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Abstract: Surface soil moisture (SM) plays a fundamental role in energy and water 

partitioning in the soil–plant–atmosphere continuum. A reliable and operational algorithm 

is much needed to retrieve regional surface SM at high spatial and temporal resolutions. 

Here, we provide an operational framework of estimating surface SM at fine spatial 

resolutions (using visible/thermal infrared images and concurrent meteorological data) 

based on a trapezoidal space defined by remotely sensed vegetation cover (Fc) and land 

surface temperature (LST). Theoretical solutions of the wet and dry edges were derived to 

achieve a more accurate and effective determination of the Fc/LST space. Subjectivity and 
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uncertainty arising from visual examination of extreme boundaries can consequently be 

largely reduced. In addition, theoretical derivation of the extreme boundaries allows a  

per-pixel determination of the VI/LST space such that the assumption of uniform atmospheric 

forcing over the entire domain is no longer required. The developed approach was tested at 

the Tibetan Plateau Soil Moisture/Temperature Monitoring Network (SMTMN) site in central 

Tibet, China, from August 2010 to August 2011 using Moderate Resolution Imaging 

Spectroradiometer (MODIS) Terra images. Results indicate that the developed trapezoid 

model reproduced the spatial and temporal patterns of observed surface SM reasonably well, 

with showing a root-mean-square error of 0.06 m3·m−3 at the site level and 0.03 m3·m−3  

at the regional scale. In addition, a case study on 2 September 2010 highlighted the 

importance of the theoretically calculated wet and dry edges, as they can effectively 

obviate subjectivity and uncertainties in determining the Fc/LST space arising from visual 

interpretation of satellite images. Compared with Land Surface Models (LSMs) in Global 

Land Data Assimilation System-1, the remote sensing-based trapezoid approach gave 

generally better surface SM estimates, whereas the LSMs showed systematic underestimation. 

Sensitivity analyses suggested that the trapezoid method is most sensitive to field capacity and 

temperature but less sensitive to other meteorological observations and parameters. 

Keywords: surface soil moisture; trapezoid method; thermal infrared remote sensing; 

MODIS; Tibet Plateau 

 

1. Introduction 

Surface soil moisture (SM) plays an essential role in determining various land surface processes and 

the feedback between the Earth and the climate system [1]. However, long-term and large scale in situ 

SM data are limited due to logistic and economic reasons. In addition, local-scale variations in soil 

properties, terrain, and vegetation cover result in a high spatial variability in surface SM, which makes 

it difficult to fully assess regional surface soil water conditions based on limited point measurements [2]. 

Remote sensing techniques provide a unique opportunity to capture land surface information over 

large geographic extents. Particularly, microwave remote sensing is often considered most effective in 

characterizing near surface SM from the space (e.g., [3–5]). It has been shown that the relationship 

between the L-band (frequency f = 1–2 GHz, wavelength λ = 30–15 cm) brightness temperature and 

the SM profile (up to 5 cm) is generally stronger than that at higher frequency [5]. In addition, relatively 

longer wavelengths of microwave allow it to penetrate non-perceptible clouds and thus can furthest 

reduce the risk of losing data due to unfavorable climate conditions. On the other hand, lower frequencies 

(or longer wavelengths) result in coarser resolutions. For example, the Soil Moisture and Ocean Salinity 

(SMOS) satellite launched in November 2009 carries the low frequency L-band sensor, which provides 

surface SM retrievals every three days at 40 km resolution [6]. The Advanced Microwave Scanning 

Radiometer-Earth Observation System (AMSR-E) on board the Aqua satellite provides a nearly daily 

global coverage but with a mean spatial resolution of ~56 km [7]. Those coarse resolution microwave 

products offer valuable mean SM information over large areas, but lose detailed SM spatial variability 
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because the signals are smoothed out at a coarser level. Moreover, numerous studies have shown that the 

microwave-based method may fail over surfaces with moderate to dense vegetation (e.g., [8]). 

Although it is imperative to develop disaggregation methods to downscale microwave remote sensing 

SM estimates into finer resolutions [9], it is worthwhile to explore approaches to estimate SM moisture 

directly based on other types of remotely sensed information, i.e., visible/thermal infrared remote sensing 

images [10]. Because the surface radiant temperature depends on surface soil water content and the 

distribution of vegetation, there should be a way for diagnosing SM by exploiting observations of  

land surface temperature (LST) in the thermal infrared band (8 to 13 microns) in combination  

with observations of surface greenness from the visible (380–760 nm) and near infrared spectrum  

(760 nm–1 micron). By interpreting the relationship between LST and the remotely sensed vegetation 

index (VI), a multitude of studies have shown that the envelope of data cloud (VI/LST) forms a 

triangle when a sufficiently large number of pixels are present with contaminated and outlier pixels 

being removed (see review by Carlson [11] for detail). In such a space, a higher VI value generally 

corresponds to a lower LST and a higher surface SM and vice versa. Furthermore, isolines of surface 

soil wetness were found in the VI/LST space [11], representing the same soil moisture availability. 

Once the boundaries of the triangle are defined, slopes of each soil wetness isoline can be determined 

by interpolation between the two boundaries that correspond to extreme dry and wet conditions, 

respectively [12–14]. This so-called “triangle method” has been used extensively in estimating 

evapotranspiration (ET) (e.g., [12,15]) but is rarely applied to estimate surface SM. Whilst a few 

studies reported some promise in estimating surface SM based on the triangle method (e.g., [16,17]), 

none of them has transitioned to an operational framework. 

There are, however, issues associated with the triangle method to be resolved. First, Moran et al. [18] 

claimed that the triangular space, in which the driest and wettest fully vegetated surfaces have the same 

surface temperature, does not account for the impact of water stress on canopy transpiration, and 

replaced the triangle with a trapezoid. In the trapezoidal space, the temperature of the extreme dry fully 

vegetated surface is higher than that of the wettest surface with full vegetation cover but is lower than 

extreme dry bare soil surface. Yang et al. [15] demonstrated that the trapezoid is more theoretically 

sound than using other shapes. Second, traditional approaches for determining the extreme boundaries 

of the triangle (or trapezoid) space are based on visual examination of the VI/LST data points (e.g., [19]), 

which implicitly requires that both conditions of extreme dry (lowest SM) and extreme wet points 

(highest SM) be present in a study scene to ensure the validity of the triangle (or trapezoid) method [11]. 

This is often not the case in reality. In addition, substantial subjectivity results from the observed 

boundaries as well, because they can differ among operators for the same study area [12]. Furthermore, 

visual examination of extreme boundaries would largely increase “labor work” and therefore severely 

reduces the operability of the method. Third, one key assumption of the triangle (or trapezoid) method 

is that among-pixel variation in surface energy flux is primarily controlled by that in water availability 

but is not affected by differences in atmospheric conditions [20]. As a result, the triangle (or trapezoid) 

method is applicable for areas with relatively homogeneous meteorology. 

In order to address the above-mentioned issues, this study provides an operational framework of 

estimating surface SM based on visible and thermal infrared information from satellite images and the 

trapezoid method. Rather than determining the trapezoidal boundaries from visual inspection, theoretical 

solutions were derived to achieve a more accurate and effective determination of the VI/LST space. 
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The theoretical derivation of the extreme boundaries also allows a per-pixel determination of the 

VI/LST space. Consequently, the assumption of uniform atmospheric forcing over the entire scene is 

no longer required. In addition to surface SM retrieval, this theoretically defined trapezoidal space may 

also benefit other applications, such as estimation of surface ET (e.g., [21]) and surface temperature 

(e.g., [15]). Here, we focus on SM, as the progress of SM studies is indeed far behind that of ET and 

temperature retrieval from visible/thermal infrared remote sensing. The developed approach will be 

validated with a well-designed SM observation network on the Tibet Plateau [22], and compared with SM 

estimates from land surface models [23]. Meanwhile, the strength of theoretical boundaries over observed 

boundaries will be discussed. 

2. Methodology 

2.1. Trapezoidal VI/LST Space 

Theoretically, four critical points related to four extreme conditions define a trapezoid (Figure 1). 

Points A and B represent the driest surfaces without vegetation and with full vegetation coverage (Fc), 

respectively. As a result, points A and B constitute the warm edge of the trapezoid space. On the warm 

edge, the surface has the largest water stress for the entire range of Fc (from 0 to 1), and surface SM for 

those surfaces is assumed to be minimum (residual soil water content, θR). Accordingly, evaporation 

from soil surfaces and vegetation transpiration due to nearly complete stomatal closure on the theoretical 

warm edge are both taken to be zero. Though in reality, this situation would not occur frequently,  

the theoretical warm edge does provide a prescribed boundary condition given a certain meteorological 

field to confine ET/SM estimates for surfaces with generic temperatures and fractional vegetation 

cover. On the contrary, points C and D represent fully vegetated and bare soil surface without water 

stress, respectively, and segment CD is referred to as the cold edge. On the cold edge, the surface SM 

is at its maximum value (field capacity, θF) and ET occurs at its potential rates. 

 

Figure 1. A sketch of the trapezoidal vegetation coverage/land surface temperature 

(Fc/LST) space. The nomenclature is given in Section 2.1. 
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Soil wetness isolines representing constant soil moisture availability were found to exist in the 

Fc/LST space based on inverse modelling of a soil–vegetation–atmospheric transfer model [16,17] 

(Figure 1). The slope of each isoline is derived by interpolating the slope of the warm edge and that of 

the cold edge [12–14], in terms of the temperature difference between the pixel and cold edge (a) and 

that between the pixel and warm edge (b). It is noted that slopes of the soil moisture isolines in the 

framework used in this study range from the lowest (negative) to zero (see Section 2.2).This is because 

theoretically the temperature of sunlit soil should not be lower than that of vegetation along the same soil 

moisture isoline. As a result, surface SM (θ, in volumetric water content (VWC)) for each pixel can be 

calculated from: 

F R R( )      

b

a b
 (1) 

min a LST T (2) 

c s,max c,max c,max(1 )( )    b F T T T LST  (3) 

where Tmin is the surface temperature for the cold edge. Ts,max and Tc,max are surface temperatures for 

the driest bare soil surface and driest fully vegetated surface, respectively. Note that the term a/(a + b) 

in Equation (1) represents surface soil moisture availability [11]. 

2.2. Determination of Boundaries 

Theoretical solutions were proposed to avoid subjectivity and uncertainties in determining the 

trapezoidal space [12,21]. For bare soil surfaces, the radiation budget and energy budget can be 

described as  
4 4
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where Rn,s is the net radiation for bare soil surfaces (W m−2); Sd is the downward shortwave radiation  

(W m−2), which is calculated following [24]; αs is the bare surface albedo; σ is the Stefan-Boltzmann 

constant (5.67×10−8 W m−2 K−4); εs is the bare surface emissivity (e.g., 0.95) [25]; εa is the atmospheric 

emissivity, which is a function of air pressure (Pa) and vapor pressure (ea) [26]. Ta is the air temperature 

and Ts is the bare surface temperature (K); G, Hand LE are ground heat flux, sensible heat flux and 

latent heat flux, respectively (W m−2); ρ is the air density (kg m−3); Cp is the specific heat of air at 

constant pressure (J kg−1 K−1); ra,a is the aerodynamic resistance to heat transfer between Zom + d  

(Zom is the canopy roughness length for momentum transfer, and d is the zero displacement height) and 

the reference height (m s−1); ra,s is the aerodynamic resistance to heat flow in the boundary immediately 

above the soil surface (m s−1). Estimation of those aerodynamic resistance terms follows [27]. 

The first two terms of Taylor’s formula of the upward longwave radiation (εsσTs
4) at Ta is written as [12] 

4 4 3
s s s a s a s a4 ( )        T T T T T  (6) 

Substituting Equation (6) into Equation (4) and combine it with Equation (5), we can get an explicit 

expression of Ts, 
4 4
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For extreme dry surfaces where there is the largest water stress, ET is completely suppressed  

(LEs = 0). As a result, the surface temperature for the driest bare surface (point A in Figure 1), Ts,max, is,  
4 4

s d s a a s a
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 (8) 

where the ratio of G/Rn,sis taken to be 0.35 for bare soil surfaces[28]. 

In a similar vein, the temperature for the driest fully vegetated surface (point B in Figure 1), Tc,max, 

can be derived as,  
4 4
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where αc is the albedo for fully vegetated surfaces; εc is the vegetation emissivity (0.98) [25]; ra,c is the 

aerodynamic resistance to heat transfer between canopy and the reference height (m s−1). The two 

albedo terms (αs and αc) in Equations (8) and (9) can be estimated either by extending the upper 

envelope of the Fc/α space intersecting with Fc = 0 and Fc = 1, respectively, or from the look-up table 

for each specific type of surface provided by [29]. 

 

Figure 2. Flow chart of the trapezoidal model for estimating surface soil moisture (SM). 

Trapezoids represent input variables or parameters, and rectangles represent intermediate 

variables or parameters. 

For the cold edge, the highest ET corresponds to the lowest sensible heat, and therefore the temperature 

gradient between the land surface and reference height would approach zero. As such, air temperature 
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is taken as the surface temperature for the lower theoretical limiting edge (i.e., Ts,min = Tc,min = Ta).  

This simplification is an operational way to determine the theoretical lower limiting edge and obviates 

the need for vapor pressure deficit in the work of [18]. However, this simplification may not be suited 

for surfaces with either extremely high vapor pressure deficit or strong advection effect [21]. A flowchart 

of the trapezoidal model is shown in Figure 2. 

3. Study Area and Data 

3.1. Site Description and SM Measurement 

In situ measurements of surface SM to validate the algorithm were obtained from a well-designed soil 

moisture observation network located around Naqu town, Tibet (31°N–32°N, 91.5°E–92.5°E), covering an 

area of ~100 km ×100 km with a mean elevation of 4650 m a.s.l. (the Tibetan Plateau Soil 

Moisture/Temperature Monitoring Network, SMTMN) (Figure 3) [22,30]. The area is fairly smooth with 

rolling hills despite remarkable relief in some parts. The region has a typical sub-humid monsoon climate. 

Annual precipitation is about 400–500 mm, with ~80% occurring during the monsoon season (June  

to August). The main components of soil texture are sand and silt, and exhibit a large spatial  

heterogeneity [31]. Organic carbon content was observed to be high within the top soil layer and 

declines dramatically with depth [31]. Alpine grasslands cover about 93.6% of the land surface, with a 

mean vegetation height of several centimeters [22]. Soil thawing and freezing are typical phenomena 

in the region, which generally occur around May and November, respectively [22]. 

 

Figure 3. Location of the study area and a sketch map of the Soil Moisture/Temperature 

Monitoring Network (SMTMN) site distribution. The black triangles represent the first  

30 sites built in 2010 and the white triangles denote the 20 sites setup in 2011. The black 

pentagram shows the location of Naqu City. 

Soil moisture at four depths (0–5 cm, 10 cm, 20 cm and 40 cm) were measured at 30 sites along four 

branches of the national/provincial roads (Figure 3) from 01/08/2010/ to 31/08/2011 with capacitance 
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probes (http://www.decagon.com/) with an accuracy of ±3% VMC and resolution of 0.1% VMC. Another  

20 sites were added into the measurement since July 2011. The measurement time interval was  

30 min, and each record reflected the average state of SM over the past half-hour. Sensor calibration was 

performed using the gravimetric method in laboratory. Detailed description of the study region and SM 

measurement can be found in [22,32]. 

3.2. Remote Sensing Data 

Moderate Resolution Imaging Spectroradiometer (MODIS) data were used in this study because of 

its high temporal resolution (daily) and accessible spatial resolution (250–1000 m). These data were 

provided by the NASA Data Center [33]. Daily LST was obtained from the global daily land surface 

temperature and emissivity product (MOD11A1), and broadband surface albedo was calculated based 

on narrowband surface reflectance from dataset MOD09GA and the algorithm proposed by [34]. The 

normalized difference vegetation index (NDVI) was derived from red and near-infrared bands 

following [35], and Fc was subsequently estimated from,  

min
c

max min

NDVI NDVI

NDVI NDVI

 
    

n

F  (10)

where NDVImax and NDVImin are NDVI for fully vegetated and bare surfaces, which are taken to be 

0.85 and 0.15, respectively [36] (Donohue et al., 2013). The coefficient n is a function of leaf 

orientation distribution within the canopy and was set a value of 2 following [37]. It should be noted 

that all three parameters in Equation (10) were set somehow objectively, as different studies reported 

different parameter values (e.g., [38]). However, the sensitivity analysis suggests that the estimated 

surface SM is not sensitive to variations in these parameters (see Section 4.4). All remote sensing data 

were re-projected into the Universal Transverse Mercator (UTM) projection and resampled to a spatial 

resolution of 1000 m. 

3.3. Other Data Sources 

In addition to MODIS data, other two datasets are needed to run the algorithm. The first one is 

meteorological data, which was provided by the China Meteorology Data Center [39] at the Naqu 

station (Figure 3) to represent the regional mean climate condition (i.e., wind speed and vapor 

pressure). The air temperature for each pixel was corrected by considering the altitude effect based on 

DEM data (SRTM [40]) and a lapse rate of −6.5°C/km. The daily meteorological measurements were 

downscaled to the hourly timescale based on the algorithm proposed by [41]. Then, the hourly 

meteorological data at satellite overpass time were used in subsequent calculation. The second dataset 

is soil texture, which was measured at each site. Field capacity (θF) was estimated to be the water 

content retained in the soil at −0.02MPa of suction pressure, which is midway of most reported θF 

values (−0.01 MPa to −0.33 Mpa) [42,43]. The VG-M model was adopted to describe the soil water 

retention curve whose parameters were estimated from measured soil texture and organic content using 

the method given by [44]. The residual water content (θR) is given directly by [44]. Both 

meteorological and soil texture data at the site level were spatially interpolated using the Inverse 

Distance Weighting (IDW) method to obtain spatially-continuous inputs over the study domain. 
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SM output from four land surface models (LSM), including Noah 2.7 [45], Mosaic [46], Variable 

Infiltration Capacity model (VIC, [47]), and Community Land Model 2.0 (CLM, [48]) with a 1° spatial 

resolution and 3-h temporal resolution in Global Land Data Assimilation System-1 (GLDAS-1) [23] of 

the upper centimeters of the soil profile (10 cm for Noah, 2 cm for Mosaic, 10 cm for VIC, and 4.5 cm 

for CLM) was used for comparison with the developed algorithm and ground-based measurements. 

Surface SM output from these LSMs of two grid cells corresponding to the study site were spatially 

averaged for this comparison. 

4. Results and Discussion 

The current study only considered non-frozen periods (1 August2010~31 October 2010 and  

1 June 2011~31 August 2011) for model testing because: (1) only liquid water content was measured 

within frozen soils during winter; and (2) soil freezing and thawing processes lead to a more complex 

water and heat transfer dynamics within soil and between soil and the atmosphere, which may not be 

captured by the trapezoid framework. In addition, we estimated the theoretical VI/LST trapezoidal 

space for each pixel to minimize uncertainties rising from non-homogeneous atmospheric forcing over 

the entire study region. 

4.1. Validation with Site Observations 

As shown in Figure 4, the site-level estimates and observations agree reasonably well with each 

other during the entire study period, with the coefficient of determination (R2) of 0.73 and the  

root-mean-square error (RMSE) of 0.06 m3·m−3, which falls within the AMSR-E mission accuracy 

requirement (i.e., the RMSE ≤ 0.06 m3·m−3). However, it is noted that the trapezoid method 

underestimated surface SM at the high end, resulting in an overall underestimation of 0.02 m3·m−3 

(mean bias, defined as estimated mean minus observed mean). This may be related to the 

underestimation of field capacity of the surface soil layer or overestimation/underestimation of the 

warm/cold edge. According to the trapezoidal principle, actual soil water content is bounded by two 

critical values, which are the field capacity and the residual water content, respectively (Figure 1). The 

estimated field capacities from [44] were all lower than 0.6 m3·m−3, whereas the observed water 

content reached 0.7 m3·m−3. On the other hand, it is possible that the observed high SM reflected water 

content between field capacity and saturated water content, when there were rainy events shortly 

before the measurements or there was water ponding over the soil surface. Nevertheless, SM higher 

than the field capacity is not addressed in the developed method. 

Another possible reason for the discrepancy is the mismatch between point-scale measurements and 

the 1 km-resolution MODIS input. Although the study region is relatively flat with uniform vegetation 

cover, SM may still have great local variability [49]. Therefore, point observations may not be able to 

fully represent the average SM status within a MODIS pixel. 
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Figure 4. Comparison of estimated surface soil moisture against observed ones at each 

observation site. 

 

Figure 5. Comparison of daily station-averaged surface soil moisture with observed ones. 

Only days with MODIS data available at more than 13 sites are shown. 

Comparison of estimated seasonal evolution of daily station-averaged surface SM against observations 

is shown in Figure 5. As MODIS images were often contaminated by clouds in the region, only days with 
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available MODIS data at more than 13 sites were used for this analysis. Zhao et al. [32] suggested that 

averaging SM measurements from across the 13 sites can effectively reflect SM averaged with all 50 sites 

with an accuracy of R ≥ 0.99 and RMSE ≤ 0.02 m3·m−3 for the study region. Generally, the simulated SM 

from the trapezoidal approach captures the observations fairly well, indicating the reliability of the 

algorithm over a wide range of SM conditions. However, consistent with the results in Figure 4, the  

station-averaged estimates are generally lower than the observed ones at high soil water content. 

4.2. Spatial Distribution of Soil Moisture 

An example of the spatial distribution of estimated surface SM for 2 September 2010 is shown in 

Figure 6b. The MODIS images acquired on this day were generally cloud-free over the entire domain. 

Up-scaled regional surface SM from observed points by applying the IDW method is shown in Figure 6a. 

Overall, both results are in good agreement, with surface SM being lower in the southwest and middle 

parts and higher in the northeast parts of the region. However, a slight difference was observed for the 

highest SM zone. The highest SM of the trapezoidal method occurs in the northwest side of that 

estimated with the IDW method. This discrepancy may be attributed to a limited number of observations 

in the northwest area (see Figure 3), which may have significantly reduced the reliability of the IDW 

method in interpolating soil moisture and soil texture. On the other hand, the high SM zones in Figure 

6bcorrespond to high NDVI (Figure 6c) and low LST (Figure 6d), which is a reflection of high 

moisture content, suggesting that the estimated SM from the trapezoidal method may be more 

reasonable. In addition, the estimated surface SM in the southeast part of the study site is slightly lower 

than the spatially interpolated one. For other days, the standard deviation of estimated surface SM 

agrees reasonably well with measurements (Figure 7), suggesting a good performance of the trapezoidal 

method in capturing the spatial variability in surface SM. 

 

Figure 6. Cont. 
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Figure 6. Spatial distribution of surface soil moisture estimated from: (a) the Inverse 

Distance Weighting (IDW) method; (b) the trapezoidal method for 2September 2010. The 

spatial patterns of concurrent normalized difference vegetation index (NDVI) and LST are 

shown in (c) and (d), respectively. Blank pixels in (b)–(d) indicate either water surfaces or 

cloudy areas. 

 

Figure 7. Comparison of standard deviation of estimated surface SM against that of observed 

surface SM. Each point represents the spatial variability in surface SM (standard deviation) 

for each day. Only days with MODIS data available at more than 13 sites are shown. 

4.3. Theoretic Boundary vs. Observed Boundary 

Accurate determination of the boundaries (warm and cold edges) of the Fc/LST space is the most 

critical procedure of the trapezoidal method, as they jointly determine the upper and lower limits of the 

surface SM conditions within the domain and the relative position of each pixel in the trapezoid. 

However, traditional ways to determine the boundaries are based on visual examination of the images 

being used, which suffers from great subjectivity and uncertainties [12,13]. Simple regression of these 
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boundaries based on extreme surface temperature values at each Fc interval is highly sensitive to 

outliers (e.g., standing water bodies, clouds, and terrain effects) and the Fc interval specified by the 

operator. The regressed limiting edges also depend on satellite images with varying sizes and spatial 

resolutions. Figure 8 shows Fc/LST scatter points on 2 September 2010 over the entire study region. 

For the lower boundary, the observed cold edge (the lower envelope of scatter points in Figure 8) 

agrees well with the theoretical one (spatially averaged Ta); whereas for the upper boundary, the observed 

warm edges are far below the theoretical warm edge. In addition, three different warm edges were 

determined by three different experienced operators based on the observed Fc/LST scatterplot. Four 

cases of the combinations of limiting edges were set up in the trapezoidal model to estimate surface 

SM. Results show that the case applied with the theoretical limiting edges gives the best surface SM 

estimates when compared with observations, while the other three cases applied with the observed 

warm edge all underestimate surface SM seriously (Figure 9 and Table 1). For the study day, the 

observed minimum surface SM is 0.18 m3·m−3, which is significantly higher than the residual water 

content (~0.05 m3·m−3), suggesting a relatively wet surface condition. Under such conditions, 

extremely dry surfaces do not necessarily exist in the modelling domain and the underestimation of the 

warm edge is likely to occur because pixels suffering from antecedent soil wetness may be considered 

as the dry surface pixels by the visual examination method. In addition, even though based all on 

images, different limiting edges determined by different operators may bring further uncertainties in 

the trapezoidal method, which makes model output not deterministic or ambiguous in most cases. 

 

Figure 8. Scatter plot of the Fc/LST space and its warm and cold edges over the entire 

study area for 2 September 2010. The theoretical warm and cold edges shown in the figure 

represent the mean positions of the warm and cold edges over all pixels. Cases 1–3 

represent three warm edges determined from three different operators based on visual 

inspection of the VI/LST data cloud. 

The study mentioned above suggests that determination of limiting edges based on visual 

examination/or simple regression, depending largely on subjectivity and spatial extent being studied,  

is far from satisfactory. The theoretical limiting edges adopted in this study effectively obviate those 

uncertainties, and therefore produce more reliable spatial patterns of surface SM estimates. Taking  

2 September, 2010 as an example, statistics shown in Table 1 suggest that the theoretical limiting 
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edges can greatly improve the accuracy of surface SM estimates compared with observed limiting 

edges in terms of an RMSE on an order of ~0.13 m3·m−3and a mean bias on an order of ~0.1 m3·m−3. 

 

Figure 9. Cumulative distribution curves of observed surface soil moisture and those estimated 

from the trapezoidal method with different boundaries edges. Cases 1, 2 and 3 correspond 

to different warm edges shown in Figure 7. 

Table 1. Statistical analysis of surface soil moisture from observations and estimated from 

the trapezoidal method with different boundaries edges on 2 September 2010. Cases 1, 2 

and 3 correspond to different warm edges shown in Figure 7. 

Surface SM Mean Stand Deviation CV RMSE Mean Bias R2 

Observed 0.31 0.087 0.28 - - - 

Theoretical 0.29 0.074 0.26 0.05 −0.02 0.86 

Case 1 0.17 0.073 0.43 0.18 −0.14 0.42 

Case 2 0.17 0.070 0.41 0.18 −0.14 0.46 

Case 3 0.16 0.062 0.39 0.19 −0.15 0.54 

4.4. Sensitivity Analysis 

A local sensitivity analysis was conducted to examine how uncertainties in trapezoidal 

method-estimated surface SM could be apportioned to different sources of uncertainty in model input. 

The sensitivity to the ith forcing variable or parameter is assessed by calculating surface SM with a set 

of baseline parameters (SM0) and comparing this with surface SM calculated by varying the ith 

parameter (SM±); the sensitivity index is  

o
i

o

100%  
SM SM

S
SM

 (11)

The variation ranges and steps of each input variable are set as 2 K for temperature variables, with a 

step of 0.5 K, and 20% for other variables, with a step of 5%. Data on 2 September 2010 was used for 

analysis because of better data quality. 
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As shown in Table 2, the surface SM estimate is most sensitive to changes in field capacity (θF).  

An increase of 20% in θF resulted in a 19.08% increase in estimated surface SM, and a decrease of 20% 

in θF resulted in a 19.02% decrease in surface SM estimates. In the current study, θF was underestimated 

in some regions and therefore resulted in underestimation of surface SM. However, another important 

hydrological variable, surface soil moisture availability (=ܾ/ሺܽ ൅ ܾሻ or EF in Figure 1) [17] does not 

require information on soil hydraulic properties. Thus, even under conditions without a priori 

knowledge of soil parameters, surface soil moisture availability can still be reliably retrieved by the 

developed trapezoidal method. 

Temperature plays a fundamental role in determining the shape of the trapezoidal space. The estimated 

surface SM showed positive correlations with Ta but is negatively correlated with LST (Table 2).  

An increase of 2 K in LST and Ta resulted in a 6.06% decrease and 5.43% increase in estimated SM, 

while a 2 K decrease in LST and Ta could lead to a 6.06% increase and 5.22% decrease in SM  

estimates, respectively. 

For other variables, results indicate that wind speed (u), αc_max, αs_max, and ea are negatively correlated 

with SM estimates, while θR, NDVImax, NDVImin and n show positive relationships with SM estimates. 

However, changes in none of those variables resulted in significant variability in estimated surface 

SM. This suggests that although there are uncertainties in determining some of those variables, e.g., 

αc_max, αs_max, NDVImax, NDVImin and n, it will not greatly affect the accuracy of surface SM estimates. 

Table 2. Relative sensitivity of estimated surface soil moisture from the trapezoidal 

method to input variables at the SMTMN site on 2 September 2010.Numberswithin each 

bracket indicate variations in temperature variables (i.e., −2 °C–2 °C), and numbers outside 

each bracket show variations in other variables (i.e., −20%~20%). 

Variation (%/K) −20(−2) −15(−1.5) −10(−1) −5(−0.5) 5(0.5) 10(1) 15(1.5) 20(2) 

LST 6.06 4.56 3.03 1.53 −1.50 −3.03 −4.56 −6.06 

Ta −5.22 −3.94 −2.65 −1.32 1.36 2.72 4.08 5.43 

u 3.38 2.72 1.85 0.94 −0.91 −1.85 −2.79 −3.76 

αc_max 0.49 0.38 0.24 0.14 −0.10 −0.24 −0.35 −0.49 

αs_max 2.33 1.78 1.22 0.63 −0.73 −1.25 −1.95 −2.65 

ea 0.21 0.17 0.10 0.07 −0.03 −0.10 −0.14 −0.17 

θF −19.02 −14.29 −9.52 −4.73 4.75 9.57 14.32 19.08 

θR −0.54 −0.41 −0.28 −0.14 0.14 0.28 0.41 0.54 

NDVImax −1.43 −0.94 −0.56 −0.24 0.21 0.38 0.56 0.66 

NDVImin −0.03 −0.03 0.00 0.00 0.03 0.03 0.07 0.07 

n −0.35 −0.24 −0.14 −0.07 0.10 0.17 0.24 0.31 

4.5. Comparison with Land Surface Models 

Comparison of surface SM from the developed trapezoidal approach and output from four LSMs in 

GLDAS-1 and the one estimated with the trapezoidal method with surface SM observations are shown 

in Figure 10. Again, this comparison was made only on days with sufficient remote sensing data (data 

available at more than 13 sites). Two grid cells of the LSMs were averaged to represent the mean 

surface SM status over the study region (~1° × 1°). To better match the depth at which surface SM 
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were measured (0–5 cm), LSM-based surface SM from the CLM model was obtained by averaging the 

uppermost two layers (0–4.5 cm) and those from other three LSMs were acquired directly from the 

first soil layer, i.e., 0–2 cm for Mosaic, 0–10 cm for VIC, and 0–10 cm for Noah. 

 

Figure 10. Comparison of daily area-averaged surface soil moisture estimated from the 

trapezoidal method and four land surface models against soil moisture observations.  

Only days with MODIS data available at more than 13 sites were shown. 

Results show that all four LSMs systematically underestimated the surface SM, while the remote 

sensing-based trapezoidal method slightly underestimated surface SM when surface SM is high and 

overestimated it when surface SM is low (Figure 10). Among all methods, the trapezoidal model 

performed best during the study period in terms of RMSE and mean bias. With respect to temporal 

dynamics, Noah and CLM performed better than the trapezoidal method, as evidenced by a higher R2 

and lower unbiased RMSE (RMSEunbiased) (see [50] for detail about RMSEunbiased). However, the RMSE 

and mean bias of Noah are ~two times and four times larger than the trapezoidal method, and those of 

CLM are ~three times and five times larger than the trapezoidal method, respectively, suggesting a 

systematical underestimation of surface SM by the two models (i.e., Noah and CLM). For the four 

LSMs, Noah and VIC have smaller underestimation followed by CLM, and the Mosaic model shows 

the largest negative mean bias. Nevertheless, this may be partially ascribed to different model 

structures, e.g., varying surface soil layers in different LSMs, as the shallower soil layer generally dries 

out faster than deeper ones. 

As discussed in previous studies [51–54] reliability of LSMs depends largely on accuracy of 

atmospheric forcing and model parameters. The more inputs for a model, the higher uncertainties may 

be brought. Compared with LSMs, the remote sensing-based trapezoidal method requires much fewer 

inputs, e.g., precipitation and soil hydraulic conductivity required in these prognostic LSMs are not 

involved in the diagnostic trapezoidal approach. Alternatively, LSMs provide continuous outputs  
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while remote sensing-based approaches are often subjected to various types of noises, e.g., cloud 

contamination. Considering the advantages of both approaches, a data assimilation framework using 

remotely estimated surface SM is advocated to improve performance of LSMs and would consequently 

provide better surface SM output. 

5. Conclusions 

This study develops an algorithm to retrieve surface SM based on visible, near-infrared, and thermal 

infrared remotely sensed information and the trapezoidal Fc/LST space. Different from other trapezoidal 

(or triangular) methods, theoretical solutions of the limiting edges were derived in the developed 

algorithm to reduce subjectivity and uncertainties in configuring the Fc/LST space arising from visual 

interpretation of satellite images. This feature makes the trapezoidal method applicable to regions with 

various land cover conditions, even over highly heterogeneous surfaces. As the extreme conditions 

theoretically exist and the estimation of surface SM is pixel-independent, the VI/LST space and 

surface SM can be accurately estimated for each pixel once the spatial distribution of meteorological 

variables can be well defined [13]. 

Performance of the proposed algorithm was tested at the SMTMN site in central Tibet with MODIS 

data. Results showed that the trapezoidal method is able to reproduce spatial and temporal patterns of 

observed surface SM with an RMSE of 0.06 m3·m−3 at the field scale and 0.03 m3·m−3 at the regional 

scale, respectively. In addition, a case study on 2 September 2010 demonstrates the importance of 

theoretical boundaries, as the surface SM estimated with the traditionally observed boundaries is 

significantly underestimated, which consequently resulted in the underestimation of surface SM. 

Compared with LSMs, the remote sensing-based trapezoidal method gives generally better surface SM 

estimates, while LSMs show systematic underestimation, which may be attributed to uncertainties in 

model inputs and parameters over the Tibet Plateau [51]. Sensitivity analysis suggests that the 

trapezoidal method is most sensitive to field capacity and temperature but less sensitive to other 

meteorological observations and parameters. 

Compared with microwave remote sensing-based SM estimates which have a mesoscale spatial 

resolution (e.g., ~40 km), our results show that there are merits of using thermal/visible satellite images 

to retrieve surface SM at a much finer scale due to their relatively short wavelength. On the other hand, 

the relatively short wavelength does not allow the sensors to penetrate through cloud covers, which 

makes images prone to be contaminated by clouds (particularly for humid regions where cloud covers 

are often thick). This would lead to non-continuous SM estimates both spatially and temporally.  

One solution is to combine the thermal/visible images with microwave remote sensing to make the 

most of both observations (i.e., finer spatial resolution for thermal infrared/visible remote sensing and 

spatiotemporal consistency and continuity for microwave remote sensing). This may be achieved by 

either using thermal infrared/visible information to downscale microwave-based SM estimates [9] 

or using microwave-based SM estimates to constrain SM from thermal infrared/visible information at  

large scales. 
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