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Abstract: This study analyzed the vertical distribution of gravimetric water content 

(GWC), relative water content (RWC), and equivalent water thickness (EWT) in winter 

wheat during heading and early ripening stages, and evaluated the position of leaf number 

at which Vegetation Indexes (VIs) can best retrieve canopy water-related properties of 

winter wheat. Results demonstrated that the vertical distribution of these properties 

followed a near-bell-shaped curve with the highest values at the intermediate leaf position. 

GWC of the top three or four leaves during the heading stage and the top two or three 

leaves during the early ripening stage can represent the GWC of the whole canopy, but the 

RWC and EWT of the whole canopy should be calculated based on the top four leaves. At 

leaf level, the analysis demonstrated strong relationships between EWT and VIs for the top 

leaf layer, but for GWCD, GWCF, and RWC, the strongest relationships with VIs were 

found in the intermediate leaf layers. At canopy level, VIs provided the most accurate 

estimation of GWCfor the top three or four leaves. Water absorption-based VIs could 

estimate canopy EWT of winter wheat for the top four leaves, but the suitable bands 

sensitive to water absorptions should be carefully selected for the studied species. 
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1. Introduction 

Estimating vegetation water-related properties is of significance for evaluating vegetation growth and 

health status [1]. Water-related properties of vegetation include gravimetric water content (GWC), relative 

water content (RWC), and equivalent water thickness (EWT). GWC is a measure of absolute water content 

in leaves, determined on fresh and dry leaf mass. RWC is the volume of leaf water expressed as a fraction 

of the water volume for the leaf at full turgidity. It is probably the most appropriate measure of plant water 

status in terms of the physiological consequence of cellular water deficit, and thus has been used as an 

indicator of plant water stress [2]. EWT is expressed as the volume of water content per unit leaf area. Field 

sampling of vegetation provides the most accurate measurements of water-related properties, but dynamic 

changes of vegetation water content and time-consuming procedures preclude effective field monitoring at 

large scales. Remote sensing techniques offer an instantaneous and non-destructive alternative of 

monitoring vegetation water content at large scales, which is vital for water stress detection, fire risk 

assessment, and efficient irrigation scheduling. 

Reflectance in the near-infrared (NIR) region (750–1300 nm) and shortwave-infrared (SWIR) 

region (1300–2500 nm) is largely influenced by water and dry matter in the leaves, although it is also 

affected by leaf structure, canopy structure, and leaf area index (LAI) [3–5]. Strong water absorption 

bands can be found in the SWIR region, centered on 1450, 1940, and 2500 nm, and weak water 

absorption bands are located in the NIR region near 970 and 1200 nm. Therefore, the measurement of 

radiation reflected by leaves and canopy provides the basis of estimating vegetation water content with 

remote sensing techniques.  

Spectral indexes allow estimation of leaf and canopy water content by means of empirical approaches 

using regression techniques [6–10]. Moisture Stress Index (MSI) was developed and tested for remote 

sensing of leaf RWC [11,12]. VIs based on reflectance of NIR and SWIR regions, such as Water Index 

(WI) [13], Normalized Difference Water Index (NDWI) [4], and Normalized Difference Infrared Index 

(NDII) [14], have been tested to estimate water content for different vegetation types at both leaf  

level [15–17] and canopy level [9,15,18–20]. Since GWC is determined on dry mass, the ratios of water 

indices and dry-matter indices were developed in order to estimate GWC [17]. Although VIs with bands 

in the visible region are developed to estimate chlorophyll content and LAI, investigations have shown 

that they are indirectly related to leaf water content through correlations with leaf pigments [21,22].  

In addition, several recent studies have used advanced spectroscopic approaches to estimate leaf water 

content, including radiative transfer modeling inversion [23], artificial neural networks [24], continuous 

wavelet analysis [25], and partial least squares regression [26,27].  

However, when light penetrates the canopy, it is attenuated by scattering and absorption per unit 

distance through the canopy, which is described by the light extinction coefficient in the Lambert-Beer 

Law [28]. Therefore, the signal received by remote sensors above the canopy may not represent the 

interaction of incoming radiation with the whole canopy. It is observed that the sensed reflectance in a 
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grass canopy would change to the point where additional increase of leaf layers did not result in a 

change of reflectance [29]. Many research simulated the light penetration path using radiative transfer 

models [30,31], with the assumption of the vertically homogeneous canopy, which is not true in many 

cases. In addition, since the light extinction coefficient is affected by canopy architecture such as leaf 

angle and canopy depth, and also depends on spectrum wavelength, it is inappropriate to use it as a 

constant along the canopy. The vertical distribution of vegetation biophysical and biochemical 

properties and leaf angle greatly affects the amount of reflected light, and in turn affects the estimation 

of vegetation properties. Studies have found that a maize canopy has bell-shaped vertical distribution 

of LAI [32], chlorophyll content [33], leaf nitrogen content and biomass [34]. The study showed that 

the red-edge Chlorophyll Index (CIred edge) sensed the chlorophyll content of the upper seven to nine 

leaf layers in a maize canopy [33].  

Although the vertical heterogeneity of both biophysical and biochemical properties has been 

recognized and highlighted in many studies [35], the remote estimation of vegetation biophysical 

parameters seldom considers the vertical heterogeneity of canopy due to its complexity. Particularly, 

for the estimation of vegetation water-related properties, few studies investigate how the vertical 

distribution of water-related properties affects the estimation of canopy water-related properties using 

spectra derived from remotely sensed data. The objectives of this paper are to evaluate the vertical 

distribution of water-related properties within the winter wheat canopy, analyze the impact of vertical 

profile on the water-related properties at the canopy level, and determine the vertical position where 

hyperspectral VIs can sense the canopy water-related properties, as well as the most suitable VIs to 

estimate leaf and canopy water-related properties of winter wheat.  

2. Materials and Methods 

2.1. Study Area and Field Campaigns 

The study area is located in the experimental rain-fed winter wheat field at the Huazhong 

Agricultural University (Latitude is N 3028'23.16" and Longitude is E11420'47.28"). In the growing 

season of 2014, winter wheat was sown on October 28 and 29 (DOY 301 and 302) and harvested on 

May 20 and 21 (DOY 140 and 141). 

Table 1. The day of year (DOY) on which field campaigns were conducted in 2014, the 

number of plants sampled in each field campaign, and the growth stage. 

Dates DOY No. Sampled Plants The Growth Stage 

3 April 93 6 Heading 

9 April 99 5 Heading 

23 April 113 6 Heading 

29 April 119 11 Ripening 

8 May 128 10 Ripening 

Wheat plants were sampled weekly or biweekly in the field during the heading and the early 

ripening stage in 2014. Table 1 shows the dates of field campaigns, the number of plants sampled in 

each field campaign, and the growth stage. These dates were chosen to evaluate the vertical 
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distribution of water content along the canopy when wheat has been fully developed with a five-leaf 

vertical layer. On each sampling date, plants were randomly selected, and leaves were then 

numerically labeled from the bottom (leaf 1) to the top (leaf 5) of the canopy (Figure 1). In total,  

38 plants were sampled and approximately 190 leaves were collected for analysis.  

 
Figure 1. The illustration of the sampled wheat with leaves numerically labeled from the 

bottom (leaf 1) to the top (leaf 5) of the canopy. 

2.2. Reflectance Measurements  

For each field campaign, wheat reflectance was measured in the spectral range from 350–2500 nm 

with a spectral resolution of 1 nm using ASD FieldSpec Pro radiometer at both the leaf and canopy 

level. The reflectance measurements were conducted on clear days close to solar noon (between 11:00 

and 13:00 local time) when changes in solar zenith angle were minimal.  

Before measuring canopy reflectance spectra, a spectralon panel (99% reflectance) was scanned to 

correct variations in the incoming sun illumination. The fiber optic of the ASD radiometer, with an 

angular field of view of 25°, was placed 0.7 m above the canopy, resulting in a field of view of 0.31 m 

in diameter at the top of the canopy. The canopy reflectance spectra of the sampled plant were the 

median of six measurements for each canopy. Leaf reflectance was measured using an ASD 

radiometer and a self-illuminated leaf probe with a clip attached. On April 23, since the leaf clip did 

not function well, we did not measure leaf spectra and only measured canopy spectra. When collecting 

leaf spectra, five random points were selected per leaf, with six spectra scans at each point in the leaf. 

Thus, a total of 30 spectra were collected per leaf, and their median was used as the leaf reflectance. 

For each sampled plant, leaf reflectance data was measured at all five leaves from the top to the bottom 

along the canopy.  

Raw leaf and canopy reflectance spectra were then convolved to 5 nm bandwidths for spectral 

analysis. This bandwidth was selected based on the full width-half maximum of the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) instrument. For canopy spectra, reflectance between 

1320 and 1500 nm, and reflectance between 1730 and 1950 nm were removed, because these water 

absorption bands are strongly influenced by water vapor in the atmosphere so that they cannot be used 

for the aircraft- and satellite-based remote sensing.  
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2.3. Leaf Sampling and Water Content Measurements 

After reflectance measurements were taken, all leaves of the sampled plants were cut from the stem 

with leaf number recorded. They were enclosed in a sealed plastic bag, and brought to the laboratory 

inside a cooler for leaf area and water content measurements. Fresh weight was recorded using an 

analytical balance. The area of each leaf was measured five times using a portable leaf area meter 

YMJ-A (Zhejiang Top Instrument Co., Zhejiang, China) and the median was used for analysis. After 

measuring leaf area, leaves were immersed in distilled water for 24 h, and weight was recorded as 

turgid weight. Finally, leaves were dried at 80 °C in an oven, until constant weight (dry weight)  

was reached.  

The gravimetric water content (GWC) of the leaf samples was determined on fresh and dry leaf 

mass basis as follows: 
( ) /DGWC FM DM DM   (1)

( ) /FGWC FM DM FM   (2)

where GWCD is the gravimetric water content (grams water/grams dry leaf mass), GWCF is the 

gravimetric water content (grams water/grams fresh leaf mass), FM is the fresh leaf mass (g), and DM 

is the dry leaf mass (g). 

The RWC of leaf samples was calculated as: 

100% ( ) / ( )RWC FM DM TM DM     (3)

where TM is turgid weight (g) of the leaf sample. 

The EWT of leaf samples was calculated as the volume of water per unit leaf area (cm): 

( ) / ( )wEWT FM DM A    (4)

where ρ is the density of pure water (1 g/cm3), and A is the leaf area (cm2).  

During the ripening stage, the leaves at the bottom two layers of winter wheat were drying down, 

with minimal water content, thus we removed samples with extremely low water content from the 

analysis, resulting in 165 samples used in the analysis.  

To evaluate the impact of vertical profile on the retrieval of canopy water-related properties using 

remote sensing VIs, we calculated canopy water-related properties as the value of the top leaf only, the 

value of the top two leaves, the value of the top three leaves, the value of the top four leaves, and the 

value of five leaves as follows:  

1 1
( ) /

n n

D i i ii i
Canopy GWC FM DM DM

 
    (5)

1 1
( ) /

n n

F i i ii i
Canopy GWC FM DM FM

 
    (6)

1 1
( ) / ( )

n n

i i i ii i
Canopy RWC FM DM TM DM

 
     (7)

1 1
( ) / ( )

n n

i i w ii i
Canopy EWT FM DM A

 
     (8)

wheren is the number of leaves from the top of the canopy, ranging from 1–5. However, since this 

study lacked the measurements of leaf area index (LAI), EWT calculated with the above equation was 

the canopy mean value.  
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2.4. Vegetation Indexes 

Leaf and canopy reflectance was used to calculate a wide range of published standard water 

absorption- and greenness-based VIs, which were previously identified to be good predictors of water 

content in the literature (Table 2). Note that our calculation of the GVMI did not use rectified NIR 
reflectance [36,37]. For CIred edge,  is the average reflectance from 750 to 800 nm and 	  is the 

average reflectance from 710 to 730 nm. (ρ850 – ρ2218)/(ρ850 – ρ1928) and (ρ850 – ρ1788)/(ρ850 – ρ1928) were 

only evaluated in the leaf-level analysis, not only because they were originally developed based on leaf 

measurements [8] but also because reflectance at 1788 nm and 1928 nm was noisy in the canopy spectra. 

Table 2. Vegetation indexes (VIs) calculated based on leaf and canopy reflectance, 

including their full names, acronyms, mathematical formulations, and references. 

VI Formula References 

Normalized Difference Vegetation Index 

(NDVI) 850 670 850 670( ) / ( )      [38] 

Normalized Difference Water Index (NDWI) 860 1240 860 1240( ) / ( )      [4] 

Moisture Stress Index (MSI) 1600 819/   [11] 

Water Index (WI) 900 970/   [13] 

Normalized Difference Infrared Index (NDII) 819 1600 819 1600( ) / ( )      [14] 

Reciprocal of Moisture Stress Index (RMSI) 860 1650/   [14] 

Global Vegetation Moisture Index (GVMI) 819 1600 819 1600( 0.1) ( 0.02) / (( 0.1) ( 0.02))          [36,37] 

850 2218 850 1928( ) / ( )      850 2218 850 1928( ) / ( )      [8] 

850 1788 850 1928( ) / ( )      850 1788 850 1928( ) / ( )      [8] 

Normalized Dry Matter Index (NDMI) 1649 1722 1649 1722( ) / ( )      [39] 

NDII/NDMI See formulae above [40] 

Red-edge Chlorophyll Index (CIred edge) ( / ) 1NIR red edge    [41] 

2.5. Statistics Analysis 

Correlation analysis was used to analyze the relationship between reflectance and water-related 

properties. The least-square linear and non-linear regression techniques were used to build the 

empirical models between VIs and water-related properties. The statistics used to evaluate the 

suitability of VIs for estimation of water-related properties included correlation of determination (R2), 

p value, and the root mean square error (RMSE). R2 and p value were used to assess if the variations 

between measurements and modeled results were significant. The RMSE was used to measure the 

actual average differences between measurements and modeled results. 

3. Results 

3.1. The Vertical Distribution of Water-Related Properties of Winter Wheat  

GWC, RWC, and EWT are commonly used properties in many studies to indicate vegetation water 

stress status. The summary statistics for these water-related properties at leaf level are given in  

Table 3. The ranges of water-related properties of leaves were found to be slightly larger than those 

reported in some studies [8,9], but within the reasonable range [42].  
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The correlation between the measured variables is shown in Table 4. It was found that for winter 

wheat, all these variables were positively correlated with each other, but the correlations of RWC with 

the other variables were lower than those of the other three variables. The reason for the lower 

correlation between RWC and the other variables may be that RWC defines water content of wheat in 

a different way. It was worth noting that GWC was positively correlated with EWT for the wheat 

leaves studied, which is different to the studies of trees that showed no correlation between GWC and 

EWT [8,9]. We also ran the correlation analysis between water-related properties for each leaf layer, 

and results were similar to those shown in Table 4.  

Table 3. Summary statistics for water-related properties at leaf level. 

 Mean Range Standard Deviation 

GWCD 4.14 1.21–7.85 1.71 
GWCF 0.78 0.54–0.88 0.069 

RWC (%) 76.55% 46.80%–93.73% 11.98% 
EWT (cm) 0.018 0.0067–0.030 0.0044 

Table 4. Correlation coefficients (r) among water-related properties at leaf level. 

 GWCD GWCF RWC (%) EWT (cm) 

GWCD 1 0.93 0.43 0.63 
GWCF  1 0.42 0.68 

RWC (%)   1 0.38 
EWT (cm)    1 

(a) (b) 

Figure 2. Cont. 
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(c) (d) 

Figure 2. Leaf GWCD (a), GWCF (b), RWC (c), and EWT (d) averaged on each 

measurement date versus leaf number from the top (No.5 refers to the top leaf) to the 

bottom (No.1 refers to the bottom leaf) of the winter wheat canopy. 

To understand the vertical distribution of leaf water-related properties of winter wheat, we plotted 

GWCD, GWCF, RWC, and EWT against the leaf number from the top to the bottom of the wheat canopy 

on each measurement date (Figure 2). The measurements taken on the same date were averaged for each 

leaf number. The pattern of the vertical distribution of GWCD, GWCF, RWC, and EWT were very 

similar. During the heading stage, the third leaf (the third and the fourth leaf for EWT) had higher values 

than the other top leaves. In the early ripening stage, the values of GWCD, GWCF, RWC, and EWT of all 

leaves were decreasing. The maximal value was usually found in the second leaf from the top of the 

canopy. The leaf water content of the fourth and the fifth leaves decreased rapidly, and especially the 

fifth leaf had dried out with minimal leaf water content that can hardly be detected. 

3.2. Estimation of Water-Related Properties at Leaf Level 

At leaf level, to determine which spectral bands of reflectance were sensitive to changes in leaf 

GWCD, GWCF, RWC, EWT, the linear correlation coefficients (r) were calculated for all wavelengths 

and plotted as correlograms (Figure 3). The correlograms showed no significant correlations between 

reflectance of the NIR region and RWC, EWT, but negative correlations between reflectance of the 

NIR region and GWCD, GWCF, though the correlations were not strong. All water-related properties 

demonstrated significant negative relationships with reflectance of the SWIR region, particularly 

around 1450, 1510, and 1860 nm. This result agreed with the findings of many studies that the stronger 

absorption bands of the SWIR region were more responsive to leaf water content variations than the 

weaker water absorption bands of the NIR region [8,42]. However, water absorption bands near 1450 

and 1860 nm are strongly influenced by water vapor in the atmosphere so that they cannot be used for 

the aircraft- and satellite-based remote sensing. Therefore, we revised NDII and MSI by replacing the 

band sensitive to the change of water content with reflectance at 1510 nm.  
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Figure 3. Correlations between reflectance at all wavelengths and GWCD, GWCF, RWC, 

EWT at leaf level of winter wheat. The significant correlation (p < 0.001) was indicated by 

r greater than 0.45 or less than −0.45 (140 samples). 

We evaluated performances of both the existing VIs and the revised VIs in estimating water-related 

properties of winter wheat at leaf level. The relationships between VIs and GWCD were nonlinear, 

fitted with exponential functions. The relationships between VIs and GWCF, RWC can be described 

with linear functions. EWT was best retrieved by VIs using power functions. Table 5 shows R2 and 

RMSE of the best-fit functions for each variable at leaf level. Given the number of samples  

(140 samples), the significant relationships for VIs (p<0.001) were indicated by R2 greater than 0.2. 

Table 5. Statistics of the relationships between Vegetation Indexes (VIs) and gravimetric 

water content (GWC), relative water content (RWC), and equivalent water thickness 

(EWT) at leaf level of winter wheat. Given the number of samples (140 samples), the 

significant relationship (p < 0.001) was indicated by R2 greater than 0.2. 

VIs 
GWCD GWCF RWC (%) EWT (cm) 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.32 1.48 0.33 0.06 0.24 11.25 0.23 0.0036 

NDWI 0.30 1.50 0.27 0.06 0.27 11.02 0.16 0.0038 

MSI 0.45 1.33 0.43 0.06 0.26 11.08 0.33 0.0033 

NDII 0.45 1.33 0.43 0.06 0.37 10.17 0.37 0.0032 

RMSI 0.45 1.33 0.43 0.05 0.37 10.18 0.34 0.0032 

GVMI 0.46 1.31 0.45 0.05 0.29 10.82 0.36 0.0032 

NDVI 0.25 1.55 0.20 0.07 0.24 11.19 0.08 0.0040 

CIred edge 0.30 1.49 0.26 0.06 0.25 11.13 0.05 0.0041 

NDMI 0.30 1.50 0.26 0.06 0.28 10.91 0.18 0.0039 

NDII/NDMI 0.02 1.77 0.01 0.07 0.06 12.50 0.01 0.0041 

850 2218 850 1928( ) / ( )      0.42 1.41 0.42 0.05 0.46 9.45 0.44 0.0027 

850 1788 850 1928( ) / ( )      0.43 1.39 0.41 0.05 0.39 10.05 0.41 0.0028 

NDII1510 0.48 1.29 0.49 0.05 0.33 10.47 0.40 0.0028 

MSI1510 0.48 1.30 0.47 0.05 0.33 10.48 0.37 0.0032 
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At leaf level, the relationships between GWCD, GWCF and VIs were stronger than those for the other 
two variables. Overall, among different VIs, MSI NDII, RMSI, GVMI, 850 2218 850 1928( ) / ( )     ,

850 1788 850 1928( ) / ( )     , and the revised NDII, MSI demonstrated better performances in predicting 

leaf-level water-related properties of winter wheat. In particular, 850 2218 850 1928( ) / ( )      and 

850 1788 850 1928( ) / ( )      provided more accurate estimations of RWC and EWT than the other VIs. 

The significant relationships between four water-related properties and the revised NDII are illustrated 

in Figure 4. The exponential relationship between NDII1510 and GWCD implied that NDII1510 were 

more sensitive to high values of GWCD. NDII1510 increased with the increase in GWCF and EWT. The 

scattered relationship between NDII1510 and RWC indicated that NDII1510 was not as sensitive to the 

change in RWC as to the other variables, especially for low RWC values ranging from 45% to 70%. 

NDVI and CIred edge, which are sensitive to greenness of vegetation rather than water content, were not 

significantly related with EWT, but they had significant relationships with GWCD, GWCF, and RWC. 

Although some studies demonstrated significant relationships between GWCD and NDII/NDMI [17,40], 

NDII/NDMI was not related to any of the measured variables in this study.  

 

Figure 4. Relationships between NDII1510 and GWCD, GWCF, RWC, EWT at leaf level of 

winter wheat. 

To explore the vertical differences in the relationships between VIs and water-related properties at 

leaf level, we analyzed the relationships for each leaf layer from the top to the bottom of the canopy 

(Table 6). The relationships were not significant for the bottom leaf layer for all the water-related 

properties. For GWCD and GWCF, the second, third, and fourth leaf layers had stronger relationships 

than the top layer. For RWC, the stronger relationships were also found in the second, third, and fourth 

leaf layers, but the relationships were not significant for the top leaf layer. Although Table 5 shows 

less strong relationships between EWT and VIs than those for GWCD and GWCF, Table 6 shows 

stronger relationships between EWT and VIs for the top leaf layer than those of the other water-related 

properties. However, the relationships of EWT were less strong for intermediate leaf layers, and not 

significant for the bottom two leaf layers.  
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Table 6. Statistics of relationships between VIs and GWCD (a), GWCF (b), RWC (c), and 

EWT (d) for each leaf layer from the top (No.5 refers to the top leaf) to the bottom ((No.1 

refers to the bottom leaf) of the winter wheat. Given the number of samples (28 samples), 

the significant relationships (p < 0.001) were indicated by R2 values greater than 0.33. 

(a) GWCDc 

Vegetation Indexes 

Leaf Number 

5 4 3 2 1 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.13 1.47 0.32 1.40 0.54 1.44 0.36 1.54 0.01 1.66 

NDWI 0.26 1.36 0.38 1.33 0.54 1.45 0.37 1.53 0.02 1.65 

MSI 0.30 1.34 0.37 1.34 0.59 1.40 0.41 1.47 0.01 1.67 

NDII 0.34 1.28 0.49 1.20 0.68 1.21 0.45 1.42 0.06 1.61 

RMSI 0.34 1.28 0.50 1.19 0.67 1.22 0.44 1.43 0.06 1.62 

GVMI 0.32 1.30 0.52 1.17 0.70 1.18 0.50 1.36 0.05 1.63 

NDVI 0.41 1.21 0.43 1.27 0.68 1.20 0.25 1.66 0.03 1.65 

CIred edge 0.49 1.13 0.52 1.17 0.71 1.15 0.17 1.75 0.06 1.62 

NDMI 0.53 1.08 0.64 1.01 0.67 1.22 0.33 1.58 0.06 1.61 

NDII/NDMI 0.25 1.37 0.04 1.65 0.25 1.85 0.01 1.92 0.01 1.65 

850 2218 850 1928( ) / ( )      0.31 1.31 0.49 1.20 0.66 1.25 0.36 1.50 0.08 1.60 

850 1788 850 1928( ) / ( )      0.23 1.38 0.44 1.27 0.66 1.24 0.44 1.41 0.17 1.52 

NDII1510 0.39 1.23 0.48 1.21 0.70 1.17 0.43 1.45 0.03 1.64 

MSI1510 0.38 1.24 0.47 1.23 0.70 1.17 0.44 1.44 0.03 1.65 

(b) GWCF 

Vegetation Indexes 

Leaf Number 

5 4 3 2 1 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.20 0.065 0.46 0.045 0.46 0.064 0.49 0.043 0.01 0.052 

NDWI 0.32 0.060 0.49 0.044 0.43 0.065 0.53 0.042 0.04 0.051 

MSI 0.34 0.059 0.48 0.044 0.48 0.063 0.54 0.041 0.01 0.052 

NDII 0.36 0.058 0.57 0.040 0.56 0.057 0.58 0.039 0.04 0.051 

RMSI 0.36 0.058 0.58 0.040 0.56 0.057 0.58 0.039 0.04 0.051 

GVMI 0.36 0.058 0.59 0.039 0.59 0.056 0.64 0.037 0.05 0.051 

NDVI 0.14 0.068 0.50 0.044 0.62 0.053 0.35 0.049 0.01 0.052 

CIred edge 0.40 0.057 0.54 0.042 0.61 0.054 0.27 0.052 0.04 0.051 

NDMI 0.46 0.054 0.61 0.039 0.55 0.058 0.41 0.047 0.02 0.051 

NDII/NDMI 0.18 0.066 0.00 0.061 0.15 0.080 0.02 0.060 0.00 0.052 

850 2218 850 1928( ) / ( )      0.39 0.057 0.55 0.041 0.52 0.060 0.49 0.042 0.10 0.049 

850 1788 850 1928( ) / ( )      0.30 0.061 0.49 0.044 0.51 0.061 0.54 0.040 0.16 0.048 

NDII1510 0.43 0.055 0.59 0.039 0.60 0.055 0.57 0.040 0.03 0.051 

MSI1510 0.42 0.055 0.57 0.040 0.58 0.056 0.57 0.040 0.03 0.051 
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Table 6. Cont. 

(c) RWC 

Vegetation Indexes 

Leaf Number 

5 4 3 2 1 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.13 0.090 0.51 0.073 0.39 0.13 0.49 0.11 0.14 0.10 

NDWI 0.16 0.086 0.35 0.085 0.31 0.14 0.56 0.10 0.08 0.10 

MSI 0.23 0.083 0.53 0.072 0.51 0.12 0.46 0.11 0.01 0.11 

NDII 0.20 0.085 0.50 0.074 0.53 0.11 0.59 0.10 0.03 0.11 

RMSI 0.19 0.085 0.50 0.074 0.53 0.11 0.60 0.10 0.03 0.11 

GVMI 0.22 0.083 0.54 0.072 0.55 0.11 0.61 0.10 0.01 0.11 

NDVI 0.00 0.094 0.37 0.083 0.39 0.13 0.51 0.11 0.11 0.10 

CIred edge 0.07 0.091 0.33 0.086 0.45 0.12 0.42 0.12 0.07 0.10 

NDMI 0.08 0.090 0.39 0.082 0.45 0.12 0.51 0.11 0.07 0.10 

NDII/NDMI 0.00 0.094 0.01 0.105 0.10 0.16 0.00 0.15 0.08 0.10 

850 2218 850 1928( ) / ( )      0.32 0.078 0.58 0.069 0.61 0.10 0.41 0.12 0.07 0.10 

850 1788 850 1928( ) / ( )      0.23 0.083 0.53 0.072 0.59 0.11 0.50 0.11 0.03 0.11 

NDII1510 0.23 0.083 0.53 0.072 0.54 0.11 0.53 0.11 0.02 0.11 

MSI1510 0.23 0.083 0.53 0.072 0.53 0.11 0.52 0.11 0.02 0.11 

(d) EWT 

Vegetation Indexes 

Leaf Number 

5 4 3 2 1 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.55 0.003 0.25 0.003 0.28 0.003 0.17 0.004 0.01 0.004 

NDWI 0.68 0.002 0.38 0.003 0.18 0.003 0.17 0.004 0.02 0.004 

MSI 0.61 0.002 0.35 0.003 0.35 0.003 0.23 0.004 0.04 0.004 

NDII 0.62 0.002 0.35 0.003 0.36 0.003 0.17 0.004 0.02 0.004 

RMSI 0.62 0.002 0.32 0.003 0.35 0.003 0.17 0.004 0.01 0.004 

GVMI 0.62 0.002 0.32 0.003 0.33 0.003 0.23 0.004 0.16 0.003 

NDVI 0.44 0.002 0.32 0.003 0.38 0.003 0.18 0.004 0.02 0.004 

CIred edge 0.45 0.002 0.32 0.002 0.36 0.003 0.08 0.004 0.06 0.004 

NDMI 0.37 0.002 0.27 0.003 0.26 0.004 0.26 0.004 0.03 0.004 

NDII/NDMI 0.03 0.003 0.12 0.003 0.24 0.004 0.24 0.004 0.22 0.003 

850 2218 850 1928( ) / ( )      0.76 0.001 0.45 0.002 0.41 0.003 0.27 0.003 0.17 0.003 

850 1788 850 1928( ) / ( )      0.75 0.001 0.38 0.003 0.43 0.003 0.25 0.004 0.16 0.003 

NDII1510 0.68 0.002 0.39 0.003 0.40 0.003 0.28 0.003 0.02 0.004 

MSI1510 0.67 0.002 0.39 0.003 0.40 0.003 0.26 0.004 0.02 0.004 

3.3. Water-Related Properties within a Winter Wheat Canopy 

GWCD, GWCF, RWC, and EWT for the cumulative leaf number within a winter wheat canopy are 

illustrated in Figure 5. For GWCD, GWCF, and EWT, the values were minimal at the top of the 

canopy, progressively increasing, reaching maximum values, and then remaining stable or slightly 

decreased. RWC demonstrated a slightly different pattern. RWC for the cumulative leaf number 

increased slightly from the top leaf to the intermediate position of the canopy, and then decreased 

progressively, reaching the minimal value when including the bottom leaf.  
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(a) (b) 

 

(c) (d) 

Figure 5. GWCD (a), GWCF (b), RWC (c), and EWT (d) for the cumulative leaf number 

within a winter wheat canopy. Cumulative leaf number 1 corresponds to the top leaf (leaf 

No. 5), and cumulative leaf number 5 corresponds to the top five leaves, from the top leaf 

(leaf No. 5) to the bottom leaf (leaf No. 1) of the canopy. 

Importantly, the leaf position at which water-related properties for the cumulative leaf number 

reached the maximum varied with the growth stages. During the heading stage, the maximal values 

occurred at the top three or four leaves, but during the ripening stage, water-related properties reached 

maximum values at the top two leaves. 
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3.4. Estimations of Water-Related Properties at Canopy Level 

To determine the wavelengths that are sensitive to the water-related properties for the cumulative 

leaf number within the canopy, we evaluated the relationships between canopy reflectance at all 

wavelengths and water-related properties for the cumulative leaf number within the winter wheat 

canopy. The correlograms of GWCD, GWCF, RWC, and EWT (Figure 6) illustrated that all water-related 

properties were positively correlated with reflectance of the NIR region but negatively correlated with 

reflectance of the VIS and SWIR regions. The relationships between canopy reflectance and RWC and 

EWT were less strong than those of GWCD, GWCF. The strongest positive relationship was found 

around 750 nm and the strongest negative relationship was found around 670, 1955, and 2020 nm. The 

varying relationships between reflectance and GWCD and GWCF for the cumulative leaf number were 

obvious in the VIS and SWIR regions, where the top leaf had the lower correlation and the top three 

leaves had the stronger correlation with reflectance. Such varying relationships were more pronounced 

for RWC and EWT. Based on these observations, we revised NDII and MSI by replacing the water 

absorption bands with reflectance at 2020 nm, because 1955 nm was close to the noisy bands.  

 

 

Figure 6. Correlation between canopy reflectance at all wavelengths and GWCD, GWCF, 

RWC, and EWT for the cumulative leaf number. Top one leaf corresponds to leaf No. 5, 

and top five leaves correspond to the leaf No.5 to leaf No.1. The significant correlation  

(p < 0.001) was indicated by r greater than 0.52 or less than −0.52 (33 samples). 
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To determine the position of leaf number at which VIs can best retrieve canopy water-related 

properties of winter wheat, we evaluated the relationships between different VIs and GWCD, GWCF, 

RWC, and EWT for the cumulative leaf number. Table 7 summarizes the statistics of relationships 

between studied VIs and water-related properties at canopy level. For GWCD and GWCF, relationships 

were significant for all studied VIs except NDMI and NDII/NDMI. These VIs can sense the canopy 

GWCD and GWCF of the top two, three, four, and five leaves. The most accurate estimations of GWCD 

and GWCF were achieved for the top three leaves. The revised NDII and MSI did not improve the 

estimations of GWCD and GWCF obviously compared with the existing water absorption-based VIs. 

The relationships between studied VIs and RWC and EWT for the cumulative leaf number were not 

significant. However, the revised NDII and MSI provided more accurate estimations of RWC and 

EWT than the existing VIs, and the most accurate estimations were achieved for the top three and four 

leaves for RWC and for the top four and five leaves for EWT.  

Table 7. Statistics of relationships between VIs based on canopy reflectance and GWCD (a), 

GWCF (b), RWC (c), and EWT (d) for the cumulative leaf number within the winter wheat 

canopy. The significant relationships (p < 0.001) were indicated by R2 values greater than 

0.29 (33 samples). 

(a) GWCD 

Vegetation 

Indexes 

Cumulative Leaf Number 

Top 1 Top 2 Top 3 Top 4 Top 5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.53 1.06 0.59 0.90 0.65 0.94 0.60 1.00 0.60 0.94 

NDWI 0.52 1.07 0.58 0.91 0.65 0.93 0.61 0.98 0.62 0.92 

MSI 0.48 1.11 0.53 0.97 0.60 1.00 0.59 1.01 0.60 0.94 

NDII 0.46 1.13 0.53 0.97 0.60 1.00 0.57 1.03 0.58 0.96 

RMSI 0.48 1.11 0.53 0.97 0.59 1.01 0.56 1.05 0.57 0.98 

GVMI 0.45 1.15 0.52 0.98 0.59 1.01 0.57 1.04 0.58 0.97 

NDVI 0.36 1.23 0.48 1.02 0.57 1.04 0.56 1.04 0.56 0.98 

CIred edge 0.56 1.03 0.63 0.86 0.70 0.86 0.67 0.91 0.66 0.86 

NDMI 0.26 1.33 0.27 1.21 0.31 1.31 0.30 1.32 0.31 1.23 

NDII/NDMI 0.00 1.54 0.01 1.40 0.02 1.56 0.02 1.56 0.02 1.47 

NDII2020 0.41 1.18 0.55 0.92 0.63 0.96 0.61 0.98 0.62 0.92 

MSI2020 0.45 1.15 0.55 0.92 0.63 0.96 0.60 1.00 0.61 0.93 

(b) GWCF 

Vegetation 

Indexes 

Cumulative Leaf Number 

Top 1 Top 2 Top 3 Top 4 Top 5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.48 0.05 0.57 0.04 0.61 0.04 0.60 0.04 0.59 0.04 

NDWI 0.45 0.05 0.54 0.04 0.60 0.04 0.59 0.04 0.59 0.04 

MSI 0.37 0.06 0.50 0.04 0.55 0.04 0.55 0.04 0.55 0.04 

NDII 0.37 0.06 0.49 0.04 0.55 0.04 0.55 0.04 0.55 0.04 

RMSI 0.41 0.05 0.52 0.04 0.57 0.04 0.57 0.04 0.57 0.04 

GVMI 0.37 0.06 0.50 0.04 0.55 0.04 0.56 0.04 0.56 0.04 

NDVI 0.27 0.06 0.42 0.04 0.50 0.04 0.52 0.04 0.52 0.04 
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Table 7. Cont. 

Vegetation 

Indexes 

Cumulative Leaf Number 

Top 1 Top 2 Top 3 Top 4 Top 5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

CIred edge 0.48 0.05 0.59 0.04 0.65 0.04 0.64 0.04 0.63 0.04 

NDMI 0.22 0.06 0.24 0.05 0.25 0.05 0.24 0.05 0.24 0.05 

NDII/NDMI 0.00 0.07 0.02 0.06 0.03 0.06 0.03 0.06 0.03 0.06 

NDII2020 0.32 0.06 0.49 0.04 0.55 0.04 0.56 0.04 0.57 0.04 

MSI2020 0.31 0.06 0.48 0.04 0.54 0.05 0.56 0.04 0.56 0.04 

(c) RWC 

Vegetation 

Indexes 

Cumulative Leaf Number 

Top 1 Top 2 Top 3 Top 4 Top 5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.02 7.88 0.07 6.50 0.27 7.21 0.25 7.16 0.21 7.18 

NDWI 0.02 7.88 0.07 6.50 0.29 7.12 0.27 7.06 0.23 7.07 

MSI 0.02 7.87 0.07 6.49 0.27 7.24 0.26 7.14 0.22 7.13 

NDII 0.02 7.86 0.08 6.44 0.27 7.20 0.26 7.12 0.22 7.12 

RMSI 0.01 7.89 0.07 6.49 0.27 7.24 0.26 7.14 0.22 7.15 

GVMI 0.02 7.87 0.08 6.45 0.27 7.24 0.26 7.14 0.22 7.14 

NDVI 0.03 7.83 0.13 6.28 0.28 7.17 0.25 7.17 0.22 7.12 

CIred edge 0.04 7.80 0.10 6.38 0.31 7.00 0.30 6.95 0.26 6.97 

NDMI 0.01 7.92 0.00 6.72 0.15 7.78 0.13 7.74 0.14 7.49 

NDII/NDMI 0.02 7.86 0.03 6.62 0.01 8.41 0.02 8.21 0.00 8.06 

NDII2020 0.09 7.08 0.22 5.21 0.33 6.81 0.34 6.50 0.30 6.36 

MSI2020 0.10 7.05 0.23 5.14 0.33 6.81 0.34 6.50 0.31 6.23 

(d) EWT 

Vegetation 

Indexes 

Cumulative Leaf Number 

Top 1 Top 2 Top 3 Top 4 Top 5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.07 0.0028 0.12 0.0027 0.26 0.0024 0.26 0.0024 0.29 0.0023 

NDWI 0.05 0.0028 0.09 0.0027 0.24 0.0024 0.26 0.0024 0.29 0.0023 

MSI 0.06 0.0028 0.08 0.0028 0.22 0.0024 0.22 0.0025 0.25 0.0023 

NDII 0.05 0.0028 0.08 0.0028 0.22 0.0024 0.22 0.0025 0.25 0.0023 

RMSI 0.06 0.0028 0.08 0.0028 0.22 0.0024 0.22 0.0025 0.25 0.0023 

GVMI 0.05 0.0029 0.08 0.0028 0.22 0.0024 0.23 0.0024 0.26 0.0023 

NDVI 0.07 0.0028 0.07 0.0028 0.22 0.0024 0.25 0.0024 0.27 0.0023 

CIred edge 0.05 0.0028 0.07 0.0028 0.19 0.0025 0.20 0.0025 0.23 0.0024 

NDMI 0.21 0.0026 0.13 0.0027 0.14 0.0025 0.14 0.0026 0.15 0.0025 

NDII/NDMI 0.16 0.0027 0.20 0.0026 0.17 0.0025 0.18 0.0025 0.20 0.0024 

NDII2020 0.04 0.0028 0.33 0.0019 0.39 0.0066 0.40 0.0064 0.41 0.0064 

MSI2020 0.05 0.0028 0.34 0.0019 0.41 0.0065 0.42 0.0064 0.42 0.0063 
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4. Discussion  

4.1. The Vertical Distribution of Water Content within a Winter Wheat Canopy 

In this study, we evaluated the vertical distribution of four water-related properties (GWCD , GWCF, 

RWC, and EWT) within a winter wheat canopy during heading and early ripening stages. Our analysis 

showed that the vertical distribution of GWCD , GWCF, RWC, and EWT followed a near-bell-shaped 

curve with the highest values at the intermediate leaf position and the lowest value at the bottom leaf. 

After the emergence of the flag leaf (the top leaf), it contributes to the major part of photosynthesis and 

transpiration of wheat canopy. Since the flag leaf may consume more water through evapotranspiration, 

it contained less water than the intermediate leaves.  

The vertical profile directly affected water-related properties for the cumulative leaf number within 

the winter wheat canopy. Our analysis demonstrated that water-related properties for the cumulative 

leaf number progressively increased, reaching maximum values at the intermediate leaf position, and 

then remained stable (such as GWCD and GWCF) or slightly decreased (such as RWC and EWT). 

Results implied that for GWCD and GWCF, the values of the top three or four leaves and the values of 

the top two or three leaves can represent GWC of the whole canopy during the heading stage and the 

early ripening stage, respectively. As for RWC and EWT, since they were more variable along the 

vertical profile than GWCD and GWCF, RWC and EWT of the whole canopy should be calculated 

based on the top four leaves or all leaves.  

4.2. Estimations of Leaf and Canopy Water Content with Consideration of Vertical Distributions of 

Water-Related Properties 

At leaf level, the analysis demonstrated strong relationships between EWT and VIs for the top leaf 

layer, with R2 values ranging from 0.60–0.76 for water-related VIs, similar to the results shown in 

some other studies [8,43]. On the other hand, for GWCD, GWCF, and RWC, the strongest relationships 

with VIs were found in the intermediate leaf layers. The vertical differences in the relationships 

between VIs and water-related properties of winter wheat at leaf level indicated that the uniform model 

to estimate leaf water-related properties with remote sensing VIs might result in errors, particularly for 

vegetation with complex vertical architecture.  

At canopy level, water absorption- and greenness-based VIs provided the most accurate estimations 

of GWCD and GWCF for the top three or four leaves (Figure 7). As GWCD and GWCF of the top three 

or four leaves can represent GWC of the whole canopy, these water absorption- and greenness-based 

VIs can be used to retrieve GWC of winter wheat. It was interesting that NDVI and CIred edge provided 

as accurate estimation of GWC as the water absorption-based VIs did at canopy level. These 

observations agreed with the findings that greenness indices were used to track seasonality of GWC in 

grassland and savanna because plant water status affects LAI and chlorophyll content [6].  

Based on our results, the studied VIs were not feasible to accurately estimate canopy RWC of winter 

wheat during heading and early ripening stages. Although the revised NDII and MSI provided the best 

estimation of RWC for the top four leaves (Figure 7), the R2 value was still quite low to indicate a 

convincing relationship between the revised NDII, MSI and RWC for the cumulative leaf number within 

the winter wheat canopy. The fact that VIs based on the reflectance of NIR and/or SWIR region were not 
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suitable for RWC estimations has been discussed in many studies [44,45]. These studies suggested that it 

was not feasible to detect RWC within the biologically meaningful range as the relative small changes in 

leaf water content associated with large changes in turgor pressure.  

The poor relationships between the existing VIs and EWT for the cumulative leaf number at canopy 

level were different from some other EWT estimation studies. We hypothesized that there might be 

two reasons for the poor relationships. First, EWT calculated in this study described the mean leaf 

EWT at canopy level. Due to the lack of LAI measurements, the EWT for the cumulative leaf number 

did not take into account the impact of LAI. However, studies have shown that a large variability of 

LAI may cancel out water-related features in reflectance [46,47] and thus complicates the estimation 

of mean leaf EWT at canopy level. Second, while the relationships between the existing VIs and EWT 

were weak, the revised NDII and MSI provided more accurate estimations of EWT for the cumulative 

leaf number. Particularly, the best estimation was achieved for EWT of the top four and five leaves  

(Figure 7). These findings suggested that water absorption-based VIs were able to estimate EWT of 

winter wheat, but the suitable bands sensitive to water absorptions should be carefully selected for the 

studied species.  

 

Figure 7. R2 for the relationships between NDII2020 and water-related properties for the 

cumulative leaf number. 

In order to gain a better understanding of how ‘deep’ remote sensing VIs derived from canopy 

spectra can ‘penetrate’ the winter wheat canopy and provide estimations of water-related properties as 

shown in the results of this study, we assessed if canopy spectra without the effects of varying plant 

geometries would show the similar results. We simulated canopy spectra using PROSPECT+SAILH 
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model based on the cumulative measurements of chlorophyll content, EWT, leaf dry matter, and LAI 

for the top one to top five leaves, respectively. Leaf chlorophyll content was measured in the field 

using SPAD-502 chlorophyll meter (Minolta, Valencia, Spain), the SPAD values were then converted 

to chlorophyll content (g/cm2) according to the equation [48]. Due to a lack of LAI measurements,  

we assumed that LAI was calculated as the cumulative leaf area along the vertical structure divided by 

ground area of 6 cm × 6 cm, so that LAI was kept in the reasonable range (between 3 and 5 during the 

heading stage with a five-leaf vertical structure). The simulations showed that canopy spectra 

simulated with the cumulative values of the top five leaves were closest to the canopy spectra 

measured in the field, with the least mean RMSE between the measured and the simulated canopy 

spectra (Figure 8), while the simulated spectra for the top three and four leaves also had low RMSE 

values. We then evaluated the position of leaf number at which VIs can best retrieve canopy  

water-related properties of winter wheat by analyzing the relationships between VIs derived from the 

simulated spectra for the top five leaves and water-related properties for the cumulative leaf numbers. 

Overall, the simulated VIs showed stronger relationships with water-related properties than VIs 

derived from the measured canopy spectra (Table 8), implying that the accuracy of water-related 

properties (EWT in particular) estimations were affected by plant geometries. The relationships 

between water-related properties and the simulated VIs demonstrated the similar results that the 

studied VIs provided the most accurate estimations of GWCD, GWCF, and RWC for the top three 

leaves, and the most accurate estimation of EWT for the top four and five leaves. Since GWCD,GWCF, 

and RWC values of the top three leaves, and EWT values of the top four and five leaves can represent 

water status for the whole canopy, the findings of this study suggested that water-related properties of 

winter wheat estimated from VIs could represent the water status of the whole canopy.  

 

Figure 8. Mean RMSE between the measured canopy spectra and the canopy spectra 

simulated with PROSPECT+SAILH model for the top one, two, three, four, and five 

leaves, respectively. 
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Table 8. Statistics of relationships between VIs based on canopy reflectance and GWCD 

(a), GWCF (b), RWC (c), and EWT (d) for the cumulative leaf number within the winter 

wheat canopy. The significant relationships (p < 0.001) were indicated by R2 values greater 

than 0.29 (33 samples). 

(a) GWCD 

Vegetation 

Indexes 

Cumulative Leaf Number 

Top 1 Top 2 Top 3 Top 4 Top 5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.50 1.11 0.74 0.72 0.77 0.77 0.73 0.83 0.75 0.75 

NDWI 0.46 1.16 0.69 0.80 0.73 0.83 0.70 0.87 0.71 0.80 

MSI 0.44 1.18 0.66 0.83 0.70 0.88 0.67 0.92 0.67 0.85 

NDII 0.47 1.14 0.69 0.79 0.73 0.83 0.70 0.88 0.71 0.81 

RMSI 0.48 1.13 0.72 0.76 0.74 0.82 0.69 0.88 0.71 0.80 

GVMI 0.50 1.12 0.72 0.75 0.74 0.81 0.70 0.87 0.71 0.80 

NDVI 0.28 1.34 0.43 1.07 0.51 1.11 0.50 1.12 0.50 1.05 

CIred edge 0.43 1.19 0.59 0.92 0.62 0.98 0.55 1.07 0.55 0.99 

NDMI 0.20 1.37 0.24 1.35 0.29 1.33 0.29 1.33 0.29 1.33 

NDII/NDMI 0.29 1.33 0.33 1.22 0.36 1.20 0.35 1.20 0.37 1.19 

NDII2020 0.32 1.30 0.50 1.00 0.57 1.05 0.56 1.06 0.55 1.00 

MSI2020 0.34 1.28 0.53 0.97 0.60 1.01 0.58 1.02 0.58 0.96 

(b) GWCF 

Vegetation 

Indexes 

Cumulative Leaf Number 

Top 1 Top 2 Top 3 Top 4 Top 5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.45 0.05 0.73 0.03 0.71 0.03 0.70 0.03 0.71 0.03 

NDWI 0.36 0.05 0.63 0.03 0.63 0.04 0.63 0.04 0.63 0.03 

MSI 0.33 0.06 0.58 0.04 0.57 0.04 0.57 0.04 0.57 0.04 

NDII 0.37 0.05 0.64 0.03 0.62 0.04 0.62 0.04 0.62 0.04 

RMSI 0.44 0.05 0.69 0.03 0.67 0.03 0.66 0.03 0.67 0.03 

GVMI 0.42 0.05 0.68 0.03 0.65 0.04 0.64 0.04 0.64 0.03 

NDVI 0.16 0.06 0.36 0.04 0.39 0.05 0.40 0.05 0.40 0.04 

CIred edge 0.43 0.05 0.57 0.04 0.58 0.04 0.54 0.04 0.54 0.04 

NDMI 0.25 0.06 0.37 0.05 0.36 0.05 0.37 0.05 0.37 0.05 

NDII/NDMI 0.23 0.06 0.36 0.05 0.36 0.05 0.33 0.06 0.34 0.06 

NDII2020 0.19 0.06 0.40 0.04 0.41 0.05 0.42 0.05 0.42 0.04 

MSI2020 0.21 0.06 0.43 0.04 0.45 0.04 0.45 0.04 0.45 0.04 

(c) RWC 

Vegetation Indexes 

Cumulative Leaf Number 

Top 1 Top 2 Top 3 Top 4 Top 5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.05 7.24 0.23 6.32 0.42 6.27 0.42 6.22 0.39 6.22 

NDWI 0.04 7.30 0.22 6.35 0.36 6.58 0.36 6.56 0.33 6.53 

MSI 0.04 7.28 0.25 6.24 0.39 6.44 0.38 6.46 0.35 6.42 

NDII 0.04 7.27 0.24 6.26 0.40 6.38 0.39 6.37 0.37 6.35 

RMSI 0.05 7.24 0.23 6.32 0.40 6.38 0.40 6.33 0.37 6.33 

GVMI 0.05 7.23 0.25 6.21 0.44 6.16 0.44 6.15 0.41 6.14 
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Table 8. Cont. 

Vegetation 

Indexes 

Cumulative Leaf Number 

Top 1 Top 2 Top 3 Top 4 Top 5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

NDVI 0.01 7.40 0.15 6.64 0.18 7.44 0.17 7.46 0.15 7.36 

NDMI 0.00 7.42 0.00 7.17 0.13 7.68 0.13 7.62 0.13 7.45 

NDII/NDMI 0.05 7.24 0.12 6.74 0.34 6.68 0.36 6.56 0.35 6.42 

NDII2020 0.01 7.38 0.19 6.47 0.25 7.12 0.23 7.16 0.21 7.07 

MSI2020 0.02 7.37 0.20 6.45 0.26 7.05 0.25 7.09 0.23 7.00 

(d) EWT 

Vegetation Indexes 

Cumulative Leaf Number 

Top 1 Top 2 Top 3 Top 4 Top 5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

WI 0.29 0.0025 0.14 0.0039 0.21 0.0048 0.24 0.0046 0.25 0.0046 

NDWI 0.32 0.0024 0.24 0.0037 0.38 0.0042 0.43 0.0040 0.43 0.0040 

MSI 0.30 0.0025 0.17 0.0039 0.28 0.0046 0.30 0.0044 0.31 0.0044 

NDII 0.31 0.0025 0.18 0.0038 0.29 0.0045 0.32 0.0044 0.33 0.0043 

RMSI 0.31 0.0025 0.18 0.0038 0.26 0.0046 0.30 0.0044 0.31 0.0044 

GVMI 0.29 0.0025 0.11 0.0040 0.17 0.0049 0.20 0.0048 0.20 0.0047 

NDVI 0.24 0.0026 0.39 0.0033 0.42 0.0040 0.43 0.0040 0.44 0.0040 

CIred edge 0.36 0.0024 0.33 0.0035 0.35 0.0044 0.37 0.0042 0.37 0.0042 

NDMI 0.18 0.0027 0.15 0.0039 0.14 0.0050 0.16 0.0049 0.15 0.0049 

NDII/NDMI 0.18 0.0027 0.02 0.0042 0.02 0.0053 0.02 0.0053 0.03 0.0052 

NDII2020 0.29 0.0025 0.30 0.0035 0.48 0.0039 0.49 0.0038 0.49 0.0038 

MSI2020 0.31 0.0025 0.32 0.0035 0.50 0.0038 0.51 0.0037 0.52 0.0037 

Understanding the vertical extent of water-related properties will affect decisions based on this.  

For instance, GWCD can be used to evaluate fire risk. However, for vegetation with complex vertical 

architecture, whether GWCD estimated based on canopy reflectance represents only the top leaf layers 

or they can also represent intermediate and the bottom leaf layers will be unknown without analysis of 

the vertical distribution. If GWCD for the studied vegetation failed to represent the bottom layers,  

the evaluation of fire risk may not be accurate since the bottom layers might have higher or lower 

GWCD than the estimation due to different ages and light conditions from the top layer. In addition, 

since radiative transfer model is based on the assumption of homogeneous vertical profile of 

vegetation, a complete vertical picture will also improve studies of EWT estimation based on the 

radiative transfer model inversion.  

5. Conclusions 

In this study, we analyzed the vertical distribution of four water-related properties (GWCD , GWCF, 

RWC, and EWT) within a winter wheat canopy during heading and early ripening stages, and evaluated 

how ‘deep’ remote sensing VIs derived from canopy spectra can ‘penetrate’ the winter wheat canopy and 

provide estimations of water-related properties. Our results demonstrated that the vertical distribution of 

GWCD, GWCF, RWC, and EWT followed a near-bell-shaped curve with the highest values at the 

intermediate leaf position and the lowest value at the bottom leaf. The water-related properties for the 
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cumulative leaf number within the canopy suggested that GWCD and GWCF of the top three can 

represent GWC of the whole plant during the heading stage and the early ripening stage. RWC and 

EWT of the whole plant should be calculated based on the top four leaves or all leaves. At leaf level, 

the analysis demonstrated strong relationships between EWT and VIs for the top leaf layer, but for 

GWCD, GWCF, and RWC, the strongest relationships with VIs were found in the intermediate leaf 

layers. At canopy level, water absorption- and greenness-based VIs provided the most accurate 

estimation of GWCD and GWCF for the top three or four leaves. Water absorption-based VIs were able 

to estimate EWT of winter wheat for the top four leaves, but the suitable bands sensitive to water 

absorptions should be carefully selected for the studied species.  

These observations indicated a theoretical basis of using remote sensing techniques to estimate 

canopy water-related properties, especially for imaging data. Spectral reflectance, measured above the 

canopy, may not be responsible for the incoming radiation interacting with bottom leaf layers of the 

plant, thus resulting in estimation errors of properties of the whole canopy. However, our hypothesis 

was that in wheat the cumulative properties of top three layers, which can be sensed by remote sensors, 

may well represent total canopy properties. Similar results of chlorophyll content showed that VIs 

based on red edge spectra can sense seven to nine leaf layers in maize, which is quite representative of 

the total chlorophyll content in the whole plant [33,49].  

Nevertheless, to our knowledge, this is the first study to investigate the vertical distribution of 

water-related properties within a canopy and its impact on the estimation of water-related properties at 

leaf and canopy level with remote sensing VIs. Results of this study provided insights into remote 

estimation of vegetation water content and crop water stress monitoring. In future work, advanced 

spectroscopic analysis techniques (e.g., machine learning methods, genetic algorithms) can be 

incorporated to develop the indicators sensitive to water content in the whole canopy, and the impact 

of canopy vertical heterogeneity on biophysical and biochemical parameters of vegetation should be 

further analyzed for different species.  
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