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Abstract: Spatially-detailed forest height data are useful to monitor local, regional and 

global carbon cycle. LiDAR remote sensing can measure three-dimensional forest features 

but generating spatially-contiguous forest height maps at a large scale (e.g., continental and 

global) is problematic because existing LiDAR instruments are still data-limited and 

expensive. This paper proposes a new approach based on an artificial neural network 

(ANN) for modeling of forest canopy heights over the China continent. Our model ingests 

spaceborne LiDAR metrics and multiple geospatial predictors including climatic variables 

(temperature and precipitation), forest type, tree cover percent and land surface reflectance. 
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The spaceborne LiDAR instrument used in the study is the Geoscience Laser Altimeter 

System (GLAS), which can provide within-footprint forest canopy heights. The ANN was 

trained with pairs between spatially discrete LiDAR metrics and full gridded geo-predictors. 

This generates valid conjugations to predict heights over the China continent. The ANN 

modeled heights were evaluated with three different reference data. First, field measured 

tree heights from three experiment sites were used to validate the ANN model predictions. 

The observed tree heights at the site-scale agreed well with the modeled forest heights  

(R = 0.827, and RMSE = 4.15 m). Second, spatially discrete GLAS observations and a 

continuous map from the interpolation of GLAS-derived tree heights were separately used 

to evaluate the ANN model. We obtained R of 0.725 and RMSE of 7.86 m and R of 0.759 

and RMSE of 8.85 m, respectively. Further, inter-comparisons were also performed with 

two existing forest height maps. Our model granted a moderate agreement with the existing 

satellite-based forest height maps (R = 0.738, and RMSE = 7.65 m (R2 = 0.52, and  

RMSE = 8.99 m). Our results showed that the ANN model developed in this paper is 

capable of estimating forest heights over the China continent with a satisfactory accuracy. 

Forth coming research on our model will focus on extending the model to the estimation of 

woody biomass. 

Keywords: tree height; Geoscience Laser Altimeter System (GLAS); artificial neural 

Network (ANN); China Meteorological Data (CMD); nadir bidirectional reflectance 

distribution function adjusted reflectance (NBAR) 

 

1. Introduction 

Forests play a key role in the global climate system and carbon cycle. Forests store carbon in their 

above- and below-ground biomass [1]. As an important predictor of forest biomass and carbon stock, 

the vertical structure of forests has been well monitored in previous studies [2–4]. Light detection and 

ranging (LiDAR) remote sensing, is useful in the large-scale investigations of forest structural 

attributes, such as forest canopy height [2,5–10]. 

In recent years, LiDAR instruments have demonstrated their capability to estimate forest  

heights [11]. For instance, the Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud 

and Land Elevation Satellite (ICESat) has provided within-footprint height measures at the global  

scale [2,5,12]. However, the lack of valid GLAS data in some regions is problematic. Because the 

GLAS data are spatially incomplete, multiple geospatial predictors were supplemented to obtain 

spatially-continuous forest height maps in recently-published approaches [2,3,5,13]. In addition, the 

GLAS data are highly sensitive to topographic features due to its large footprint size, which causes 

overestimations of forest height [14]. In this paper, in order to solve those two problems degrading the 

accuracy of GLAS-based forest height maps, we proposed a new approach based on the artificial 

neural network (ANN).  

The principal method was to combine GLAS derived tree heights with ancillary variables in the 

ANN model and then to produce a wall-to-wall forest height map over the China continent. Selected 
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geospatial predictors were a series of climate variables, elevation, vegetation cover and multispectral 

reflectance data from the Moderate Resolution Imaging Spectroradiometer (MODIS). We resampled 

all of the input predictors to obtain the final output map of forest heights at a 1-km spatial resolution. 

2. Materials and Methods 

2.1. Data and Processing 

2.1.1. ICESat Data and Processing 

The ICESat/GLAS is the first spaceborne LiDAR system, which was designed to obtain 

characteristics of the Earth’s surface structures with unprecedented accuracy [15]. The ICESat/GLAS 

data can provide information related to land surface elevation with a spatial resolution of 70 m 

(ellipsoidal footprints) and 170 m spaced intervals [16]. The global ICESat/GLAS data are available 

for a period spanning from 2003 to 2008 [17]. Due to the short lifetime of GLAS, altimetry 

information was collected only in the following months: February–March, May–June, and  

October–November [11,18]. There are totally 15 GLAS data products including Level-1 and Level-2 

that were disseminated by the NSIDC (National Snow and Ice Data Center). The GLA14 used in this 

study is an GLAS Level-2 Land Surface Altimetry product that provides information on surface 

elevations, laser footprint geolocation, waveform parameters and reflectance, as well as geodetic, 

instrument, and atmospheric corrections for range measurements. In previous studies, the GLA14 

product has been used to estimate forest canopy heights within each footprint [1,19]. 

In this study, we obtained the GLAS data recorded from May to October (2003–2006), because 

these data represent the approximated growing season and thus, the best leaf-on condition of forests. In 

our analyses, GLAS footprints over non-forest area were excluded. We further screened invalid GLAS 

data using several preprocessing filters in order to reduce the impact of slope gradient, atmospheric 

forward scattering, signal saturation and cloud contamination [14,20,21]. The GLAS data were 

considered valid when footprints were located over the forest classes in the land cover (LC) map with 

>50% tree cover percent in the vegetation continuous field (VCF). Then, the quality of GLAS shots 

over the forested area was investigated using GLA14 waveform parameters regarding the cloud, signal 

saturation and atmospheric forward scattering [1,21,22]. Firstly, we removed the invalid GLAS 

footprints affected by signal saturation and atmospheric forward scattering based on the internal flags 

(“FRir_qaFlag = 15” and “satNdx = 0”) GLA14 product contained [20–22]. To further remove 

waveforms with signal dominated by low cloud, we just selected the waveforms based on the filter that 

was built by using the absolute difference (50 m) between ASTER DEM and the internal elevation 

value from GLA14 product [21]. The terrain slope gradient also impacts the quality of the GLAS  

data [23]. In order to minimize the bias resulting from the terrain slope, we filtered the GLAS shots 

where the terrain slope is higher than 10 degrees [24]. 

2.1.2. Land Surface Reflectance 

The land surface reflectance data used in this study were acquired from the MCD43B4 which is a 

product of the MODIS nadir bidirectional reflectance distribution function adjusted reflectance 
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(NBAR) with a spatial resolution of 1 km [25]. The NBAR product represents the best characterization 

of surface reflectance over a 16-day period. In the study, seven spectral bands in the MCD43B4 

averaged over the approximated growing season (June-September) between 2004 and 2006 were 

extracted at a 1-km spatial resolution. 

2.1.3. Climate Data 

Weather station-based climatic variables, precipitation and temperature, were derived from China 

Meteorological Data Sharing Service System (CMDSSS). There are total of 754 weather stations that 

can provide annual meteorological records. The precipitation and temperature data covered a time 

period from 2004 to 2006. For each weather station, 3-year averaged precipitation and temperature 

were obtained. Then, we interpolated these two climate variables using ordinary kriging to generate the 

gridded maps of annual average precipitation and temperature [26]. 

2.1.4. Ancillary Data  

Ancillary data applied in this study involved the digital elevation model (DEM), LC, and VCF. The 

DEM data were obtained from the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) Global DEM (GDEM V2) of which spatial resolution is 30 m [27]. The use of 

DEM data is first to remove invalid GLAS shots with a signal contaminated by low clouds and second 

to generate a gridded map of slope at the same spatial resolution of the GDEM V2 data (30 m). This 

continuous field of slope was used to correct the GLAS derived tree heights based on the terrain 

correction method [21]. 

The LC data were derived from a MODIS global LC product (MCD12Q1, 500-m grid). 

Additionally, the VCF data were also obtained from the MODIS (MOD44B, 250-m grid). We selected 

the International Geosphere-Biosphere Programme (IGBP) of the LC and tree cover percent of the 

VCF over China for the year 2005 [28]. 

2.1.5. Field-Measured Tree Heights 

Field-measured tree heights were used to evaluate our modeled tree heights. We chose 92 plots 

from three experimental sites. These three field regions are located in Gansu (northwestern China), 

JiangXi (southern China) and Yunnan (southwestern China), respectively.  

The location of the filed experimental regions and corresponding plots is shown in Figure 1. The 

detailed information on the field sites is delivered in Table 1. Plots in the field sites were selected 

according to the definition of forest area using LC and VCF in this study. The field measured tree 

heights were averaged for each plot. 

Table 1. The detailed information on three field experiment regions. 

Sites Number of Plots Plot Size (m) Acquisition Year Forest Type References 

Dayekou, Gansu 36 20 × 20, 25 × 25 2008 Picea Crassifolia [29]  

Taihe, Jiangxi 22 50 × 50 2012 Masson pine, Slash Pine  

Puer, Yunnan 34 15 × 15 2013 Pinus Kesiya, Fir, Eucalyptus  
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Figure 1. Field measurement sites. (a) Distribution of three field measurement regions;  

(b) Dayekou field sites in Gansu; (c) Taihe field sites in Jiangxi; (d) Puer field sites in Yunnan; 

(b–d) the background color map represents the MODIS land cover (LC) forest types. 

2.2. Methods 

2.2.1. GLAS Tree Height Estimation 

The GLAS tree heights were used as training data to build the ANN model for tree height 

estimation and to validate model performances. GLAS height metrics were extracted based on the 

“decomposition of GLAS waveforms into multiple Gaussian distribution curves” as described in 

previous studies [18,19,30]. The direct method was used to estimate canopy height based on the 

vertical difference between the signal start point and the ground peak. The signal start point was 

provided in the GLA14 product (i_SigBegOff). Also, the GLA14 product contains up to six Gaussian 

peaks for each GLAS waveform (i_gpCntRngOff). The distance between “i_SigBegOff” and 

“i_gpCntRngOff” represents the waveform metric RH100 (100% energy return height) of GLAS-derived 

tree height estimation [9,17]. Because the RH100 can be potentially affected by the topographic 

gradient [20], we applied the topographic correction approach [14,21] to obtain more accurate GLAS 

tree heights. The calculation formula of GLAS-derived tree heights based on topographic correction is 

shown as Equation (1), 
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௅஺ௌீܪ ൌ ሺ	ܦௌ௜௚஻௘௚ை௙௙ െ ௚௣஼௡௧ோ௡௚ை௙௙ሻܦ െ
݀ ∗ tan ߠ

2
 (1) 

where ீܪ௅஺ௌ  represents the GLAS derived tree heights, ܦௌ௜௚஻௘௚ை௙௙  and ܦ௚௣஼௡௧ோ௡௚ை௙௙  separately 

represent the values of the beginning signal and the ground peak of the GLAS full-waveform, d is the 

GLAS footprint size of 70 m [3,16], and ߠ is the topographic slope. 

2.2.2. Tree Height Modeling 

We employed the ANN algorithm to combine the GLAS-derived tree heights with the geospatial 

predictors. The neural network algorithms are products of artificial intelligence as black-box models, 

and the first prototype neural network was proposed in 1943 [31]. To date, more than 30 different 

neural network models have been developed [32], which have been widely used in various fields [33]. 

Here, we used the feed-forward neural network (FFNN) algorithm for the forest height predictions. 

The selected model consisted of 11 neurons in the input layer, 11 neurons in the hidden layer and 1 

neuron in the output layer. The 11 parameters in the input layer include the LC class, VCF tree cover 

percent, temperature, precipitation, and seven MODIS NBAR bands. All of the 11 parameters in the 

input layer are related to forest growth, distribution or the characteristics’ expression. The neuron in 

the output layer refers to the modeled forest canopy heights. Figure 2 depicts the schematic diagram of 

the ANN model proposed in this study. 

 

Figure 2. The schematic diagram of the ANN model proposed in this study. There are  

11 neurons in the input layer, 11 neurons in the hidden layer and 1 neuron in the  

output layer. 

To train the ANN model, we applied the back-propagation (BP) process algorithm to train the 

neural networks [34]. For each pixel, we trained the FFNN to estimate forest canopy heights. Based on 

the temperature and precipitation values, 15 pairs of training data were chosen to train the FFNN while 

5 validation pairs remained to prevent the over-fitting of the FFNN. The selection discipline of training 

and validation data pairs is to obtain 20 GLAS shots that are located in the most similar climatic 

condition factor (temperature and precipitation) based on Equation (2), 
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௜ܦ ൌ ሺ ௣ܶ௜௫ െ ௜ܶ

௠ܶ௔௫ െ ௠ܶ௜௡
ሻଶ ൅ ሺ ௣ܲ௜௫ െ ௜ܲ

௠ܲ௔௫ െ ௠ܲ௜௡
ሻଶ (2)  

where ܦ௜ is the distance of the climate variable difference between the reference pixel of the canopy 

height estimation map and the i-th GLAS shot; ௣ܶ௜௫ is the temperature value of the reference pixel; ௜ܶ 

is the temperature value of i-th GLAS shot; ௣ܲ௜௫ is the precipitation value of the reference pixel; ௜ܲ is 

the precipitation value of the i-th GLAS shot; ௠ܶ௔௫ and ௠ܲ௔௫ are respectively the maximum values of 

temperature and precipitation values over continental China, and ௠ܶ௜௡ and ௠ܲ௜௡ are respectively the 

minimum values of temperature and precipitation values over the continental China.  

After selecting the training and validation data pairs for a pixel, the network gets trained by the 

training data until the FFNN model loses its best performance given validation data. Then, the trained 

FFNN model was used for estimating the forest canopy height over the target pixel. 

2.2.3. Error Analysis 

To assess the performance of the canopy height model in the study, we prepared several reference 

datasets. These datasets mainly include field-measured tree heights, GLAS-derived tree heights and 

existing forest height products. The root mean square error (RMSE) was calculated using the following 

Equation (3): 

ሺ݉ሻ	ܧܵܯܴ ൌ ඨ
∑ ሺܪ௉௥௘ௗ௜௖௧௘ௗ െ ோ௘௙ሻଶேܪ
௜ୀଵ

ܰ
 (3)  

where, ܪ௉௥௘ௗ௜௖௧௘ௗ is the predicted heights derived from the model; and ܪோ௘௙ is the validation heights 

derived from the reference datasets which were used to validate the predicted tree heights. 

2.2.4. Calibration and Comparison with Existing Canopy Height Products 

In this study, we present three forms of validation. One is the field calibration of the modeled tree 

heights, which was based on the field measurements mentioned in Section 2.1.5. For each field plot, 

we averaged all tree heights to obtain the representative height of this plot. The pixel on the modeled 

height map that is closest to the field plot centroid was chosen for the validation. The second is that the 

modeled heights were directly evaluated with the footprint-level GLAS heights (footprint vs. modeled 

pixel). The third is wall-to-wall map validation from the interpolated GLAS tree height map. Here, we 

averaged the GLAS tree heights from 20 GLAS shots selected according to Equation (2) to produce  

a full gridded map. Then, pixel-to-pixel comparisons (FFNN vs. averaged GLAS tree heights)  

were performed. 

Lastly, we compared our modeled tree height map with two existing forest height products. These 

two reference products are named HSimrad and HNi, respectively, following their creators Simard and  

Ni [2,3]. Our modeled data and two reference products commonly provide forest canopy heights over 

the continental China, but their modeling strategies are significantly different. We also calculated and 

discussed the differences between our modeled height map and the two reference products in a view of 

the different canopy height modeling approaches. 
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3. Results and Discussion 

3.1. Canopy Height Map in China 

A contiguous map of canopy heights with a spatial resolution of 1 km over the continental  

China was generated from the FFNN using the gridded geospatial predictors (Figure 3a). This map  

(mean = 36.44 m, Figure 3a) showed a good consistency with the spatial pattern of GLAS tree heights 

(mean = 30.00 m, Figure 3b).  

 

Figure 3. Maps of modeled and averaged GLAS-derived tree heights over continental 

China at 1-km spatial resolution. (a) The modeled height map using the trained ANN 

model proposed in this paper; (b) GLAS tree height map. The GLAS tree height map is 

made from the interpolation of the averaged GLAS-derived tree heights. 

From the estimation result of canopy heights over China, we can see that relatively tall trees were 

growing in the central and southern regions (Sichuan, Hubei, Yunnan and Chongqing). The trees 

distributed in the Northern China show obviously lower heights than those in Southern regions. 

Specially, the forests distributed in Heilongjiang and East of Inner Mongolia province, which are close 

to the border of Russia, have the lowest tree heights. The varying distribution of tree heights over 
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China likely captures climate gradients. However, further assessment is still needed for exploring the 

underlying patterns of the tree height distribution. 

3.2. Ground Validation and Error Analysis 

92 field plots were used in comparison with the FFNN-modeled tree heights. The validation showed 

a good agreement between the modeled and field-measured tree heights (Figure 4a). In order to show 

the outperformance of our model with respect to previous studies, we also evaluated HSimrad, HNi and 

the GLAS tree height map produced from 20 GLAS shots selected according to Equation (2). From 

these comparison results (Figure 4b–d), we can see that the modeled heights have better accuracy than 

other approaches. 

 

Figure 4. Ground validation result of the modeled tree heights, HSimrad, HNi and GLAS tree 

height map. (a) The comparison between modeled tree heights and field measured tree 

heights; (b) The comparison between HSimrad and field measured tree heights; (c) The 

comparison between HNi and field measured tree heights; (d) The comparison between 

averaged GLAS tree heights and field measured tree heights. 

3.3. Actual GLAS-Derived Tree Height Validation and Error Analysis 

The modeled heights from the FFNN at the continental China scale were also evaluated using the 

GLAS-derived heights. This validation was based on two types of GLAS metrics, including the 

footprint-level GLAS heights and a full gridded GLAS height map.  
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Figure 5. The comparison results between modeled tree heights and actual GLAS derived 

tree heights. (a) The comparison between modeled tree heights and discrete GLAS tree 

heights; (b) the comparison between modeled tree heights and averaged GLAS tree 

heights; (c) statistical characteristics of modeled tree heights, discrete GLAS tree heights 

and averaged GLAS tree heights. 

Both types of validation showed a consistency agreement between the FFNN modeled and GLAS 

height metrics (R = 0.725, RMSE = 7.86 m for the footprint-to-pixel level; R = 0.759, RMSE = 8.85 

for the pixel-to-pixel level; Figure 5). However, Figure 5a depicts some difference between the model 

tree heights and footprint-to-pixel-level tree heights derived from GLAS shots. The main reason is that 

tree heights model in this study were trained from 20 GLAS shots which were selected according to 

Equation (2), including 15 training data and five validation data. As for one GLAS shot location (݈௣௜௫), 

these 20 GLAS shots for training and validating the tree height model should have the most similar 

temperature and precipitation with the GLAS shot location (݈௣௜௫). Additionally, the GLAS shot of 

location ݈௣௜௫ was included in the 20 GLAS shots. In general, modeled tree height should be similar to 

the GLAS shot height of location ݈௣௜௫ . When the temperature and precipitation of the GLAS shot 

location (݈௣௜௫) have a significant difference from the other 19 GLAS shots, the corresponding modeled 

tree height might be different from the GLAS shot height of location ݈௣௜௫. Conversely, the modeled 
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tree height is still similar to the mean value height of these 20 GLAS shots, which can explain the 

better consistency agreement in Figure 5b than in Figure 5a. 

In order to further evaluate the modeled tree heights, we demonstrated the spatial distribution of 

deviations between the modeled and GLAS-derived heights. As shown in the map depicting the 

difference at the pixel-to-pixel level (Figure 6a), most forested pixels showed a moderate predictive 

power but overestimations were dominant over some regions. 

 

Figure 6. The difference map of modeled tree heights with averaged GLAS tree heights. 

The overestimation of tree heights tended to distribute over some special area where temperature is 

relatively low and precipitation is relatively high (e.g., east of Heilongjiang and Jilin, southeast of 

Tibet). The overestimation may be caused by the tree height model, which is more sensitive to the 

precipitation than temperature during the model training process. In addition, relatively high 

precipitation may have bigger impacts on forest trees’ growing and characteristics’ expression (leaf 

reflectance of forest tree) than a relatively low temperature, which might affect the accuracy of 

modeled tree heights. The specific reasons will be explored in a further study.  

3.4. Comparison with Existing Tree Height Map 

3.4.1. Comparison with Simard Tree Heights Map 

Based on the definition of forest land area in this study, we obtained the pixel-to-pixel comparison 

result between our modeled heights and the ܪௌ௜௠௔௥ௗ . The difference map (Figure 7a) showed a 

moderate agreement. The differences were less generally 10 m. 

From the comparison result (R = 0.738, RMSE = 7.65 m; Figure 7b), we can see a very good 

consistency between modeled tree heights and the ܪௌ௜௠௔௥ௗ when tree heights are less than 40 m. It is 

noteworthy that there are some obvious discrepancies existing where modeled tree heights are higher 

than 40 m. The disagreement between modeled tree heights and the ܪௌ௜௠௔௥ௗ for trees greater than 40 m 

might be caused by the following two reasons. On the one hand, the ܪௌ௜௠௔௥ௗSimard tree heights are is 
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the regional average height which made the forest height prediction result likely being less than 40 m. 

On the other hand, the overestimation of the modeled tree heights above 40min some places also 

appears to be an obvious disagreement with the ܪௌ௜௠௔௥ௗ.  

 

Figure 7. The comparison result between modeled tree heights and Simard tree heights. 

(a) The difference map of modeled tree heights with Simard tree heights; (b) the 

comparison between modeled tree heights and Simard tree heights. 

3.4.2. Inter-Comparison with Ni Tree Heights 

Based on the climate zones defined by Ni [3], the comparison between the modeled heights and the 

HNi was conducted (Figure 8). As depicted in Figure 8a, the modeled heights and the HNi generally agreed. 

For the most of forest land area, the difference between the modeled heights and the HNi was less than 

10 m. However, some regions in Southern China had relatively more significant difference, which 

might be caused by higher HNi values in this region. 
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Figure 8.The comparison result between the modeled tree heights and the HNi s. (a) The 

difference map of the modeled tree heights against HNi; (b) the comparison between the 

modeled tree heights and HNi. 

The same comparison result was shown in Figure 8b (R2 = 0.519, and RMSE = 8.99 m). In the case 

that the heights are less than 40 m, there is a good agreement between the modeled heights and the HNi. 

However, when the heights are higher than 40 m, the difference became larger. The main reason for 

these obvious errors is that in this process of comparison, we calculated the mean value of the modeled 

heights in climate zones, while the HNi is the maximum tree heights predicted from the optimized 

allometric scaling and resource limitation (ASRL) model as the height of the climate zone. 

4. Concluding Remarks 

The objective of this work was to predict the large-scale spatial pattern of forest heights over the 

continental China. The GLAS derived heights were used as an input for the model and as a result, a 

spatially-continuous forest height map was produced with a spatial resolution of 1000 m. Additional 

geospatial predictors were climatic variables (temperature and precipitation), forest type, tree cover 

percent and land surface reflectance. The approach was designed to train the artificial neural network 

(ANN) model to minimize the errors between GLAS-derived actual heights and model-derived forest 
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heights. For each pixel of the forested land defined in the study, there was one ANN model to be 

trained and tested. 

The ANN-modeled heights were firstly evaluated at the site scale. In three field experimental sites, 

regression analysis was performed to assess the correlation between the modeled and field-measured 

tree heights. The comparison showed a good agreement (n = 92, R = 0.827, and RMSE = 4.15 m). 

Meanwhile the modeled heights were assessed at the GLAS footprint-to-pixel level. We used more 

than thirty thousand GLAS shots for this evaluation. The comparison between the modeled and GLAS 

heights showed a reasonable correspondence (R = 0.725, and RMSE = 7.86 m). 

In addition, the ANN modeled heights were compared with continuous forest height maps over the 

China continent. The comparison was firstly conducted with the interpolated GLAS height map. Their 

difference map showed that there were relatively small errors in the most Chinese forested lands  

(<10 m), and the ANN model tended to predict little higher tree heights than the gridded GLAS 

heights. Furthermore, the modeled tree heights were validated using the published products of tree 

heights (RMSE = 7.65 m, R = 0.738 for HSimard; R2 = 0.519, RMSE = 8.99 for HNi). According to the 

difference maps between the modeled and existing products, we obtained a small overestimation 

compared with the HSimard and an underestimation compared with the HNi. These discrepancies could 

be mainly attributed to some inherent limitations of various tree height estimation approaches. 

This paper reported the ANN model for the extensive forest canopy height predictions. The training 

method of the ANN model for each pixel successfully compensated for the limitations of previous tree 

height estimation approaches by using a single model in large-scale regions, which can greatly 

improve the accuracy of forest tree height estimation to some extent. As shown in the results, the 

trained ANN model in this article demonstrated a good performance in the estimation of tree heights 

over the continental China. 

Nevertheless, the ANN model is a black-box model, which cannot describe the growth mechanism 

of trees. For this reason, the trained ANN model in this paper still yielded ambiguous results in some 

regions. These ambiguous results were possibly caused by the uncertainties of input data in the areas 

with complex geographic and environmental conditions, or by the inaccurate training data due to the 

topographic effects. Further studies should focus on reducing the impacts of environment and topography 

on the uncertainties of tree height estimation, and extending the approach to biomass prediction.  
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