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Abstract: An accurate estimation of carbon fluxes is very important in carbon cycle 

studies. A remote sensing based gross primary production (GPP) and net ecosystem 

production (NEP) algorithm, RS-CFLUX, was presented in this work. The algorithm was 

calibrated with Markov Chain Monte Carlo (MCMC) method at Daman superstation and 

Zhangye wetland station in the midstream of the Heihe River Basin. Results indicated that 

both of the stations present high GPP (1442.04 g C/m2/year at Daman superstation and 

928.89 g C/m2/year at Zhangye wetland station) and NEP (409.38 g C/m2/year at Daman 

superstation and 422.60 g C/m2/year at Zhangye wetland station). The RS-CFLUX model 

can correctly simulate the seasonal dynamics and quantities of carbon fluxes at both 

stations, using photosynthetically active radiation (PAR), land surface temperature (LST), 

normalized difference water index (NDWI) and enhanced vegetation index (EVI) as input. 

RS-CFLUX model were sensitive to maximum light use efficiency, respiration at reference 

temperature, activation energy parameter of respiration. 
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1. Introduction 

Vegetation can be affected by climate change through the energy and mass exchange between 

vegetation and atmosphere [1–3]. Carbon flux is a mass exchange that is related to global warming [4,5]. 

Accurate estimation of carbon flux plays an important role in carbon cycle study. Generally, two types of 

methods can be used to estimate carbon flux: observing and modeling. Observing instrument (such as 

Eddy covariance) can measure the continuous exchange of carbon flux at a specific site with an area of 

several square kilometers. However, model can efficiently estimate carbon flux at regional scale. 

Remote sensing is an important source of data for simulating carbon flux. In recent years, many 

remote sensing based carbon flux models were developed, such as Glo-PEM [6], C-Fix [7,8], VPM [9], 

MODIS GPP/NPP algorithm [10], and DCFM [11]. All of these models use air temperature as an input. 

At many observation stations, the air temperature is observed above the canopy, and is different from the 

canopy temperature [12,13], which actually controls photosynthesis and respiration of vegetation. During 

the growing season, the land surface temperature (LST) within a high vegetation coverage area is 

dominated by the canopy temperature. With the development of remote sensing, more and more thermal 

infrared data is available to estimate LST. MODIS provide thermal infrared image twice every day with 

spatial resolution of 1 km. Landsat series data provide thermal infrared image every 16 days with spatial 

resolution of 100 m. These datasets can be used to retrieve continuous LST, which can force carbon flux 

model. Thus, LST could be used as inputs in remote sensing based carbon flux estimation. 

The Heihe River Basin, which is located in Northwest China, is the second largest inland river basin 

in the country [14]. In the midstream of the Heihe River Basin, yearly rainfall is less than 100 mm. 

Most of the area is Gobi Desert, which has little carbon flux. The largest vegetated area in the 

midstream of the Heihe River Basin is irrigated cropland. Another well-vegetated area is wetland 

because of abundant water supply from ground water and river water. Irrigated croplands and wetlands 

are the two ecosystems with the highest production in the midstream of the Heihe River Basin. Carbon 

fluxes of these two ecosystems contribute the majority of carbon flux in the midstream of the Heihe 

River Basin. Thus the accurate estimating of carbon fluxes of these two ecosystems is very important 

to evaluate the regional scale carbon flux of the midstream of the Heihe River Basin. 

Hence, the objectives of this study were to (1) analyze the carbon flux characteristics of irrigated 

croplands and wetlands in midstream of the Heihe River Basin; (2) develop a remote sensing based 

carbon flux algorithm, RS-CFLUX, to simulate the carbon flux quantity and dynamics at the two 

ecosystems. 

2. Materials and Method 

2.1. Data Acquisition 

2.1.1. Observation Stations 

Eddy covariance (EC) and automatic meteorological station (AMS) data in 2013 was collected at 

Daman superstation and Zhangye wetland station. These two observation stations were established 

during HiWATER experiment in May of 2012 [15]. Figure 1 shows the location and photos of Daman 

superstation and Zhangye wetland station. 
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Figure 1. Location of the Daman superstation and Zhangye wetland station. (The 

background image is ASTER image, red: 556 nm, green: 807 nm, red: 661 nm). 

The observing items and information of Daman superstation and Zhangye wetland station are listed 

in Table 1. Meteorological data was sampled every minute and was converted to a 30-min average 

value for comparison with the flux data. Values were deleted if they were beyond the physical range or 

instrument range [16]. The EC systems at the two stations consist of an open-path infrared gas analyzer 

and a 3-D sonic anemometer [17,18]. The 3-D wind speed, H2O concentration and CO2 concentration 

data were sampled at a frequency of 10 Hz by a data logger. Half hour fluxes were calculated by  

post-processing raw 10 Hz data using the EdiRe software. The processing steps include spike 

detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature 

conversion, planar fit coordinate rotation, the WPL (Webb-Pearman-Leuning) density fluctuation 

correction and frequency response correction [16]. 

Half-hourly flux data were excluded if the instrument range was excessive, rainfall occurred or 

instrument malfunctions occurred. At night (downward short wave radiation < 1 W/m2), half-hourly 

flux data were excluded if friction velocity (u*) was lower than a specific threshold (0.15 m/s), 

because of weak turbulent mixing at a low friction velocity. Then, missing values in the fluxes were 

filled using non-linear functions, which use PAR and air temperature as input. Missing values in the 

fluxes were not filled when the meteorological measurements were not simultaneously available. The 

gap-filling data were used only to analyze the seasonal and annual variations in the carbon flux. GPP 

was the sum of the daytime net ecosystem production (NEP) and ecosystem respiration (ER). The 

daytime ER was estimated with the Van’t Hoff function which was calibrated using the night-time air 
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temperature and nocturnal NEE. The specific method and formulas in the NEE partitioning can be found 

in Wang’s paper [19,20]. 

Table 1. Observing items at the Daman superstation and Zhangye wetland station. 

Measurements Daman Superstation Zhangye Wetland Station 

Location 100.3722° E, 38.8555° N 100.4464° E, 38.9751° N 

Elevation 1556.06 m 1460.00 m 

Land cover Maize Reed 

Wind speed 
3 m, 5 m, 10 m, 15 m,  

20 m, 30 m and 40 m 
5 m and 10 m 

Wind direction 
3 m, 5 m, 10 m, 15 m,  

20 m, 30 m and 40 m 
10 m 

Air temperature, relative humidity 
3 m, 5 m, 10 m, 15 m,  

20 m, 30 m and 40 m 
5 m and 10 m 

CO2 concentration 
3 m, 5 m, 10 m, 15 m,  

20 m, 30 m and 40 m 
No measurement 

Air pressure 2 m 2 m 

Land surface temperature 12 m  

PAR 12 m 6 m 

Soil heat flux 6 cm 6 cm 

Soil temperature 
0 cm, 2 cm, 4 cm, 10 cm, 20 cm,  

40 cm, 80 cm, 120 cm and 160 cm 

0 cm, 2 cm, 4 cm,  

10 cm, 20 cm and 40 cm 

Soil moisture 
2 cm, 4 cm, 10 cm, 20 cm, 40 cm,  

80 cm, 120 cm and 160 cm 
No measurement 

Rainfall 2.5 m 10 m 

EC systems 4.5 m 5.2 m 

2.1.2. Remote Sensing Data 

Moderate-resolution imaging spectroradiometer (MODIS) remote sensing data products are 

frequently used in light use efficiency models. MODIS provides high temporal resolution images of 

the land surface. The sensor contains 36 bands in the visible (459 nm) to thermal-infrared band (14,385 

nm). Vegetation indices and land surface temperature can be retrieved from these bands. Many land 

surface variables products were estimated and distributed by the Land Processes Distributed Active 

Archive Centre (LP DAAC), and are widely used in scientific research. In this study, the 8-day land surface 

reflectance product (MOD09A1) and daily land surface temperature product (MOD11A1) were 

downloaded from the website of MODIS Land Product Subsets [21,22]. The vegetation indices (EVI and 

NDWI) were estimated from the MOD09A1. MOD09A1 data were resampled to 1 km spatial resolution. 

The temporal profiles of the vegetation indices and LST were extracted according to the geographical 

coordinates of the two stations. The vegetation indices were smoothed using the Savizky-Golay algorithm 

[23] and were interpolated into daily data. 

The formulas for EVI, NDWI and the Savizky-Golay algorithm are as follows: 

1 2( ρ ) / ( ( ) L)nir red nir red blueEVI G C C            (1)
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where G is 2.5, C1 is 6, C2 is 7.5 and L is 1, ρblue, ρred, ρnir and ρsir are the reflectance of the blue  

(band 4), red (band 1), near infrared (band 2) and shortwave infrared bands (band 6), Y is the original  

time-series data, Yi
* is the reconstructed time-series data, Cj is the jth weight of the filter window and  

2 m + 1 is the size of the filter window. The window size and order of Savizky-Golay algorithm were 

set to 13 and 4 based on previous studies [24,25]. 

2.2. Remote-Sensing-Based Carbon Flux Model 

2.2.1. GPP Estimation 

The general form of light use efficiency (LUE) approach is as follows, 

maxGPP PAR fAPAR LUE f(T) f(W)      (4)

where GPP (g C/m2/day) represents absorbed CO2, PAR (MJ/m2/day) is photosynthetically active 

radiation, fAPAR (dimensionless) is the fraction of absorbed PAR by the canopy, and LUEmax (g 

C/MJ) is the maximum LUE. f(T) (dimensionless) and f(W) (dimensionless) are temperature and water  

scalars, respectively. 

2.2.2. fAPAR 

fAPAR is usually retrieved from vegetation indices, such as the normalized difference vegetation 

index (NDVI) and enhanced vegetation index (EVI). The EVI is an optimized vegetation index 

developed from the NDVI, and it has a strong seasonal correlation with GPP [26,27]. Recent studies 

indicated that fAPAR should be partitioned into the fraction of PAR absorbed by chlorophyll and by 

non-photosynthetically active components. In addition, the EVI equals to the PAR absorbed by 

chlorophyll according to Xiao’s study [9]. 
fAPAR EVI  (5)

2.2.3. Temperature Scalar 

In many LUE models, temperature scalars are calculated using near-surface air temperature, 

because it is easy to obtain from site-based meteorological measurements. When estimating regional 

carbon fluxes using LUE models, site-observed near-surface air temperature is interpolated into 

gridded data, which is spatially and temporally consistent with remote sensing data. This process can 

lead to uncertainties when estimating the results. In this study, we attempt to use LST as the input for 

the LUE model, because high temporal and spatial resolution LSTs can be estimated using thermal 

infrared remote sensing images. The temperature scalar is estimated at each time step, using the 

equation developed for the Terrestrial Ecosystem Model [28]: 

min max
2

min max

( )( )
( )

( )( ) ( )opt

LST LST LST LST
f T

LST LST LST LST LST LST

 


   
 (6)
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where LST (°C) is the land surface temperature, LSTmax (°C), LSTopt (°C) and LSTmin (°C) are the 

maximum, optimum, and minimum land surface temperature for photosynthesis, respectively. f(T) 

equals 0 when the LST is more than LSTmax or less than LSTmin. 

2.2.4. Water Scalar 

Water status f (W) is another important environmental factor that affects the photosynthesis rate. f (W) 

is usually calculated using different variables in LUE models, such as soil water content in Glo-PEM [6]. 

These variables are only observed at a few of points in a particular area. The process of converting 

from point data to spatially gridded data leads to uncertainties in LUE model results. The normalized 

difference water index (NDWI) is a remote sensing data based index that can reflect the water content 

of vegetation [29]. Xiao [9] used the NDWI to calculate water scalar of LUE model. We also used this 

formula to estimate f (W). 
( ) (1 ) / (1 )maxf W NDWI NDWI    (7)

where NDWImax (dimensionless) is maximum NDWI during the peak of the growing season. 

2.2.5. NEP Estimation 

Net ecosystem production (NEP) is the difference between GPP and ecosystem ER. The  

Lloyd-Taylor respiration function is widely used in ecosystem respiration calculation [30]. Here, the 

Lloyd-Taylor respiration function was modified in two ways. First, in order to consider the impact of 

seasonal changes in biomass on respiration, a × EVI was added to the respiration rate at the reference 

temperature [11]. Second, air temperature was replaced with LST. The formula is as follows: 

1 1
( )
56.02 ( 46.02)( ) eE0 LSTNEP GPP ER GPP Rref a EVI


       (8)

where Rref (g C/m2/day) is the respiration rate at the reference temperature, and a (g C/m2/day) is an 

empirical coefficient. E0 (°C) is the activation energy parameter, which determines sensitivity of the 

respiration to temperature. 

2.3. Model Calibration Method 

Remote sensing based carbon flux models usually contain many parameters. When the models are 

used to simulate carbon flux at a specific site, the parameters should be calibrated. Bayesian theory 

based parameter estimation method, Markov Chain Monte Carlo (MCMC), is very popular in recent 

years, because it not only solves the value of parameters but also predicts the posterior probability 

distribution function of parameters. The posterior probability distribution function can help us to know 

the characteristics of model parameters and how the parameters will impact on models’ output. The 

MCMC method contains two repeated steps: a proposal step and a movement step [31,32]. 

In the proposal step, a newly proposed parameter is generated from the previous accepted 

parameters with a random walk Δc. Δc is calculated using a random number r between 0 and 1, the 

parameter range (cmax − cmin) and a step length factor s. s equals to 5, according to a previous study [31]. 
1

max min

( 0.5)
(c )i i i r

c c c c c
s

 
      (9)
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where ci+1 and ci are the proposed parameter vector and previously accepted parameters  

vector, respectively. 

In the movement step, ci+1 is tested using the Metropolis rule to determine if the parameter should be 

accepted. The accepted probability (p(ci, ci+1) ) of the proposed parameters is derived from the likelihood 

function (L(c)) using the parameters accepted previously. The mathematical formula is as follows: 
2
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( )

2δ

1 1

1
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2

o s
t tCflux Cfluxm n

i t
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min{1, , /( ) }i i ii+1 +1L(c ) L(p c cc )  (11)

where Cfluxt
o
 and Cfluxt

s
 are the in-situ and RS-CFLUX model predicted carbon flux, respectively. δ is 

the standard deviation of the data-model difference. m is the number of datasets used in the cost function, 

and n is the number of observations. Then, the acceptance probability is compared with a uniform 

random number U [0, 1]. Only when the acceptance probability is greater than U, will ci+1 be accepted. 

In this study, five parallel MCMC chains with 50,000 iterations each were run in the calibration 

process. The first 10,000 iterations of each chain were burn-in iterations and were deleted. The 

remaining iterations of the parameters were used to generate posterior distributions. G-R diagnostic 

method [33] was used to evaluate the chain convergence. The MCMC algorithm was programmed in 

Matlab code. 

2.4. Model Accuracy Evaluation 

Three indices were used to evaluate the performance of the model. (1) The coefficient of 

determination (R2), which describes to what extent the variation in the observations can be explained 

by the models. R2 ranges from 0 to 1, where a value near 1 indicates a good performance of the model.  

(2) The root mean square error (RMSE) represents the sample standard deviation of the differences 

between the predicted values and observed values. A smaller RSME indicates a better performance of 

the model. (3) The Nash-Sutcliffe model efficiency coefficient (NSE) is often used to assess the power 

of a model. The coefficient ranges from −∞ to 1. A NSE close to 1 indicates a better match between 

the modeled and observed values. The formulas for R2, RMSE and NSE are as follows: 

2
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where Ot is observed value at time t, Mt is the predicted value at time t, and n is the number of 

observations.  is the mean of the observations. 
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3. Results 

3.1. Seasonal Dynamics of the Carbon Flux and Environmental Factors 

The seasonal dynamics of PAR, LST, air temperature, NDWI and EVI are shown in Figure 2.  

 

Figure 2. Seasonal dynamics of the PAR (a), air temperature (Tair), land surface 

temperature (LST) (b) and vegetation indices (NDWI and EVI) (c) at the Daman 

superstation and Zhangye wetland station. 

The PAR values observed at the two stations were very consistent in terms of the quantity and 

seasonal dynamics, except the period from early March to early May (See Figure 2a). At the Zhangye 

wetland station, the LST was close to the air temperature for entire year. However, at the Daman 

superstation, the LST was higher than the air temperature. Specifically, the soil surface at Zhangye 

wetland station remained wet all year, whereas the soil surface was dry for most of the year at the 

Daman superstation (see Figure 2b). The two stations had the same seasonal trends of vegetation indices 

(EVI and NDWI). At the Daman superstation, the EVI and NDWI reached their maximum values (0.53 

and 0.33, respectively) in late July. At the Zhangye wetland station, the EVI and NDWI reached their 
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maximum values (0.45 and 0.26, respectively) in the middle of July. At the peak of the growing 

season, the EVI and NDWI were higher at Daman superstation than the Zhangye wetland station, and 

vice versa at the beginning and end of the growing season. Furthermore, reed has a longer growing 

season than maize, because EVI of reed start increasing earlier than maize and decrease at the same 

time (see Figure 2c). 

The seasonal dynamics of in-situ GPP and NEP are shown in Figure 3. The GPP and NEP of the Daman 

superstation (maize) were higher than those of the Zhangye wetland station (reed) during the growing 

season (see Figure 3), but were lower in the non-growing season. The maximum GPP was  

22.64 g C/m2/day at the Daman superstation and 10.06 g C/m2/day at the Zhangye wetland station. The 

maximum NEP was attained during the peak of the growing season and was 14.02 g C/m2/day at the 

Daman superstation and 5.90 g C/m2/day at the Zhangye wetland station. The minimum NEP was attained 

in late April and early October. In 2013, the GPP at the Daman superstation was 1442.04 g C/m2/year, and 

the GPP at the Zhangye wetland station was 928.89 g C/m2/year (GPP for 20 days in May, 5 days in July, 

and days from the November 21 to the end of 2013 were missed). The NEP of 2013 is 409.38 g C/m2/year 

for the Daman superstation and 422.60 g C/m2/year for the Zhangye wetland station. During the  

non-growing season, carbon was slightly absorbed at the Zhangye wetland station. 

 

Figure 3. Seasonal dynamics of the GPP and NEP at the Daman superstation and Zhangye 

wetland station. 

3.2. Calibration of the RS-CFLUX Model at the Two Stations 

The prior value and range of the parameters were obtained from the literature or from conventional 

knowledge. The posterior value and range of the parameters in the RS-CFLUX model were estimated 

using the MCMC method (see Table 2, Figures 4 and 5). From the posterior distribution of parameters, 

we found that LUEmax was well constrained at both stations. The value of 2.70 g C/MJ of LUEmax at the 

Daman superstation was much higher than the value of 2.15 g C/MJ at the Zhangye wetland station. 

LSTmax, LSTopt and LSTmin were not well constrained. LSTmax and LSTmin were very similar at the  

two stations, but LSTopt was obviously higher for maize than for reed. The range from LSTmin to 

LSTmax for maize was smaller than that for reed because the growing season for maize is shorter than 

for reed. Respiration rate at reference temperature Rref was also well constrained at both stations, but 

empirical parameter of respiration function E0 and a were not well constrained at either site. 
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Table 2. Prior distribution (initial value and range) and posterior distribution (mean value 

and 95% confidence interval) of the parameters of the RS-CFLUX model at the Daman 

superstation (Daman) and Zhangye wetland station (Wetland). 

Parameter Prior Posterior (Daman) Posterior (Wetland) 

LSTmin (°C) −3(−10, 5) −2.75 (−9.44, 4.35) −3.47 (−9.54,4.02) 

LSTopt (°C) 15(5, 30) 19.27 (7.16, 29.07) 12.78 (5.52,26.30) 

LSTmax (°C) 35(30, 50) 40.44 (30.93,49.26) 39.98 (30.94,49.16) 

LUEmax (gC/MJ) 2(0, 3.5) [34,35] 2.70 (1.55,3.44) 2.15 (1.42,3.08) 

Rref (gC/m2/day) 2(0,20) [11] 1.89 (0.15,4.46) 0.98 (0.17,1.97) 

E0 (°C) 200(0,500) [11] 185.49 (13.90,445.41) 263.70 (50.34,471.57) 

a (gC/m2/day) 0.8(−1,1) [11] −0.04 (−0.93,0.91) −0.01 (−0.92,0.92) 

 

Figure 4. Histograms of the RS-CFLUX model parameters at the Daman superstation (maize). 

 

Figure 5. Histograms of the RS-CFLUX model parameters at the Zhangye wetland station (reed). 
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3.3. Carbon Flux Predicted by the RS-CFLUX Model 

Figures 6 and 7 show the comparison between the carbon flux predicted by the RS-CFLUX model 

and the carbon flux estimated from EC at Daman superstation and Zhangye wetland station. The model 

predictions and observations were consistent. The RS-CFLUX model can correctly simulate the 

seasonal dynamics and quantities of GPP and NEP at the two stations. R2, RMSE and NSE of the GPP 

between the RS-CFLUX model and EC were, respectively 0.92, 1.96 g C/m2/d and 0.87 at Daman 

superstation, and 0.94, 1.00 g C/m2/day and 0.85 at Zhangye wetland station. R2, RMSE and NSE of 

the NEP between the RS-CFLUX model and EC were 0.88, 1.31 g C/m2/d and 0.87 at the Daman 

superstation, and 0.78, 1.02 g C/m2/day and 0.61 at the Zhangye wetland station (see Table 3). The 

sum of the EC-estimated GPP was 1442.04 g C/m2/year at the Daman superstation and 928.89 g 

C/m2/year at the Zhangye wetland station (the GPP missed for 68 days in 2013 and was not filled for 

the Zhangye wetland station); The sum of predicted GPP was 1196.93 g C/m2/year at the Daman 

superstation and 775.24 g C/m2/year at the Zhangye wetland station at the corresponding time. At the 

peak-growing season, GPP was obviously underestimated at Daman superstation; this is mainly caused 

by model parameter LUEmax. LUEmax is smaller when both in-situ GPP and NEE were simultaneously 

used to calibrate CFLUX model than when only in-situ GPP was used. The sum of the EC-estimated 

NEP was 409.38 g C/m2/year at the Daman superstation and 422.60 g C/m2/year at the Zhangye 

wetland station (the GPP missed for 68 days in 2013 were not filled at Zhangye wetland station); The 

sum of the predicted NEP was 409.46 g C/m2/year at the Daman superstation and 433.12 g C/m2/year 

at the Zhangye wetland station at the corresponding time. The linear regression slope between the 

model and observations showed GPP was only slightly underestimated at the Daman superstation. 

 

Figure 6. Validation of the GPP estimated by the RS-CFLUX model at the Daman 

superstation (Daman) and Zhangye wetland station (Wetland). The slope and residual of 

the linear fit are shown in Table 3. 
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Figure 7. Validation of the NEP estimated by the RS-CFLUX model at the Daman 

superstation (Daman) and Zhangye wetland station (Wetland). The slope and residual of 

the linear fit are shown in Table 3. 

Table 3. Comparison of the RS-CFLUX modeled GPP with the observed GPP at the 

Daman superstation (Daman) and Zhangye wetland station (Wetland). 

Stations Fluxes R2 RMSE NSE Slope Residue 

Daman 
GPP 0.92 1.96 (gC/m2/day) 0.87 0.75 0.33 (gC/m2/day) 

NEP 0.88 1.31 (gC/m2/day) 0.87 0.94 0.07 (gC/m2/day) 

Wetland 
GPP 0.94 1.00 (gC/m2/day) 0.85 0.97 −0.43 (gC/m2/day) 

NEP 0.78 1.02 (gC/m2/day) 0.61 1.05 −0.04 (gC/m2/day) 

3.4. Using the MODIS LST Product as Input for the RS-CFLUX Model 

LST input for the RS-CFLUX model can be replaced with the MODIS LST product. The average  

of daytime and nighttime LSTs of the MODIS daily LST product MOD11A1 was used as input of  

RS-CFLUX, and it is compared with the daily average in-situ LST (see left column of Figure 7 and  

Table 4). MODIS LST has a large positive bias comparing with in-situ LST at the Zhangye wetland 

station, but little bias at the Daman superstation. This is attributed to the strong land surface 

heterogeneity at Zhangye wetland station. When the average daytime and nighttime LSTs of 

MOD11A1 were used as input for RS-CFLUX at the Daman superstation and Zhangye wetland 

station, the RS-CFLUX model performed well at both stations (see middle and right columns of  

Figure 8 and Table 4). 
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Figure 8. Validation of the RS-CFLUX model using MODIS LST as input at the Daman 

superstation (Daman) and Zhangye wetland station (Wetland). The slope and residual of 

the linear fit are shown in Table 4. 

Table 4. Results from the RS-CFLUX model using MODIS LST as input. 

Variables R2 RMSE NSE Slope Residue 

Daman_LST 0.98 2.25 (°C) 0.94 0.89 1.4 (°C) 

Wetland_LST 0.90 4.56 (°C) 0.75 0.98 4.3 (°C) 

Daman_GPP 0.96 1.37 (gC/m2/d) 0.94 0.92 0.77 (gC/m2/d) 

Wetland_GPP 0.93 1.11 (gC/m2/d) 0.82 0.81 0.71 (gC/m2/d) 

Daman_NEP 0.75 2.03 (gC/m2/d) 0.72 0.92 0.77 (gC/m2/d) 

Wetland_NEP 0.72 1.15 (gC/m2/d) 0.56 0.74 0.68 (gC/m2/d) 

4. Discussions 

4.1. Comparison of the Carbon Flux 

Farmlands and wetlands are the two most productive ecosystems in the midstream of the Heihe 

River Basin. During the peak of the growing season, the GPP and NEP obviously higher at the Daman 

superstation than the Zhangye wetland station. However, the GPP and NEP were slightly lower at the 

Daman superstation than the Zhangye wetland station at the beginning and end of the growing season. 

Maize at the Daman superstation is usually sown in late April and harvested in late September, and it 

has faster growth speed than reed. However, reed at the Zhangye wetland station usually begins to 

sprout in early April and wither in early October. The yearly GPP was obviously higher at the Daman 

superstation than at the Zhangye wetland station. Because maize is C4 plant which has higher light use 

efficiency than C3, and maize land is fertilized and irrigated by farmers. The NEP value of the Daman 
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superstation and Zhangye wetland station were nearly equal. Thus, the ecosystem respiration of the 

Daman superstation was also higher than that of the Zhangye wetland station. Under waterlogged 

conditions, soil respiration is constrained because of the lack of oxygen and reduced porosity due to 

the high soil water content [36,37]. Another reason is higher GPP at Daman superstation will result in 

higher autotrophic respiration. 

4.2. Uncertainties Resulted from Model Parameters 

The model parameters can lead to uncertainties in the results of the RS-CFLUX model. The model 

calibration suggested that only a few parameters were well constrained. The number of parameters that 

can be well constrained depends on the amount and quality of measurement that used in calibration.  

It is also reported by previous study that there are only few parameters can be well constrained when 

only the carbon flux data was used in the reversion process [38,39]. Based on the probability density 

function proposed by MCMC for each parameter, we used the Monte Carlo method to assess the 

uncertainties in the model outputs resulting from each parameter (see Figures 9 and 10). LUEmax 

resulted in the greatest uncertainties in GPP, followed by LSTopt. LSTmin and LSTmax both resulted in 

low uncertainties in the GPP. Rref, E0 and a did not result in uncertainties in the GPP prediction. 

However, E0, Rref and LUEmax led to the greatest uncertainties in the NEP, followed by LSTopt and a. 

LSTmin and LSTmax led to low uncertainties in the NEP prediction. In addition to the parameters, 

forcing variables and model structure also resulted in uncertainties in the model outputs [40]. 

Observation instruments contain stochastic error. Furthermore, data processing also results in errors. 

The model is a simple function with a few environmental factors; it does not include all exchange 

processes between the ecosystem and atmosphere [41]. 

 

Figure 9. Uncertainties in the GPP caused by parameters in the RS-CFLUX model.  

N (mu, delta) is a normal distribution with a mean mu and standard deviation delta. 
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Figure 10. Uncertainties in the NEP caused by parameters in the RS-CFLUX model.  

N (mu, delta) is a normal distribution with a mean mu and standard deviation delta. 

4.3. Potential to be a Fully Remote Sensing Base Carbon Flux Model 

Generally, the RS-CFLUX model performed well in both the Daman superstation and Zhangye 

wetland station. The model correctly estimated the GPP and NEP of the ecosystem. The model 

accuracy in term of RMSE and R2 is as high as the other model used in this area, such as VPM [19]. 

Based on in-situ data, it is found that correlation coefficient between LST and NEE is much higher 

than that between air temperature and NEE. Furthermore, high-resolution LST and PAR data could be 

retrieved from remote sensing data; this will improve the carbon fluxes estimation at the areas with 

sparse weather stations, such as Northwest China. When using the remote-sensing-derived PAR 

product and LST product as inputs, RS-CFLUX will simulate the carbon flux using only remote 

sensing data. However, high temporal resolution PAR and LST products are difficult to generate. A lot 

of LST value is missing in current MODIS LST product because of the impact of the weather. Some 

methods are developed in recent years, which can be used to reconstruct the LST product and form a 

time continuous LST [42]. Polar orbiting and geostationary satellite data can be combined with other 

remote sensing data to generate continuous daily even hourly PAR data. If the quality of remote 

sensing data product is improved using these new data and method, then the RS-CFLUX model could 

easily estimate the carbon flux at regional scale. 
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5. Conclusions 

In summary, carbon fluxes model based on remote sensing data were presented in this study.  

The model was calibrated and validated at two stations in the midstream of the Heihe River Basin.  

Based on this research, the following conclusions are presented. (1) In the midstream of the Heihe 

River Basin, the maize land had higher GPP (1442.04 g C/m2/year) than the reed dominated wetland  

(928.89 g C/m2/year). However, the NEP of maize land (409.38 g C/m2/year) was nearly equal to that 

of the reed dominated wetland (422.60 g C/m2/year). (2) RS-CFLUX can adequately simulate the 

seasonal dynamics and quantity of carbon fluxes for the maize land and reed dominated wetland. (3) 

From the calibration of RS-CFLUX, only a few parameters were well constrained. However, these well-

constrained parameters are important to model output, such as the maximum light use efficiency, 

respiration at the reference temperature and the activation energy parameter of respiration. If these 

parameters are not well estimated, then they can result in large uncertainties in the model output. 

Acknowledgments 

This work was funded by the National Natural Science Foundation of China (Grant No. 91125004), 

the Chinese State Key Basic Research Project (grant No. 2013CB956604), the National Natural 

Science Foundation of China (Grant No. 41301362 and 91025022), the China Postdoctoral Science 

Foundation (Grant No. 2014M552513), and the Excellent Youth Scholars of the Cold and Arid 

Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. We thank 

all the scientists, engineers and students who participated in the Heihe Watershed Allied Telemetry 

Experimental Research (HiWATER) field campaigns. We also would like to thank the editors and 

anonymous reviewers for their constructive comments on this manuscript. 

Author Contributions 

Xin Li and Mingguo Ma held the field observing experiment and provided data. Guodong Cheng, Xin 

Li, Mingguo Ma and Ling Lu outlined the research topic and assisted with manuscript writing. Xufeng 

Wang processed data, developed the model, analyzed the result and wrote the manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.;  

Hibbard, K.; Högberg, P.; Linder, S.; et al. The global carbon cycle: A test of our knowledge of 

earth as a system. Science 2000, 290, 291–296. 

2. Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. 

Science 2008, 320, 1444–1449. 



Remote Sens. 2015, 7 3667 

 

3. Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.;  

Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake:  

Global distribution and covariation with climate. Science 2010, 329, 834–838. 

4. Ueyama, M.; Harazono, Y.; Kim, Y.; Tanaka, N. Response of the carbon cycle in sub-arctic black 

spruce forests to climate change: Reduction of a carbon sink related to the sensitivity of 

heterotrophic respiration. Agr. Forest Meteorol. 2009, 149, 582–602. 

5. Longbottom, T.L.; Townsend-Small, A.; Owen, L.A.; Murari, M.K. Climatic and topographic 

controls on soil organic matter storage and dynamics in the Indian Himalaya: Potential carbon  

cycle-climate change feedbacks. Catena 2014, 119, 125–135. 

6. Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 

1995, 22, 815–835. 

7. Veroustraete, F.; Sabbe, H.; Eerens, H. Estimation of carbon mass fluxes over Europe using the  

C-Fix model and EuroFlux data. Remote Sens. Environ. 2002, 83, 376–399. 

8. Lu, L.; Li, X.; Veroustraete, F.; Kang, E.; Wang, J. Analysing the forcing mechanisms for net 

primary productivity changes in the Heihe river basin, north-west China. Int. J. Remote Sens. 

2009, 30, 793–816. 

9. Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore Iii, B.; Ojima, D. 

Modeling gross primary production of temperate deciduous broadleaf forest using satellite images 

and climate data. Remote Sens. Environ. 2004, 91, 256–270. 

10. Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous 

satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. 

11. Xiao, J.; Davis, K.J.; Urban, N.M.; Keller, K.; Saliendra, N.Z. Upscaling carbon fluxes from 

towers to the regional scale: Influence of parameter variability and land cover representation on 

regional flux estimates. J. Geophys. Res.: Biogeosci. 2011, 116, doi:10.1029/2010JG001568. 

12. Sánchez, J.M.; Kustas, W.P.; Caselles, V.; Anderson, M.C. Modelling surface energy fluxes over 

maize using a two-source patch model and radiometric soil and canopy temperature observations. 

Remote Sens. Environ. 2008, 112, 1130–1143. 

13. Blum, M.; Lensky, I.M.; Nestel, D. Estimation of olive grove canopy temperature from MODIS 

thermal imagery is more accurate than interpolation from meteorological stations. Agr. Forest 

Meteorol. 2013, 176, 90–93. 

14. Cheng, G.D.; Li, X.; Zhao, W.Z.; Xu, Z.M.; Feng, Q.; Xiao, S.C.; Xiao, H.L. Integrated study of 

the water-ecosystem-economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. 

15. Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. 

Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and 

experimental design. Bull. Amer. Meteor. Soc. 2013, 94, 1145–1160. 

16. Xu, Z.; Liu, S.; Li, X.; Shi, S.; Wang, J.; Zhu, Z.; Xu, T.; Wang, W.; Ma, M. Intercomparison  

of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J. Geophys. 

Res.: Atmos. 2013, 118, 13140–13157. 

17. Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. A comparison of  

eddy-covariance and large aperture scintillometer measurements with respect to the energy 

balance closure problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306. 



Remote Sens. 2015, 7 3668 

 

18. Liu, S.M.; Xu, Z.W.; Zhu, Z.L.; Jia, Z.Z.; Zhu, M.J. Measurements of evapotranspiration from  

eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. 

Hydrol. 2013, 487, 24–38. 

19. Wang, X.; Ma, M.; Huang, G.; Veroustraete, F.; Zhang, Z.; Song, Y.; Tan, J. Vegetation primary 

production estimation at maize and alpine meadow over the Heihe River Basin, China. Int. J. 

Appl. Earth Obs. Geoinf. 2012, 17, 94–101. 

20. Wang, X.; Ma, M.; Li, X.; Song, Y.; Tan, J.; Huang, G.; Zhang, Z.; Zhao, T.; Feng, J.; Ma, Z.;  

et al. Validation of MODIS-GPP product at 10 flux sites in Northern China. Int. J. Remote Sens. 

2012, 34, 587–599. 

21. Vermote, E.F.; Vermeulen, A. Atmospheric correction algorithm: Spectral reflectances (MOD09). 

Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod08.pdf (accessed on 17 December 

2014). 

22. Wan, Z.M. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST 

ATBD); 1999. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf (accessed 

on 17 December 2014). 

23. Chen, J.; Jonsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method  

for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. 

Remote Sens. Environ. 2004, 91, 332–344. 

24. Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S.; Wang, H. Comparison of eight techniques  

for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe River Basin, 

China. Remote Sens. 2014, 6, 2024–2049. 

25. Ma, M.; Veroustraete, F. Reconstructing pathfinder AVHRR land NDVI time-series data for the 

northwest of China. Adv. Space Res. 2006, 37, 835–840. 

26. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the 

radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. 

Environ. 2002, 83, 195–213. 

27. Rahman, A.F.; Sims, D.A.; Cordova, V.D.; El-Masri, B.Z. Potential of MODIS EVI and surface 

temperature for directly estimating per-pixel ecosystem C Fluxes. Geophys. Res. Lett. 2005, 32, 

doi:10.1029/2005GL024127. 

28. Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J. The sensitivity of 

terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United 

States. Tellus B 1999, 51, 414–452. 

29. Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid 

water from space. Remote Sens. Environ. 1996, 58, 257–266. 

30. Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8,  

315–323. 

31. Xu, T.; White, L.; Hui, D.; Luo, Y. Probabilistic inversion of a terrestrial ecosystem model:  

Analysis of uncertainty in parameter estimation and model prediction. Glob. Biogeochem. Cycles 

2006, 20, doi: 10.1029/2005GB002468. 

32. Wu, X.; Luo, Y.; Weng, E.; White, L.; Ma, Y.; Zhou, X. Conditional inversion to estimate 

parameters from eddy-flux observations. J. Plant. Ecol. 2009, 2, 55–68. 



Remote Sens. 2015, 7 3669 

 

33. Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Statist. 

Sci. 1992, 7, 457–472. 

34. Drolet, G.; Middleton, E.; Huemmrich, K.; Hall, F.; Amiro, B.; Barr, A.; Black, T.; McCaughey, J.; 

Margolis, H. Regional mapping of gross light-use efficiency using MODIS spectral indices.  

Remote Sens. Environ. 2008, 112, 3064–3078. 

35. Singsaas, E.L.; Ort, D.R.; DeLucia, E.H. Variation in measured values of photosynthetic quantum 

yield in ecophysiological studies. Oecologia 2001, 128, 15–23. 

36. Holden, J. Peatland hydrology and carbon release: Why small-scale process matters. Philos. 

Trans. R. Soc. A Math. Phys. Eng. Sci. 2005, 363, 2891–2913. 

37. Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon storage and fluxes within freshwater 

wetlands: A critical review. Wetlands 2010, 30, 111–124. 

38. Wang, Y.-P.; Leuning, R.; Cleugh, H.A.; Coppin, P.A. Parameter estimation in surface exchange 

models using nonlinear inversion: How many parameters can we estimate and which 

measurements are most useful? Glob. Chang. Biol. 2001, 7, 495–510. 

39. Yuan, W.; Liang, S.; Liu, S.; Weng, E.; Luo, Y.; Hollinger, D.; Zhang, H. Improving model 

parameter estimation using coupling relationships between vegetation production and ecosystem 

respiration. Ecol. Model. 2012, 240, 29–40. 

40. Ren, X.; He, H.; Moore, D.J.P.; Zhang, L.; Liu, M.; Li, F.; Yu, G.; Wang, H. Uncertainty analysis 

of modeled carbon and water fluxes in a subtropical coniferous plantation. J. Geophys. Res.: 

Biogeosci. 2013, 118, 1674–1688. 

41. McCallum, I.; Wagner, W.; Schmullius, C.; Shvidenko, A.; Obersteiner, M.; Fritz, S.; Nilsson, S. 

Satellite-based terrestrial production efficiency modeling. Carbon Balanc. Manag. 2009, 4, 

doi:10.1186/1750-0680-4-8. 

42. Xu, Y.; Shen, Y. Reconstruction of the land surface temperature time series using harmonic 

analysis. Comput. Geosci. 2013, 61, 126–132. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


