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Abstract: Light Detection and Ranging (LiDAR), a high-precision technique used for 

acquiring three-dimensional (3D) surface information, is widely used to study surface 

vegetation information. Moreover, the extraction of a vegetation point set from the LiDAR 

point cloud is a basic starting-point for vegetation information analysis, and an important 

part of its further processing. To extract the vegetation point set completely and to describe 

the different spatial morphological characteristics of various features in a LiDAR point 

cloud, we have used 3D fractal dimensions. We discovered that every feature has its own 

distinctive 3D fractal dimension interval. Based on the 3D fractal dimensions of tall trees, 

we propose a new method for the extraction of vegetation using airborne LiDAR. 

According to this method, target features can be distinguished based on their morphological 

characteristics. The non-ground points acquired by filtering are processed by region growing 

segmentation and the morphological characteristics are evaluated by 3D fractal dimensions 

to determine the features required for the determination of the point set for tall trees. Avon, 

New York, USA was selected as the study area to test the method and the result proves the 

method’s efficiency. Thus, this approach is feasible. Additionally, the method uses the 3D 
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coordinate properties of the LiDAR point cloud and does not require additional 

information, such as return intensity, giving it a larger scope of application. 

Keywords: LiDAR; tall vegetation extraction; three-dimensional fractal dimension; 

morphological characteristic analysis 

 

1. Introduction 

The extraction and analysis of vegetation information is important in many fields of research. It is 

widely used in biomass and carbon estimations, hydrological model calculations, urban ecological 

assessments, etc. Accurately and entirely obtaining vegetation information is a difficult task [1–4]. 

Currently, there are various types of techniques for extracting and surveying vegetation information. 

These techniques involve, for example, detailed field surveys of all the vegetation in a district, which 

can provide the most accurate and detailed distribution of vegetation and a basis for classification [5]. 

Other techniques include using optical remote sensing images to extract the vegetation information 

based on distinctive spectral and textural features [6,7], and using Light Detection And Ranging 

(LiDAR) to obtain 3D point cloud data, designing a point cloud processing workflow to extract 

vegetation information [8–10]. LiDAR offers a fast and high-precision method for obtaining 3D 

information [11]. Unlike traditional observation techniques, LiDAR acquisitions can identify a large 

number of ground features and provide accurate spatial locations of surfaces and features. It is now 

widely used in digital mapping, forest monitoring, resource surveying, etc. [12]. LiDAR has been used 

for information acquisition and feature descriptions in an increasing number of studies, because of its 

advantages, including high precision, independence from environmental conditions, and its ability to 

obtain the vertical structure of surface features [13].  

Currently, LiDAR studies focus on feature classification and building information extraction. For 

example, Yu et al. [14] divided their study area into water, vegetation, and other areas based on 

hyperspectral images, and extracted buildings according to height and roughness from LiDAR-derived 

DSM (Digital Surface Model). José Sánchez-Lopera and José Luis Lerma [15] used angular 

classification to differentiate buildings from vegetation and other small objects. For multi-class problems, 

researches have used many different approaches. Lafarge and Mallet [16] used an energy function and 

the Potts model to combine local features and local context. Rutzinger et al. [17,18] presented an  

object-based method for point cloud classification, which combined points clustering and full-waveform 

ALS data classification, and this method performed well for vegetation and building detection in urban 

areas. Additionally, multiple-entity features have been applied to improve both the accuracy and speed of 

computation by using several different entities in classifications from point clouds [19,20]. 

Moreover, researchers have undertaken exploratory work on the extraction of vegetation 

information from LiDAR data. Generally, studies focus on the following aspects: (1) Combining 

remote sensing, aerial imagery, and other spatial data, and using the LiDAR point cloud to extract 

vegetation information [21–24]; (2) Interpolating or processing the LiDAR point cloud into a raster 

image in the form of DTM (Digital Terrain Model), DSM, etc., and processing the data by remote 

sensing image classification methods to achieve indirect vegetation extraction from LiDAR point 
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cloud data [25,26]; (3) Based on the traits of LiDAR data, using machine-learning methods for 

classification or using traits such as full-waveform and multi-echo LiDAR data as the basis of 

vegetation information extraction [27–30]. The core idea behind the above methods involves learning 

the remote sensing image classification technique and then applying it to the discrete point set from the 

LiDAR data. Many studies do not take full advantage of the vectorial 3D spatial distribution 

characteristics provided by the LiDAR point cloud. Meanwhile, some LiDAR data do not have  

full-waveform and multi-echo characteristics, thus not providing the required traits for vegetation 

information extraction. Thus, a method for extracting vegetation information using only the basic 

characteristics shared by most types of LiDAR point cloud data would be significant. 

There are considerable differences among the morphological structures of different landscape 

features; for example, trees have a rough crown, smooth planes constitute buildings, while 

transmission lines present a linear form. These structures are reflected in the LiDAR point cloud. The 

type of feature determines the 3D distribution structure in the LiDAR data. Accordingly, the spatial 

morphology features in LiDAR data can be an important factor in distinguishing vegetation. Thus, in 

our study, we aim to explore a new method that takes advantage of the 3D spatial morphology features 

of tall trees as a distinguishing factor, and uses a 3D fractal dimension to conduct a spatial 

morphological description for vegetation extraction. The 3D fractal dimension, based on fractal theory, 

is a statistical index describing ground features’ irregularity and roughness. By using 3D fractal 

dimensions, vegetation can be extracted solely on the basis of its spatial morphology. Based on the 

considerations above, we first studied ground features’ overall morphological structure, and then used 

3D fractal dimensions as indices to analyze ground features’ morphology and to distinguish between 

different types of features. A new method is presented for extracting tall trees. First, we pretreat 

LiDAR point cloud data by filtering to obtain non-ground points. Second, we separate the point set by 

regional growth division. Finally, we evaluate the morphological characteristics of the segmented objects 

using 3D fractal dimensions to determine the type of vegetation and to obtain the point set for tall trees.  

2. Study Area and Data Source 

The study area (Figure 1) is located in the town of Avon in New York, USA, covering nearly 0.309 km2. 

Tall trees, shrubs, buildings, power lines, and other features can be found within the study area. With 

the abundant types and diverse set of surface features, this area is appropriate for extracting the 

vegetation features and analyzing the information. 

 

Figure 1. Map and image of the study area. 
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The LiDAR point cloud data (Figure 2) were obtained from the free data provided by the Rochester 

Institute of Technology’s SHARE 2012 program (http://www.rit.edu/cos/share2012/). The average 

point cloud density of the LiDAR dataset covering the study area is 35.480 pts/m2 with the 

WGS_1984_UTM_Zone_18N spatial reference system. Detailed information for the data is listed in 

Table 1. In this study, we have only used the spatial location information of the LiDAR point cloud 

covering the study area, without additional information such as the return intensity. Therefore, the 

approach presented in this paper will be applicable to most types of LiDAR data used in vegetation 

information extraction processes. 

 

Figure 2. Scanning LiDAR data for the study area. 

Table 1. Detailed LiDAR parameters for the study area. 

Sensor ALS60 

Data capture date 9/12/2012 

Total number of points 5,875,674 

Minimum height (m) 162.140 

Maximum height (m) 208.990 

Median height (m) 179.264 

Average point density (pts/m2) 35.480 

3. Methods 

Our new method is divided into two inter-connected steps: first, the dataset is filtered to acquire 

non-ground points in pre-processing; second, 3D fractal dimension analysis is applied to the acquired 

non-ground points to obtain the vegetation point set. The first step provides input data (i.e., non-ground 

points) for the second step. 

To extract ground features, we need to distinguish between ground points and non-ground points, 

which is achieved by LiDAR filtering [31]. Filtering helps to exclude the ground points to obtain the 

non-ground points. Based on the non-ground points, the accuracy and completeness of the extraction 

are significantly improved. Thus, filtering the LiDAR point cloud is very important for LiDAR 

vegetation extraction. 
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Ground points can be used to generate terrain models such as a DTM. However, non-ground points 

correspond to a variety of unknown types of feature. Vegetation information extraction involves 

identifying real ground feature points that belong to different classes of vegetation and separating them 

from the non-ground points. To extract vegetation entirely and exactly in our study, we combine 3D 

region segmentation and 3D fractal dimension analysis to evaluate the 3D spatial characteristics of the 

LiDAR point cloud. First, we use region segmentation to distinguish every feature and obtain some 

feature aggregation; then, we calculate the 3D fractal dimensions, analyze the 3D spatial morphology 

of features, and define the classification to identify the point cloud representing vegetation. Figure 3 

shows the procedure of vegetation information extraction from the LiDAR point cloud. 

 

Figure 3. Workflow of vegetation information extraction from LiDAR imagery. 

3.1. LiDAR Data Preparation 

Researchers have extensively studied LiDAR filtering. After ten years of development, numerous 

successful and efficient filter algorithms have been obtained [31–35], which can be generally divided 

into mathematical morphological filtering, progressive densification filtering, surface-based methods, 

and segmentation-based methods [36]. These algorithms are based on the spatial structure of the 

LiDAR point cloud, applying different mathematical principles to distinguish ground and non-ground 

points. In our study, we applied morphological gradient filtering [36] to filter the LiDAR point cloud. 

The algorithm was tested using sample data provided by the International Society of Photogrammetry 

and Remote Sensing (ISPRS) [37] and the result shows that it can distinguish between the majority of 

features and noise points. According to this test, the filtering rate is more than 90%, and complicated 

and low features can be filtered well. Therefore, morphological gradient filtering was applied during 
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preprocessing of the LiDAR point cloud to distinguish the ground points and the non-ground points, a 

prerequisite for region segmentation and 3D fractal dimension analysis. 

The core idea of morphological gradient filtering is to identify the variance of height and provide a 

basis for computational filtering. Then, a mathematical morphological computation is used to revise 

the gradient-mutational points. If the height variance was more than the height variance threshold, that 

point was recognized as a non-ground point to optimize the filtering process. Therefore, determining 

the proper threshold is key to the filtering process, and filtering parameters vary according to different 

terrains and feature-covers. The study area contains a variety of features, including forests and 

buildings. Thus, single parameters cannot distinguish between the ground and non-ground points. To 

solve this problem, we manually divided the study area into four sub-areas with similar terrain and 

feature characteristics to conduct the morphological analysis separately, and then combined these 

filtering outcomes to obtain the results of preprocessing the LiDAR data (Figure 4). 

 

Figure 4. Sub-area division chart. 

3.2. Three-Dimensional Fractal Dimension 

Fractal geometry is a mathematical concept that is used to study irregular objects and chaotic 

motion [38]. It can be used to assess the complexity of objects. The theory has been widely used in 

geography, image processing, signal analysis, etc. Traditional Euclidean geometry takes the object as a 

regular geometric figure and the spatial dimension is an integer (e.g., one, two, or three dimensions). 

However, real-world objects are always irregular and complicated. Thus, the dimension is not an 

integer at all and fractal theory can be applied to describe the complexity and irregularity of objects. 

A fractal dimension is a characteristic index measuring the fractal morphology of features [39]. The 

fractal dimension is an objective characteristic quantity characterized by scale invariance. It is an 

important index for describing irregularity and roughness. The spatial morphological structure of 
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ground features constituted of LiDAR discrete points has its unique and class-related irregularity and 

roughness, such as the smooth planes of buildings, the irregular branches of trees, etc. The spatial 

morphological structure of these unique ground features can be described by a fractal dimension. In 

studies of fractal dimensions, some common definitions of fractal dimensions are the Hausdorff 

dimension, the box-counting dimension, the divider dimension, etc. Because the box-counting 

dimension is determined by the cover of an identical shape set, its calculation is easier than for other 

dimensions, and it is often used in geographical research. Therefore, we use the box-counting 

dimension (Figure 5) to calculate the 3D fractal dimensions of LiDAR feature points [40]. To calculate 

the box-counting dimension, first, we use a cube to completely cover the entire feature point cloud 

without cracks and count the non-empty cube number N; the dimension is defined as 

D = lim (n→0) (log N / log(1/r)) (1) 

where D is the box-counting dimension. D can be calculated when the side length r of the cube 

approaches 0. 

 

Figure 5. Box-counting dimension calculating sketch map. 

In the theoretical formula, the box-counting dimension is given by the limit when the radius 

approaches 0. However, this situation is impossible in reality. From the box-counting dimension, the 

relationship between r and N is 

log (N) = − D log(r) + C  (2) 

where C is a constant. Thus, for a series of different side lengths, r, applying the least square method to 

simulate the linear functions of log (N) and log(r) gives the slope of the linear function as equal to the 

box-counting dimension D. It should be noted that, unlike continuous objects, the point cloud consists 

of discrete points. Moreover, when the side length of the cube is smaller than the length of the interval, 

the number of non-empty cubes is determined and will not change when the side length reduces. 

Additionally, the spatial characteristics allow the smallest side length of the cube to be equal to the 

average point distance of the LiDAR point cloud. 

3.3. Region Segmentation and 3D Fractal Dimension Analysis 

The filtering result of the non-ground points is the mixing point set of all kinds of features. It is 

impossible to judge the classification by discrete points and so it is necessary to divide the dataset into 

single feature sets to analyze the attribute. Applying the trait that points belonging to the same type 
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would be aggregated, and the characteristic distribution of the discrete point cloud in 3D, we can use 

the region-growing method to divide the point set [41]. The detailed procedure is as follows: (1) Based 

on a certain side length, build a quick 3D mesh for the whole non-ground points region and form a 

hierarchical bounding box for the non-ground points. To avoid a large bounding box’s influence on the 

accuracy of the division, the side length of the bounding box is twice the average pitch of the LiDAR 

point cloud; (2) Select a non-empty bounding box as a seed and expand it in 3D spaces. If the 

neighboring bounding box is not empty, feature points in the bounding box are points for a single 

feature and this bounding box is a part of the non-ground points; (3) Set the new bounding box as the 

seed, and repeat procedure (2) until no new point is added. In order to avoid the bounds of some 

features from becoming tangled and connected with each other in the expansion procedure, an 

expansion threshold must be set for the bounding box. If the number of points in the box is smaller 

than the threshold, this bounding box must be considered to be located on the edge of the feature and is 

not expandable (Figure 6). 

 

Figure 6. Box-counting dimension calculation sketch map. 

After obtaining a single type of feature by region segmentation, it is possible to calculate 3D fractal 

dimensions to describe the spatial shape of this kind of feature to define their class. In order to explore 

the different 3D fractal dimensions of features, region segmentation and 3D fractal dimension 

evaluations for trees, shrubs, buildings, power lines, and a variety of other features for different point 

densities were conducted. According to the variation of ground features’ 3D fractal dimensions at 

different point densities, we divided 3D fractal dimensions into distributions for high, medium, and 

low point densities (Table 2). 

Table 2. Density range in three different conditions. 

 High Density Medium Density Low Density 

Point density (pts/m2) ≥20 5–20 ≤5 

Figure 7 shows that 3D fractal dimensions of different features have their own distribution range, 

which match their specific spatial distribution morphology. The intervals do not overlap among 

features with obvious characteristics, making identification possible. Under the three point cloud 

densities, the 3D fractal dimensions of trees are the largest, those of buildings are intermediate, and 

those of power lines are the smallest. This is consistent with the actual situation of practical features. In 

reality, wires consist of poles, wires, and other one-dimensional lines. These shapes are simple to 

identify compared with other features. Houses consist of walls, roofs, and other two-dimensional 
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surfaces. However, the shapes of trees are complicated and ground surfaces are irregular. Laser points 

falling on them are not only distributed on the surface but also within trees. These complex shapes 

determine the high 3D fractal dimension of trees. Shrubs are shorter than tall trees, and their surfaces 

are irregular. However, because of the limitations of the point density or blocking by other ground 

features, the number of discrete points falling on or within shrubs is often smaller than for trees. The 

3D fractal dimension of shrubs ranges between that of trees and buildings, and may even coincide with 

trees that have a low-dimensional fractal dimension. That is because some low trees have shapes 

similar to shrubs and therefore similar 3D fractal dimensions. Nevertheless, there is a significant 

difference between shrubs and trees. Under different point cloud conditions, the 3D fractal dimensions 

of trees are unique and therefore easily identified. Hence, we use 3D fractal dimensions to extract 

information related to tall trees. 

  

(a) (b) 

 

(c) 

Figure 7. Statistil graphs of diverse features’ 3D fractal dimension distributions:  

(a) high-density; (b) medium-density; (c) low-density. 

Meanwhile, the lower the point density, the smaller the distribution area of the 3D fractal dimension 

(Figure 8). For high, medium, and low densities, the 3D fractal dimensions are distributed 

correspondingly between 1.47–1.92, 1.35–1.83, and 1.29–1.74, respectively. The range of 3D fractal 

dimensions has a left-shift phenomenon. Additionally, the smaller the point cloud density, the larger 

the difference in 3D fractal dimensions between tall trees and other types of ground features and vice 

versa. Especially under low-density point cloud conditions, the distribution extent of a ground feature’s 

3D fractal dimension may expand, leading to a decrease in the difference in the 3D fractal dimensions 
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among different types of ground features. Under specific point cloud conditions, it is necessary to 

apply the corresponding 3D fractal dimension to extract information related to tall trees to ensure the 

result is complete and accurate. 

  

(a) (b) 

  
(c) (d) 

Figure 8. Changes in the distribution range of the different features’ 3D fractal dimensions 

for the three point cloud density conditions: (a) tree; (b) brush; (c): house; (d) electric line. 

According to the analysis above, we obtained the distribution and variation pattern of ground 

features’ fractal dimensions. By applying these dimensions to analyze the ground features’ type, tall 

tree points can be distinguished from other point types, and the extraction of tall trees from the LiDAR 

point cloud is achieved. The extraction process presented in this paper is summarized as follows: 

(1) Preprocessing of the LiDAR point cloud. Use a filter on the original LiDAR point cloud to 

obtain a complete set of non-ground points, which provides the basic data for the classification of the 

point cloud. 

(2) Region growing segmentation on LiDAR non-ground points. Use region growing segmentation 

to segment the original discrete points into “ground feature sets” consisting of several point set 

features, which provides the object for the spatial morphological analysis of ground features. 

(3) Spatial morphological analysis and tall tree extraction on LiDAR non-ground points. Use 3D 

fractal dimensions to perform a spatial morphological evaluation on ground features consisting of 

LiDAR points, and then distinguish between the different types of ground features according to their 

3D fractal dimension distribution characteristics, allowing tall trees to be extracted. 
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4. Results and Discussion 

4.1. Vegetation Extraction Results 

By using a morphological gradient filter test to preprocess the test data, we obtained all non-ground 

points (Figure 9), which provides the starting point for a spatial morphological analysis of ground features. 

 

(a) 

 

(b) 

Figure 9. Non-ground points (a) and ground points (b) after filtering. 

Then, the non-ground points were segmented using region growing, and a 3D fractal evaluation was 

performed to achieve the 3D fractal dimension distribution (Figure 10). 

Owing to the high average point density of LiDAR data in the study area, our study uses the 3D 

high-density point cloud fractal dimension (1.68–1.92) to study tall trees. The result is shown in Figure 11. 
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Figure 10. 3D fractal dimension distribution in the study area. 

 

Figure 11. Tall trees point set. 

4.2. Accuracy Assessment 

The result shows that the tall trees were extracted well. The extraction results are fairly complete 

and few other ground features are mixed in the result point set. Further quantitative assessment of the 

extraction results is carried out by calculating the accuracy and completeness. The reference data are 

classified point sets obtained from human visual interpretation, on the basis of LiDAR point cloud and 

a high-resolution remote sensing image. The results were analyzed using the Error Matrix Method 

(EMM) [42], and the form of the EMM employed in this study is listed in Table 3. 
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Table 3. The form of the Error Matrix Method (EMM). 

 Classification Results 

Tall Trees Non-Tall Trees 

Reference data 
Tall trees A B 

Non-tall trees C D 

A is the number of correctly classified tall tree points, B is the number of tall tree points that were 

wrongly classified as other types, C is the number of non-tall tree points that were wrongly classified 

as tall trees, and D is the number of correctly classified non-tall tree points. According to the EMM, 

the completeness I, accuracy E, and comprehensive assessment index Kappa for the extraction of 

ground features can be calculated using 

I = A ÷ (A + B) 

E = A ÷ (A + C) 

Kappa = (S× (A + D) – ∆) ÷ (S 2 – ∆) 

(3) 

where S = A + B + C + D, and ∆ = (A + B) × (A + C) + (B + D) × (C + D). 

According the form of the EMM employed in this research, the counted results for extracted tall 

trees are listed in Table 4. 

Table 4. The evaluation of the extraction of tall trees. 

 Classification Results 

Tall Trees Non-Tall Trees 

Reference data 
Tall trees 3093606 137046 

Non-tall trees 252747 994201 

Completeness 95.57% Results 91.83% 

Index Kappa 0.8006 

4.3. Error Analysis and Discussion 

Table 4 shows that the accuracy and completeness of the extraction are high, achieving over 90%, 

and demonstrating the feasibility and effectiveness of our extraction method. However, the fact that the 

morphology of a few short trees is similar to shrubs means that some of the shrub points were 

mistakenly classified as tall trees (Figure 12a). Meanwhile, tall trees located on boundaries were 

misclassified as non-vegetation points because of the incompleteness of their morphology (Figure 12b). 

Generally, tall trees with a complete morphology in the study area were successfully separated from 

other ground features using 3D fractal dimensions. In addition, the higher the density of the point 

cloud, the better the results will be, because the irregularity and roughness of the tall trees’ 

morphology will become more obvious. 

Our new method has the following characteristics: (1) In contrast to some other methods, the 

conditions for input data are simple with no support required from remote sensing and aerial imagery. 

Moreover, the LiDAR cloud data does not need to be full-waveform, meaning this method can be 

applied to most LiDAR data to extract the required features. (2) The evaluation standard is the 3D 
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morphological trait of the LiDAR point cloud itself. Instead of considering each discrete point or its 

derived image, we start from ground features’ overall morphological structure. This method focuses on 

the description of the 3D morphology of tall trees in the point cloud. The effect is comprehensive and 

accurate. (3) In the computational process, there is no requirement to build a TIN or other raster grids 

to organize the point cloud. Thus, the procedure has the advantages of being easy and quick to implement. 

  
(a) (b) 

Figure 12. Error types for tall tree extraction: (a) Shrubs misrecognized as tall trees;  

(b) Missed tall trees. 

This paper focuses on discussing the feasibility of extracting tall tree points from LiDAR data using 

3D fractal dimensions. There are various ground features and morphologically intact terrain in the 

study area. The feasibility of extracting tall tree points using 3D fractal dimensions has been 

demonstrated in the study area and this approach achieved good results. However, because of the 

limited area and number of ground features in the study area, using 3D fractal dimensions to extract 

tall trees in more complex scenarios has not yet been tested. Considerable additional work is needed in 

other study areas with different features in order to examine the wider applicability of this approach. In 

addition, further characteristics of ground features’ morphological structures may be discovered in 

different aspects, and could be combined with those in 3D fractal dimensions, potentially resulting in a 

better classification result. Further research on the segmentation of non-ground points to improve the 

accuracy of 3D fractal dimension evaluation would also be informative. These considerations provide 

potential directions for future research. 

5. Conclusions 

This study generated a new approach to extract vegetation features from the LiDAR point cloud. 

The data were first preprocessed to obtain the non-ground points through filtering. The non-ground 

points were then divided using region growing segmentation and evaluated to obtain 3D fractal 

dimensions. All features were finally differentiated to extract vegetation. According to the analysis of 

3D fractal dimensions for different features, each type of feature has a unique distribution and 

variation trend in its 3D fractal dimensions. Tall trees, because of their complex shape and rough 

surfaces, have larger 3D fractal dimensions than some other features with simpler shapes or smoother 

surfaces. Under different point densities, the medium 3D fractal dimension of tall trees is 

approximately 1.74. Additionally, the smaller the point cloud density, the larger the difference in 3D 
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fractal dimensions between tall trees and other types of features. Based on the characteristics of tall 

trees’ 3D fractal dimensions discussed here, our method was tested and the results showed an accuracy 

and a completeness of over 90%. This method takes advantage of the 3D spatial morphology features 

of tall trees to extract them from the LiDAR point cloud data, and its efficiency is proved. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China (41501558) and the 

Program for New Century Excellent Talents in University (NCET-13-0280). 

Author Contributions 

Haiquan Yang and Jiechen Wang provided the original idea, conceived and designed the experiments; 

Wenlong Chen performed the experiments and analyzed the data; Dingtao Shen offered the technique 

and data support for this work; Haiquan Yang, Tianlu Qian and Wenlong Chen wrote the paper.  

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Bienert, A.; Scheller, S.; Keane, E.; Mohan, F.; Nugent, C. Tree detection and diameter 

estimations by analysis of forest terrestrial laserscanner point clouds. In Proceedings of the ISPRS 

Workshop on Laser Scanning, Espoo, Finland, 12–14 September 2007; pp. 50–55. 

2. Elseberg, J.; Borrmann, D.; Nuchter, A. Full wave analysis in 3D laser scans for vegetation 

detection in urban environments. In Proceedings of the Information, Communication and 

Automation Technologies (ICAT), Sarajevo, Bosnia and Herzegovina, 27–29 October 2011;  

pp. 1–7. 

3. Hilker, T.; Coops, N.C.; Coggins, S.B.; Wulder, M.A.; Brown, M.; Black, T.A.; Nesic, Z.; 

Lessard, D. Detection of foliage conditions and disturbance from multi-angular high spectral 

resolution remote sensing. Remote Sens. Environ. 2009, 113, 421–434. 

4. Sánchez-Azofeifa, G.A.; Castro, K.; Wright, S.J.; Gamon, J.; Kalacska, M.; Rivard, B.;  

Schnitzer, S.A.; Feng, J.L. Differences in leaf traits, leaf internal structure, and spectral 

reflectance between two communities of lianas and trees: Implications for remote sensing in 

tropical environments. Remote Sens. Environ. 2009, 113, 2076–2088. 

5. Wilson, B.A.; Brocklehurst, P.S.; Clark, M.J.; Dickinson, K. Vegetation survey of the Northern 

Territory, Australia; Technical Report for Explanatory Notes and 1:1,000,000 Map Sheets; 

Conservation Commission of the Northern Territory Australia: Palmerston, Australia, 1990. 

6. Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image texture as a remotely sensed 

measure of vegetation structure. Remote Sens. Environ. 2012, 121, 516–526. 

7. Zhang, C.; Xie, Z. Combining object-based texture measures with a neural network for vegetation 

mapping in the Everglades from hyperspectral imagery. Remote Sens. Environ. 2012, 124, 310–320. 



Remote Sens. 2015, 7 10830 

 

 

8. Han, W.; Zhao, S.; Feng, X.; Chen, L. Extraction of multilayer vegetation coverage using airborne 

LiDAR discrete points with intensity information in urban areas: A case study in Nanjing, China. 

Int. J. Appl. Earth Obs. Geoinform. 2014, 30, 56–64. 

9. Hyyppa, J. Feasibility for estimation of single tree characteristics using laser scanner.  

In Proceedings of Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 

2000; pp. 981–983. 

10. Wagner, W.; Hollaus, M.; Briese, C.; Ducic, V. 3D vegetation mapping using small-footprint  

full-waveform airborne laser scanners. Int. J. Remote Sens. 2008, 29, 1433–1452. 

11. Ackermann, F. Airborne laser scanning—Present status and future expectations. ISPRS J. 

Photogramm. Remote Sens. 1999, 54, 64–67. 

12. Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. 

Photogramm. Remote Sens. 1999, 54, 68–82. 

13. Chen, C.; Li, Y.; Li, W.; Dai, H. A multiresolution hierarchical classification algorithm for 

filtering airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2013, 82, 1–9. 

14. Yu, B.; Liu, H.; Zhang, L.; Wu, J. An object-based two-stage method for a detailed classification 

of urban landscape components by integrating airborne LiDAR and color infrared image data:  

A case study of downtown Houston. In Proceedings of the 2009 Joint Urban Remote Sensing 

Event, Shanghai, China, 20–22, May 2009; pp. 1–8. 

15. Sánchez-Lopera, J.; Lerma, J.L. Classification of LiDAR bare-earth points, buildings, vegetation, 

and small objects based on region growing and angular classifier. Int. J. Remote Sens. 2014, 35, 

6955–6972. 

16. Lafarge, F.; Mallet, C. Modeling Urban Landscapes from Point Clouds: A Generic Approach; 

Technical Report for Vision, Perception and Multimedia; HAL: Nice, France, 1–5 May 2011. 

17.  Rutzinger, M.; Höfle, B.; Geist, T.; Stötter, J. Object based building detection based on airborne 

laser scanning data within GRASS GIS environment. In Proceedings of the UDMS 2006: Urban 

Data Management Symposium, Aalborg, Denmark, 15–17 May 2006; pp. 37–48. 

18. Rutzinger, M.; Höfle, B.; Hollaus, M.; Pfeifer, N. Object-based point cloud analysis of full-waveform 

airborne laser scanning data for urban vegetation classification. Sensors 2008, 8, 4505–4528. 

19. Kim, H.B.; Sohn, G. Random forests-based multiple classifier system for power-line scene 

classification. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII-5/W12, 253–259. 

20. Xu, G.S.; Vosselman, S.; Elberink, O. Multiple-entity based classification of airborne laser 

scanning data in urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 88, 1–15. 

21. Geerling, G.W.; Labrador Garcia, M.; Clevers, J.G.P.W.; Ragas, A.M.J.; Smits, A.J.M. 

Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data. Int. J. 

Remote Sens. 2007, 28, 4263–4284. 

22. Secord, J.; Zakhor, A. Tree detection in urban regions using aerial LiDAR and image data. IEEE 

Geosci. Remote Sens. Lett. 2007, 4, 196–200. 

23. Ramdani, F. Urban vegetation mapping from fused hyperspectral image and LiDAR data with 

application to monitor urban tree heights. J. Geo. Inf. St. 2013, 5, 404–408. 

24. Reese, H.; Nordkvist, K.; Nyström, M.; Bohlin, J.; Olsson, H.; Combining point clouds from 

image matching with SPOT 5 multispectral data for mountain vegetation classification. Int. J. 

Remote Sens. 2015, 36, 403–416. 



Remote Sens. 2015, 7 10831 

 

 

25. Chen, X.; Vierling, L.; Rowell, E.; DeFelice, T. Using LiDAR and effective LAI data to evaluate 

IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest. Remote 

Sens. Environ. 2004, 91, 14–26. 

26. Heinzel, J.; Koch, B. Exploring full-waveform LiDAR parameters for tree species classification. 

Int. J. Appl. Earth Obs. Geoinform. 2011, 13, 152–160. 

27. Antonarakis, A.S.; Richards, K.S.; Brasington, J. Object-based land cover classification using 

airborne LiDAR. Remote Sens. Environ. 2008, 112, 2988–2998. 

28. Höfle, B.; Hollaus, M.; Hagenauer, J. Urban vegetation detection using radiometrically calibrated 

small-footprint full-waveform airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2012, 

67, 134–147. 

29. Hug, C.; Ullrich, A.; Grimm, A. Litemapper-5600—A waveform-digitizing LiDAR terrain and 

vegetation mapping system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 36, 24–29. 

30. Reitberger, J.; Krzystek, P.; Stilla, U. Analysis of full waveform LiDAR data for the classification 

of deciduous and coniferous trees. Int. J. Remote Sens. 2008, 29, 1407–1431. 

31. Meng, X.; Currit, N.; Zhao, K. Ground filtering algorithms for airborne LiDAR data: A review of 

critical issues. Remote Sens. 2010, 2, 833–860. 

32. Forlani, G. Adaptive filtering of aerial laser scanning data. Int. Archiv. Photogramm. Remote 

Sens. Spat. Inf. Sci. 2007, 36, 130–135. 

33. Sohn, G.I.D. Terrain surface reconstruction by the use of tetrahedron model with the MDL 

criterion. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 336–344. 

34. Roggero, M. Object segmentation with region growing and principal component analysis. Int. 

Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 289–294. 

35. Zhang, K.; Chen, S.C.; Whitman, D. A progressive morphological filter for removing nonground 

measurements from airborne LiDAR data. IEEE Geosci. Remote Sens. 2003, 41, 872–882. 

36. Yong, L.; Wu, H. DEM extraction from LiDAR data by morphological gradient. In Proceedings 

of the IEEE Fifth International Joint Conference INC, IMS and IDC, Seoul, Korea, 10 December 

2009; pp. 1301–1306. 

37. Sithole, G.; Vosselman, G. The Full Report: ISPRS Comparison of Existing Automatic Filters. 

Availbale online: http://www.itc.nl/isprswgIII-3/filtertest/ (accessed on 19 August 2015). 

38. Mandelbrot, B.D. Fractals: Form, Chance and Dimension, 1st ed.; W.H. Freeman and Company: 

San Francisco, SF, USA, 1977. 

39. Falconer, K.J. The Geometry of Fractal Sets; Cambridge University Press: Cambridge, UK, 1986. 

40. Bisoi, A.K.; Mishra, J. On calculation of fractal dimension of images. Pattern Recog. Lett. 2001, 

22, 631–637. 

41. Fan, J.; Yau, D.Y.; Elmagarmid, A.K.; Aref, W.G. Automatic image segmentation by integrating 

color-edge extraction and seeded region growing. IEEE Trans. Image Process. 2001, 10, 1454–1466. 

42. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. 

Remote Sens. Environ. 1991, 37, 35–46. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


