to the real footprint of the buildings (see Figure 5). This would have been difficult if a more 

common multi-resolution segmentation, based on multispectral data only, had been applied. In fact, 

because of unavoidable artefacts introduced by the orthorectification, the extension of some roofs is 

greater than the real one. 

After obtaining the image objects, a masking classification approach was followed, in order to 

identify the objects that certainly do not belong to the general class “building”. Firstly, vegetated areas 

have been excluded by means of the NDVI index. Secondly, due to the availability of a DTM of the 

study area, for each image object, the actual height was calculated by a subtraction operation between 

DSM and DTM. Then, a threshold was applied to distinguish buildings from other cover types. Finally, 

to refine this building extraction, the algorithm “find enclosed by class” was applied, so that the 
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unclassified objects totally surrounded by objects already classified as buildings were assigned. 

Furthermore, a geometric rule was used to clean out very small objects. 

 

Figure 5. The result of the segmentation procedure plotted over the slope layer (left) and 

over the RGB composite (right). 

 

Figure 6. The final classification of the roofing materials of a portion of Bologna, obtained 

by a supervised object-oriented classification, applied on a WorldView-2 multispectral 

image together with digital elevation models. 

To exploit spectral information for the final distinction of the buildings according to their roofing 

material, a multi-resolution segmentation, based on the eight bands of the WorldView-2 image, was 

performed on the previously extracted “building” class. As shown in Figure 6, these new objects were 

assigned to six informative classes, bituminous, concrete, clay tiles, gravel, metal and other. The 
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classification algorithm evaluates the membership of all of the image objects to each class in a selected 

list. In this case, the membership functions were automatically generated through the selection of training 

samples for each class. These samples were derived from existing digital cartography and from  

special surveys. 

The last step is the assignment of the emissivity values to each class. In fact, this is a very critical 

point, because a small variation in emissivity results in a relevant variation in the corrected temperature. 

In the present study, a direct measure of the emissivity for bituminous and gravel roofing surfaces was 

performed during a special survey, by means of a thermal camera and a contact probe thermometer.  

For the other roofing materials, the emissivity values were set according to data published in  

the literature [19–22]. The values used for the present study are summarized in Table 2. 

Table 2. Emissivity values for the roofing types detected in the classification. These values 

were derived partly from literature data and partly from special surveys (see the discussion 

in the text). 

Roofing Material Emissivity Value 

Bituminous 0.91 

Clay tiles 0.88 

Concrete 0.90 

Gravel 0.96 

Metal 0.70 

Other 1.00 

3.4. Ground Surveys 

Simultaneous to the aerial survey, some ground measurements of surface temperature and emissivity 

were collected, to be used as ground truth data for the assessment of accuracy in radiometric correction 

(Table 3). The locations chosen are mainly squares or open areas, easily recognizable on the thermal 

mosaic, with homogeneous pavement materials. The geographic positions of targets were computed by 

post processing techniques using geodetic GNSS receiver recordings, in combination with data from a 

permanent GNSS stations, while the surface temperature and the emissivity values were derived using a 

thermal camera FLIR P620, characterized by an infrared sensor with a spatial resolution of  

640 × 480 pixels operating approximately in the same spectral range of the infrared sensor used for the 

aerial infrared survey. 

Table 3. Apparent temperature derived from the uncalibrated aerial thermal images and 

emissivity and temperature measured on the ground at the five locations selected for the  

field surveys. T, transmittance. 

Site Material Apparent T Emissivity Measured T 

BL01 cobblestones −0.2 0.91 5.3 

BL02 concrete 0.8 0.91 5.4 

BL08 asphalt 0.7 0.94 8.1 

BL10 asphalt −0.5 0.93 3.7 

BL11 stoneware tiles 0.8 0.81 8.3 
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3.5. Energy Model 

Aerial survey is the quickest and most efficient way of collecting building-related data. However, the 

usability of such information is limited, as explained above. Primarily, aerial thermographic images give 

information about the distribution of the roof temperatures and, secondarily, about the heat losses 

through the facades, as can be noticed in the narrow band around the building outline, but this is only 

indicative. Generally, the major areas of the applications of the aerial thermographic roof images are: 

 Determination of the roof temperature of buildings, which provides accurate results for buildings 

with heated top-floors only; 

 Discovering hot spots; some weak points of a single building, particularly on the roof; 

 An indicative classification of buildings based on the relative roof temperature. 

In the spatial decision support system of the EnergyCity project, an indicative energy model was 

applied. It is not the aim of this paper to present the energy model in detail, so only a short overview will 

be given. The model was based on the so-called relative roof temperature. The roofs were classified into 

five classes based on their roof temperature compared to the city average value. The upper and lower 

limits of the ranges were different for the seven cities, because of the different climates and  

construction types. 

From the aerial survey, it is possible to determine the building outline, the perimeter and the covered 

ground area. The average building height can be obtained from other data sources, such as the 

comparison between the digital surface model and the digital elevation model. These three types of 

numerical information are essential to calculate the most important geometric data for energy 

calculations: the heated volume (V) and the total exposed surface (ΣAsurface). The specific heating energy 

consumption is calculated for the five temperature ranges, practically defining five heating energy 

consumption ranges. The consumption ranges were determined on the basis of typical energy 

consumption values obtained from other building stock databases from the city. 

Not only the final heating energy consumption, but also the primary energy consumption values can 

be estimated by the SDSS, taking into account the primary energy factors laid down in the national 

building regulations. Similarly, the CO2 emission is determined from the final energy value and the CO2 

emission factor of the used energy source. The used energy source was extracted again from other  

data sources. 

As a conclusion, the energy model is partly based on the roof temperatures, some geometric data 

extracted from the digital cartography and the aerial measurements, but it is inevitable to apply other 

types of additional data. 

4. Result and Discussion 

All of the data described in the previous section were processed by the ENVI-IDL procedure, and the 

results of the different parameterizations were compared, to quantify the impacts of each element of the 

processing chain. As can be seen in Figure 7, the statistics on the corrected temperatures derived by 

computing the atmospheric parameters using the different vertical profiles presented in Section 3.2 were 

compared firstly. In order to compare the temperature maps derived from the different atmospheric 
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profiles, pixels with a surface temperature below −10 °C or above +10 °C, corresponding in each image 

to about 5% of the total number of pixels, were masked out.  

The mean roof temperature obtained using the sounding profiles is −0.7 °C, while the mean value 

using the MODIS data is +1.0 °C, and it rises to +1.6 °C when the standard MLW model is applied. The 

standard deviation is more stable and ranges from 2.5 °C with the MLW model to 2.7 °C with the 

sounding profiles. The main difference in the results derived from the sounding profiles with respect to 

the one obtained using MODIS data is related to a thin layer of thermal inversion in the measured vertical 

profile of the temperature, located between the ground and a height of 200 m, which is not detectable in 

the MODIS one (see Figure 3). 

It must be noted here that lateral variations and micro-scale patterns of the air temperature in the 

urban environment were neglected in all of the computations performed. These patterns include 

temperature differences between urban canyons and open spaces (as large squares or parks) [23] and 

also horizontal and vertical variations inside urban canyons [24]. Such a simplification is often necessary 

because of the huge amount of ground measurements that would be required to model all of these 

complex effects. 

 

Figure 7. Temperature differences among the corrected images obtained using the 

atmospheric parameters derived from sounding and MODIS data with respect to the standard 

MLW profile. 

To evaluate the sensitivity to emissivity variation, a test was performed by decreasing the emissivity 

values reported in Table 2 by about 1%. Clearly, the effect is an overall increase of the retrieved 

temperatures, by about 0.3 °C on average. The effects on each class are shown in Figure 8. The larger 

variance of the metal class (0.017) corresponds to a larger variance of its surface temperature, and it may 

be explained by a greater variability of the roofing material types belonging to this class. In a pioneer 

study about aerial thermography in urban areas, Artis and Carnahn [25] concluded that the emissivity 

variations over the most common roofing materials have a minimal effect on the retrieved temperatures. 

However, they came to this conclusion because of the substantial homogeneity of roofing materials in 
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the investigated area. Nowadays, on the other hand, the variety of roofing materials in modern towns is 

expanding, as the number of design solutions has been increasing since the 1970s. The results presented 

here indeed demonstrate that the impact of emissivity variation cannot be ignored any longer. 

 

Figure 8. Statistics on the temperature differences for each class, resulting from a decrease 

by 1% of the emissivity values listed in Table 2. 

Retrieval of LST from IR data requires, indeed, an accurate knowledge of the emissivity of the 

surfaces [13], which is controlled by several factors, such as chemical composition, structure and 

roughness. Furthermore, it can be altered by the possible presence of dew. 

As described in Section 2, the thermal infrared radiation acquired by a sensor is a function of, among 

others, the temperature and emissivity of the surface. Their simultaneous estimation is an ill-posed 

inversion problem, because the unknowns always exceed the equations. Even with a multispectral 

infrared sensor with N thermal bands, in fact, any separation method has to solve N + 1 parameters  

(N emissivity values + 1 LST) with N equations. Thus, an a priori assumption or an empirical relation 

must be introduced to solve the system [26]. On this basis, several temperature/emissivity separation 

methods were developed to be used with both multispectral and hyperspectral infrared sensors [21,27]: 

among the most popular, the reference channel method, the emissivity normalization, the alpha residual, 

the temperature/emissivity separation (TES) and the day/night method. The last one, adopted for MODIS 

products, uses two images to increase the number of equations, avoiding the ill-posed problem. 

All of these separation methods usually assume that the contribution of the atmosphere to the recorded 

radiance has been already removed [13,26,27]. Equation 3, however, shows that separating atmospheric 

and emissivity corrections in two steps would require further simplifications (e.g., neglecting the 

downwelling radiance). 

In the present study, the aerial camera acquires only a single infrared band; thus, an alternative 

approach was adopted: the emissivity values of surfaces were assigned on the basis of a classification of 

roofing materials from a high resolution satellite image (as described in Section 3.3). The emissivity 

values were estimated, for each class, by means of direct measurements or other data sources. The main 
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disadvantage of this approach is related to the number of direct measurements on roofs, which are often 

limited because of logistic problems. 

As a first attempt of validation, the temperature values obtained from the corrected images were 

compared with the surface temperatures measured in the field. Temperature differences between the 

measured and computed values at the five locations are shown in Table 4. In the first column, the 

differences obtained by considering temperatures from uncorrected images are shown and prove the 

relevance of the calibration process. As can be seen, all of the parameterizations of the radiative transfer 

model produced an average underestimation of the surface temperature. Surprisingly, the worst results 

were obtained using the radio sounding profile, but this fact can be explained considering that the profile 

was measured 30 km away from Bologna in the countryside, so it is probably not representative of the 

spatial variations of atmospheric transmissivity over urban areas [5]. Furthermore, Jacob et al. [28], 

performing a sensitivity study on thermal data acquired over a rural area in France, inferred a sensible 

bias in the retrieved temperature when the profile was measured about 30 km from the scene, even if 

they were not able to quantify its amount precisely. They explain this fact in terms of the effects of the 

topography and spatial variability of the atmosphere. 

Table 4. Temperature differences between the measured and computed values at the five 

locations where ground surveys were performed. The comparison was made with 

temperatures computed using different sets of parameters for the radiative transfer model  

(mid-latitude winter, MODIS data, radiosonde profile; see Section 3.2 for details). 

Furthermore, the differences between measured and apparent temperatures are reported in 

the first column for reference. 

Site Atmosphere Model Parameterizations 

 None MLW MODIS Radio 

BL01 −5.5 −1.0 −1.6 −3.4 

BL02 −4.6 0.2 −0.3 −2.1 

BL08 −7.4 −3.9 −4.5 −6.2 

BL10 −4.2 −0.7 −1.3 −3.1 

BL11 −7.5 2.3 1.9 −0.1 

mean −5.8 −0.6 −1.2 −3.0 

The use of MODIS for the parameterization of the atmospheric correction models is discussed in 

several works dealing with images acquired in the reflective part of the electromagnetic spectrum. 

Conversely, the use of MODIS atmosphere data for thermal images is still poorly investigated. For 

instance, Jiménez-Muñoz et al. [18] published the results of some tests in rural areas in Spain using 

medium-resolution satellite images. They found that average differences between surface temperatures 

derived using MODIS data and local radio sounding profiles do not exceed 1 °C. However, they do not 

compare these temperature values with field measurements. The results obtained in the experimentations 

presented here show a slightly worse performance with respect to the use of the general MLW model. 

This fact may be due to the loose description of the strata close to the surface, which provide the highest 

contribution, especially in the case of airborne sensors. Clearly, further investigations and a wider 

collection of test sites are required to reach more reliable conclusions. 
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The temperature dynamic ranges observed (Table 4) are wider than those reported by the mentioned 

studies, very likely because of the greater complexity of urban environments. The largest discrepancies 

were observed for the BL08 and BL11 locations. It is rather difficult to distinguish the contribution of 

each source to the final error. Emissivity plays a primary role in the error resulting at a specific location, 

both because emissivity itself is a source of error and because different values can mitigate or magnify 

errors on atmospheric parameters. 

The final roof temperature data can be exported to a building database of heat losses or a building 

energy model. The spatial decision support system of the EnergyCity project combines mapping 

functionality with energy efficiency measures to delineate and quantify actions and strategies to reduce 

CO2 emissions and energy usage in the project cities. The system uses a mapping tool to display heat 

loss maps representing the baseline CO2 emissions in the cities of the project, as well as all other mapping 

outputs (Figure 9). 

 

Figure 9. Energy classification of buildings in the spatial decision support system (SDSS) 

tool developed within the EnergyCity Project. 

5. Conclusions 

The present study investigates the use of aerial thermal imagery for the evaluation of the energy 

performance of buildings, and it is based on a case study in Bologna (Italy). In particular, the main steps 

required to measure the surface temperature of roofs were examined, evaluating quantitatively the 

influence of atmosphere and surface emissivity on the retrieved values. 

Even if the physical model behind the radiometric calibration of thermal imagery is well established, 

its practical implementation requires several ancillary data, whose quality has a strong influence on the 

quality of the final products. The approach discussed here requires a model of the atmosphere at the time 

of the thermal flight, a digital surface model and a description of the surface materials in order to derive 

an emissivity map. Here, this map was derived by a supervised object-oriented classification of a very 

high-resolution multispectral satellite image. The presented results demonstrate the sensitivity of the 

model to each one of the mentioned elements. In particular, the most critical aspect is the identification 
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of the appropriate values of the surface emissivity; in fact, a decrease by 1% only of these values 

produces an average increase of the retrieved temperatures by about 0.3 °C. Furthermore, the accurate 

mapping of the roofing materials and the proper registration of this map with the thermal image require 

considerable investments. 

The sensitivity of the model to all of the mentioned factors and the fact that not all of the required 

ancillary information is always available prove how important the execution of ground surveys is to 

obtain reliable results. For the experimentations presented here, a full validation of the results with a 

statistically-significant number of ground control points (where the surface temperature is directly 

measured at the time of the flight) is still not possible. However, the comparison with five ground control 

points suggests that a precision of 1 °C is still difficult to achieve in complex environments. 

Applying the data produced by the calibrated thermal imagery, a model to estimate the energy 

performance of building quarters can be developed and integrated into a spatial decision support system. 

For this purpose, additional information is needed (e.g., geometric data or the applied energy source); 

these data are unfortunately not all available in the majority of the real cases. For a quick decision support 

system without an extremely high need of additional data, a compromise is inevitable with respect to 

accuracy. In any case, models at the district level are generally more appropriate than at the individual 

building level. 

In addition to that, the airborne thermal imagery can be an efficient tool for detecting hot spots and 

thermal bridges or for comparing roofs. 

It is also to be noted that such tools do not substitute energy experts, but can facilitate their work and 

make their decisions faster. 
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