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Abstract: With the development of quantitative remote sensing, regional evapotranspiration 

(ET) modeling based on the feature space has made substantial progress. Among those 

feature space based evapotranspiration models, accurate determination of the dry/wet lines 

remains a challenging task. This paper reports the development of a new model, named 

DDTI (Determination of Dry line by Thermal Inertia), which determines the theoretical dry 

line based on the relationship between the thermal inertia and the soil moisture. The 

Simplified Thermal Inertia value estimated in the North China Plain is consistent with the 

value measured in the laboratory. Three evaluation methods, which are based on the 

comparison of the locations of the theoretical dry line determined by two models (DDTI 

model and the heat energy balance model), the comparison of ET results, and the comparison 

of the evaporative fraction between the estimates from the two models and the in situ 

measurements, were used to assess the performance of the new model DDTI. The location 

of the theoretical dry line determined by DDTI is more reasonable than that determined by the 

heat energy balance model. ET estimated from DDTI has an RMSE (Root Mean Square Error) 

of 56.77 W/m2 and a bias of 27.17 W/m2; while the heat energy balance model estimated ET 

OPEN ACCESS 

mailto:misujuan871001@163.com
mailto:zhangrh@igsnrr.ac.cn
mailto:tianj.04b@igsnrr.ac.cn


Remote Sens. 2015, 7 10857 

 

with an RMSE of 83.36 W/m2 and a bias of −38.42 W/m2. When comparing the coeffcient 

of determination for the two models with the observations from Yucheng, DDTI 

demonstrated ET with an R2 of 0.9065; while the heat energy balance model has an R2 of 

0.7729. When compared with the in situ measurements of evaporative fraction (EF) at 

Yucheng Experimental Station, the ET model based on DDTI reproduces the pixel scale EF 

with an RMSE of 0.149, much lower than that based on the heat energy balance model which 

has an RMSE of 0.220. Also, the EF bias between the DDTI model and the in situ 

measurements is 0.064, lower than the EF bias of the heat energy balance model, which is 0.084. 

Keywords: thermal inertia; two-layer evapotranspiration model; theoretical dry line; 

evapotranspiration; remote sensing 

 

1. Introduction 

Evapotranspiration (ET) monitoring has important implications in many aspects, such as improving 

regional and global climate models, understanding the hydrological cycle, and assessing environmental 

stress on natural and agricultural ecosystems [1,2]. With the development of remote sensing technology, 

estimating regional ET has made great progresses [3–6]. Satellite-based ET modeling can be categorized 

into one-layer schemes and two-layer schemes. Examples of the one-layer scheme include the Surface 

Energy Balance Algorithm (SEBAL) [7], the Surface Energy Balance (SEBS) [8], and the Simplified 

Surface Energy Balance Index (S-SEBI) [9]. Some representative two-layer models are N95 [10], the 

two-source energy balance approach [11], and the operational two-layer remote sensing model [12]. In 

the one-layer model, a mixed pixel composed of vegetation and soil is treated as a block. These one-layer 

models are suitable for regions with homogeneous dense vegetation or bare soil, but in many regions, 

such as semi-arid regions where patches of vegetation and bare soil are mixed, two-layer models perform 

much better than one-layer models. Two-layer models can estimate evaporation from soil and 

transpiration from vegetation separately, which is an important progress in the ET modeling. In the two-layer 

model, separating vegetation temperature and soil temperature is the most important procedure. One 

model to separate temperatures is to use the Priestly-Taylor factor, proposed by Norman [10]. This model 

estimates evapotranspiration and the vegetation temperature by using the Priestly-Taylor factor first; 

then, the soil temperature can be estimated from the land surface temperature, vegetation cover fraction, 

and vegetation temperature. However, determining an optimal value for the Priestly-Taylor factor is 

quite challenging in this model. Norman first chose a value of 1.3, then Kustas and Norman changed the 

Priestly-Taylor factor to 2 [13]. Later, Xu reported that 1.26 was more reasonable in wet areas [14]. 

Another model to separate temperature, named Pixel Component Arranging and Comparing Algorithm 

(PCACA), was proposed by Zhang and separates temperatures based on the hypothesis of a linear mixing 

structure of vegetation and soil in a pixel [12]. 

The third model to retrieve evapotranspiration is based directly on the relationship between the 

vegetation index and the land surface temperature and is known as the feature space model [4,15–19]. 

The advantage of using the feature space model is that complex parameterization of aerodynamic and 
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surface resistances for water and heat transfer can be avoided; meanwhile, the feature space of VFC_LST 

(vegetation fraction cover versus land surface temperature) is able to capture the availability of soil 

moisture essential for evapotranspiration. The feature space model has been used widely by the remote 

sensing community. As Carlson has noted, that when a large number of pixels exist in the study area and 

exceptional pixels are removed, a triangular shape exists in the feature space [20]. In order to apply the 

CWSI (Crop Water Stress Index) to partially-vegetated fields, Moran proposed a Vegetation 

Index/Temperature (VIT) trapezoid model [16]. 

The location of the dry/wet line within the feature space directly affects the performance of the space 

feature model. The theoretical dry line corresponds to the pixels with the largest water stress and zero 

ET. The theoretical wet line corresponds to the pixels without any water stress and ET is close to the 

potential evapotranspiration. In previous studies, the wet line was usually determined by the lowest land 

surface temperature in the image, air temperature or by the temperature of nearby bodies of water. The 

dry line, though, is more difficult to determine due to the existence of abnormal or false dry pixels. Tang 

presented an iterative algorithm to automatically determine the dry line [21]. The algorithm, firstly, 

segments the whole fractional vegetation cover region into M bins; secondly, the abnormal pixels are 

removed according to the mean value and standard deviation of each bin; thirdly, the highest values in 

each bin are chosen as values to determine the dry line; finally, the dry line is determined by a linear 

regression of the highest values. Tang’s model can determine the dry line quickly, but for wet areas, 

such as after a rainfall, the dry line obtained is not the “true” theoretical dry line because dry pixels are 

not available. 

An evapotranspiration model named the two-layer remote sensing model was proposed first by  

Zhang [12] and was then optimized by Zhang in 2008 [20]. In this model, the positions of the theoretical 

dry line and the theoretical wet line (especially the dry line) are key parameters. Zhang’s model is based 

on the heat energy balance model, and air temperatures are used to calculate the sensible heat flux. Air 

temperature data are obtained from nearby weather stations. This model can determine the theoretical 

dry line, but in wet weather, the dry line determined is not the true theoretical dry line because air 

temperatures are obtained from wet cases. The model based on the heat energy balance equation is called 

the heat energy balance model in this article. This model will be discussed in detail in Section 2. 

Since there is insufficient study on the determination of the theoretical dry line’s location, this paper 

proposes a new model based on thermal inertia to obtain the theoretical dry line in the feature space, and 

it will be compared with the heat energy balance model using the same data set in order to provide an 

insight into the performance of two models. Section 2 presents the methodology of both the new model 

(DDTI) and the heat energy balance model. Experimentation results and a laboratory evaluation of the 

thermal inertia are shown in Section 3, followed by an application of the DDTI model in Section 4. The 

discussion is provided in Section 5. Finally, conclusions are given in Section 6. 

2. Methodology 

2.1. The Heat Energy Balance Model 

In the two-layer remote sensing model [20], there are three main procedures in the ET estimation: 

The first is the PCACA model to decompose the temperature of the mixed pixels; the second is to 
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determine the location of the theoretical dry and wet lines by heat energy balance equations; the third is 

the layered energy-separating algorithm to determine the Bowen Ratio. The detailed description of the 

three procedures can be found in Zhang (2008) [20].We focus on how to determine the theoretical dry 

line in this paper. For pixels on the theoretical dry line, ET is assumed to be 0. Based on the heat energy 

balance equation and ignoring advection in the horizontal direction, Equation (1) can be derived 

𝑅𝑛 − 𝐺 = 𝐻 (1) 

where Rn is the net radiation, G is soil heat flux, and H is the sensible heat flux.  

According to the empirical correlation between soil heat flux and the net radiation, G can be estimated 

by Equation (2) [22]. 

𝐺 = 𝐶𝑅𝑛 (2) 

when LST is greater than 275.15 K, 𝐶 = (𝐿𝑆𝑇 − 273.15)(0.0038 + 0.007𝑎)(1 − 0.98𝑁𝐷𝑉𝐼4). LST 

is the land surface temperature (K), 𝑎 is the surface albedo, NDVI is Normalized Difference Vegetation 

Index. When LST is less than or equal to 273.15 K, 𝐶 = 0.35 × (1 − 𝑓), and f is the vegetation fraction 

cover (VFC) [23]. 

The sensible heat flux and the net radiation can be estimated by Equations (3) and (4), respectively. 

𝐻 =
ρ𝐶𝑝(𝑇𝑠𝑑 − 𝑇𝑠𝑑𝑎)

𝑟𝑠𝑑𝑎
 (3) 

𝑅𝑛 = 𝑆0(1 − α𝑠𝑑) + σε𝑠𝑘𝑦𝑇𝑠𝑘𝑦
4 − σ𝑒𝑠𝑑𝑇𝑠𝑑

4  (4) 

The temperature of the theoretical dry bare soil surface in Equation (5) can be deduced from  

Equations (1) to (4). 

𝑇𝑠𝑑 =
(1 − 𝐶)[𝑆0(1 − α𝑠𝑑) + σε𝑠𝑘𝑦𝑇𝑠𝑘𝑦

4 ] +
ρ𝐶𝑝

𝑟𝑠𝑑𝑎
𝑇𝑠𝑑𝑎

ρ𝐶𝑝

𝑟𝑠𝑑𝑎
+ (1 − 𝐶)σε𝑠𝑑𝑇𝑠𝑑

3

    (5) 

𝑇𝑣𝑑 =
(1 − 𝐶)[𝑆0(1 − α𝑣𝑑) + σε𝑠𝑘𝑦𝑇𝑠𝑘𝑦

4 ] +
ρ𝐶𝑝

𝑟𝑣𝑑𝑎
𝑇𝑣𝑑𝑎

ρ𝐶𝑝

𝑟𝑣𝑑𝑎
+ (1 − 𝐶)σε𝑣𝑑𝑇𝑣𝑑

3

 (6) 

In the same way, the temperature of a theoretical dry surface with a full vegetation cover can be 

described by Equation (6). In the above equations, Tsd and Tvd are the surface temperatures of the two 

endpoints on the theoretical dry line (Figure 1), ρ is density of air, Cp is the volumetric heat capacity of 

air, rsda and rvda are the aerodynamic resistance, εsd and εvd are the emissivity of bare soil area and full 

vegetation coverage, σ is the Stefan-Boltzmann Constant, So is the total solar incident radiation, αsd and 

αvd are the albedo of dry bare soil and full vegetation coverage, εsky is the emissivity of the sky, Tsda and 

Tvda are the air temperatures above the bare soil area and the full cover vegetation area, respectively.  

 



Remote Sens. 2015, 7 10860 

 

 

Figure 1. Schematic figure of the theoretical dry line in the feature space of temperature (in K) 

and VFC. 

2.2. The Thermal Inertia Model 

In physics, thermal inertia is defined as Equation (7) [24]. 

𝑃 = √𝐾ρ𝑠𝑐  (7) 

where P is the thermal inertia in J·m−2·K−1·S−1/2, K is the thermal conductivity in J·m−2·K−1·S−1/2, ρs is 

the density in gm−3, and c is the specific heat capacity in J·m−2·K−1. For wet soil, based on the linear 

mixture model, its thermal inertia can be described by Equation (8) [25]. 

𝑃𝑤𝑠 =
𝑉𝑠𝑃𝑠 + 𝑉𝑤𝑃𝑤

𝑉𝑠 + 𝑉𝑤
 (8) 

where Pws, Ps, and Pw are thermal inertia for wet soil, dry soil, and water, respectively. Vs and Vw are the 

volumetric proportions of soil and water in a soil sample. For the dry soil with minimal water content, 

its thermal inertia depends on soil type and structure. Thermal inertia for dry soil will remain the same 

if its type and structure do not change. For dry soil, thermal inertia represents the resistance to change in 

the temperature of the upper few centimeters of the surface throughout the day, and it is independent of 

the local time, latitude, and the season [26]. 

Due to the fact that thermal conductivity, density, and specific heat capacity cannot be measured in 

the field at a regional scale, it restricts greatly the application of thermal inertia. In 1977, Price derived 

the approximate analytical solution of thermal inertia by solving the thermal conducting equation, which is 

shown in Equation (9) [27]. 

𝑃 ≈
2𝐽

ω
1
2(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

 (9) 

where P is thermal inertia (Cal ∙ 𝑆−
1

2 ∙ ℃−1 ∙ 𝑐𝑚−2); J is the incident net flux; ω is measurement cycle; 

Tmax and Tmin are the extremes of temperature response of the surface to the incident flux. Since then, 

thermal inertia can be estimated by incident flux, the increment of surface temperature and time of 

duration. Due to the three parameters can be obtained by remote sensing method in large area, thermal 

inertia has been applied widely in geography, such as discriminating categories of rock and soil moisture 

estimating [28–34]. 
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Another thermal inertia, apparent thermal inertia (ATI), which is a mission product in determining 

surface characteristics from the heat Capacity Mapping Mission (HCMM) [24], is defined as 

𝐴𝑇𝐼 = 1000𝜋 ×
(1 − α)𝐶1

𝑇(1: 30𝑝. 𝑚. ) − 𝑇(2: 30𝑝. 𝑚. )
 

C1 = (1
π⁄ ) [sin δ sin ∅ (1 − tan δ2 tan ∅2)

1
2⁄ + x cos δ cos ∅] 

(10) 

where α is the surface albedo, δ is the solar declination, ∅ is the latitude of observation. The incident 

flux is not include in the Equation (10) and its dimension is 1/°C It was reported that apparent thermal 

inertia should not be used in regions having variability in surface moisture [24]. 

In this paper, we use a new thermal inertia concept, simplified thermal inertia (STI), defined in 

Equation (11). The net radiation can be estimated by remote sensing methods with a high accuracy and 

we assume that net radiation increase linear from early morning to noon; therefore, the net radiation is 

used to calculate the thermal inertia.  

𝑃𝑠 =
𝑅𝑛𝑠
̅̅ ̅̅̅√(𝑡2 − 𝑡1)

𝑇𝑠2 − 𝑇𝑠1
 (11) 

where Ps is the STI for soil, t1 and t2 are the start and end times of the measurements, Ts1 and Ts2, are the 

soil surface temperatures at t1 and t2, and 𝑅𝑛𝑠
̅̅ ̅̅̅ is the mean net radiation from t1 to t2. 

According to the above definition, the simplified thermal inertia for dry soil can be estimated from 

an extremely dry situation in a historical period. For example, the thermal inertia value Psd of a historical 

dry situation can be calculated by Equation (12). Then, Psd can be used in a wet situation in Equation (13) 

in order to derive the temperatures on the theoretical dry line. Ts2h is the theoretical dry temperature. 

𝑃𝑠𝑑 =
𝑅𝑛𝑠𝑑
̅̅ ̅̅ ̅̅ √𝑡2𝑑 − 𝑡1𝑑

𝑇𝑠2𝑑 − 𝑇𝑠1𝑑
 (12) 

𝑇𝑠2ℎ =
 𝑅𝑛𝑠ℎ
̅̅ ̅̅ ̅̅ ̅√𝑡2ℎ − 𝑡1ℎ

𝑃𝑠𝑑
+ 𝑇𝑠1ℎ (13) 

where t1d and t2d are the start and end times of the measurements in a dry situation. Ts1d and Ts2d are the 

soil surface temperatures at t1d and t2d, 𝑅𝑛𝑠𝑑
̅̅ ̅̅ ̅̅ is the mean net radiation from time t1d to time t2d, t1h and t2h 

are the start and end times of measurements in a wet situation, Ts1h and Ts2h are the soil surface 

temperatures at t1h and t2h, and  𝑅𝑛𝑠ℎ
̅̅ ̅̅ ̅̅ ̅ is the mean net radiation from time t1h to t2h. 

In Equation (13), all of the variables on the right-hand side except Psd are observed in a wet situation. 

In this paper, the model for calculating the simplified thermal inertia Psd from a dry situation that is then 

used in a wet situation is called DDTI (Determination of Dry line by Thermal Inertia) 

As is known, soil thermal inertia cannot be estimated by remote sensing in vegetation covered areas [24]. 

Although the mechanism of determining surface temperature change of vegetation is quite different from 

the mechanism of determining the surface temperature change of soil, the diurnal cycle of vegetation 

surface temperature is quite similar to that of soil. Moreover, the daily amplitude for vegetation surface 

temperature, which is proportional to radiation input and inversely proportional to water availability, is 

also similar to surface temperature of soil. The formula of STI for vegetation is shown in Equation (14). 
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𝑃𝑣 =
𝑅𝑛𝑣
̅̅ ̅̅ ̅√(𝑡2 − 𝑡1)

𝑇𝑣2 − 𝑇𝑣1
 (14) 

where Pv is the STI for vegetation, t1 and t2 are the start and end times of measurements, Tv1 and Tv2 are 

surface temperatures at time t1 and t2, and 𝑅𝑛𝑣
̅̅ ̅̅ ̅ is the mean net radiance from time t1 to t2. 

For wet areas with a full vegetation cover, we use the similar method used for bare soil areas to 

calculate the surface temperature of the theoretical dry point. That is to say, we first calculate Pvd in a 

dry situation, and then apply it to a wet situation. Formulas are given in Equations (15) and (16). 

𝑃𝑣𝑑 =
𝑅𝑛𝑣𝑑
̅̅ ̅̅ ̅̅ √𝑡2𝑑 − 𝑡1𝑑

𝑇𝑣2𝑑 − 𝑇𝑣1𝑑
 (15) 

𝑇𝑣2ℎ =
 𝑅𝑛𝑣ℎ
̅̅ ̅̅ ̅̅ ̅√𝑡2ℎ − 𝑡1ℎ

𝑃𝑣𝑑
+ 𝑇𝑣1ℎ (16) 

where t1d and t2d are the start and end times of measurements in dry situations. Tv1d and Tv2d are soil 

surface temperatures at t1d and t2d, 𝑅𝑛𝑣𝑑
̅̅ ̅̅ ̅̅ is the mean net radiation from time t1d to t2d, t1h and t2h are the 

start and end times of measurements in wet situations, Tv1h and Tv2h are soil surface temperatures at time 

t1h and t2h, and  𝑅𝑛𝑣ℎ
̅̅ ̅̅ ̅̅ ̅ is the mean net radiation from time t1h to t2h. 

3. Experiment and Laboratory Evaluation of the Thermal Inertia Model 

3.1. Study Area 

The central south region of the North China Plain, which has a boundary of latitude between 35°N 

and 37.5°N and longitude between 115°E and 117.5°E, is chosen as the study area. The study area 

belongs to the zone of a continental monsoon climate, which has four clearly distinct seasons. In the 

spring, it is dry and sees little rain, while in summer, it is very warm and rainy. The annual precipitation 

is in a range from 500 mm to 700 mm and changes greatly from year to year. The Yucheng experiment 

station is located in this region.  

3.2. Computing Simplified Thermal Inertia 

3.2.1. Selecting Clear Days in the Study Area 

Based on historical data from the China Meteorological Data Sharing Service System, it was found 

that in the winter of 2010 and the spring of 2011, the North China Plain experienced an extremely dry 

period: The accumulative precipitation (8 mm) was much less than the average spring accumulative 

precipitation of the previous thirty years (22.5 mm). So, from the winter of 2010 to spring of 2011 is an 

ideal period to calculate the simplified thermal inertia for dry soil. The MOD11A1 data were used to 

choose clear sky days, and from 1 January to 30 April in 2011, 11 days met the requirements (cloud 

cover less than 10%). The 11 days are 1 January, 12 January, 16 January, 30 January, 10 March, 17 March, 

30 March, 4 April, 11 April, 18 April, and 24 April. 
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3.2.2. Computing STI 

In order to find dry points to establish the theoretical dry line, we must first understand the  

distribution of points in the space feature. In the VFC_LST feature space, some noise points distributed 

below the theoretical wet line in the bottom of the feature space (Figure 2) actually represent  

cloud-contaminated pixels that have a lower temperature than that of the land surface. The higher 

location of the point means that the soil corresponding to the point is dryer than the data suggests. So in 

the VFC_LST feature space, three or more points satisfying the following requirements are chosen as 

dry points: (a) The points are on a line and the line cannot pass through the scatter cloud. If the line 

passes through the scatter cloud, the line is not the theoretical dry line; (b) Land surface temperatures 

are the highest among points with the same VFC value, so the two points (point 1, point 2) that have the 

highest land surface temperatures are selected. Additionally; (c) only if we cannot find three or more 

endpoints meeting the requirements are two points meeting the requirements used. Keep in mind, though, 

that more points on the theoretical dry line will give a more accurate estimate of the STI values. A 

schematics figure of choosing two points can be seen in Figure 2. 

 

Figure 2. Schematic figure of choosing the two dry points. 

By solving Equations (17) and (18), the land surface temperatures of the two endpoints on the dry 

line, Ts2 and Tv2, can be obtained. 

𝑇1 = 𝑇𝑣2 × 𝑓1 + 𝑇𝑠2 × (1 − 𝑓1) (17) 

𝑇2 = 𝑇𝑣2 × 𝑓2 + 𝑇𝑠2 × (1 − 𝑓2) (18) 

where f1 and f2 are VFC values of the two points. Ts2 and Tv2 have the same meanings as those symbols 

in Equations (11) and (14). T1 and T2 are the mixture land surface temperatures of Point 1 and Point 2, which 

are from the MOD11A1 data. STI for soil and vegetation can then be calculated by Equations (11) and (14). 

Because the sky temperature in Equation (4) was not directly measured, the net radiation of bare land 

and vegetation-covered areas are calculated by Equations (19) and (20), respectively. 

𝑅𝑛𝑠 = 𝑆0(1 − 𝑎𝑠) + ε𝐷𝐿𝑅 − εσ𝑇𝑠
4 (19) 
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𝑅𝑛𝑣 = 𝑆0(1 − 𝑎𝑣) + ε𝐷𝐿𝑅 − εσ𝑇𝑣
4 (20) 

where the S0 is the downward shortwave radiance from the sun, the DLR is the down longwave radiance 

from the sky, ε is emissivity of land, and σ is the Stefan-Boltzmann constant. In this experiment, the 

DLR was observed by Yucheng Station. The albedo values of bare land and full cover vegetation areas  

can be decomposed by Equations (21) and (22) as proposed by Zhang in 2005 [12]. 

𝑎1 = 𝑎𝑣 × 𝑓1 + 𝑎𝑠 × (1 − 𝑓1) (21) 

𝑎2 = 𝑎𝑣 × 𝑓2 + 𝑎𝑠 × (1 − 𝑓2) (22) 

where a1 and a2 are mixture albedo values of point1 and point 2 (from the MCD43B3 data), and f1 and 

f2 are VFC values of point 1 and point 2. 

In Equations (11) and (14), t1 is the time when the net radiance was equal to zero, and t2 was the 

satellite overpass time. Ts1 and Tv1 were observed from Yucheng station. STI results of the eleven days 

are listed in Table 1. 

Table 1. STI results over eleven days. 

Date S0 DLR t1 t2 Ts1 ,Tv1 (K) T1(K) a1 f1 T2 (K) a2 f2 
STI for 

Vegetation 

STI for 

Soil 

1 January 483.9 187.6 8.8 11.5 267.5 279.6 0.16 0.1 278.36 0.156 0.23 4391.9 932.2 

12 January 445.2 196 8.7 11.2 265.1 280.76 0.143 0.249 280.76 0.14 0.4 750.15 702.9 

16 January 438 181.7 8.7 10.6 263.5 279.9 0.15 0.287 279.7 0.15 0.4845 624.3 555.4 

30 January 519.9 200.5 8.3 11 264.5 284.8 0.147 0.475 284.89 0.148 0.44 743.3 646.8 

10 March 680.9 245.3 8 11.1 273.44 302.96 0.171 0.438 302.88 0.173 0.49 629.3  610.7 

17 March 737.3 258 7.5 11.2 275.01 300 0.196 0.24 296.8 0.165 0.92 1436 956.2 

30 March 720.8 276.9 7.5 10.7 279.15 306.5 0.159 0.35 304.5 0.159 0.6 1092.2 723.7 

4 April 774.4 261.1 7 11 275.82 308.2 0.142 0.358 307.9 0.132 0.635 864.8 753.7 

11 April 799.8 281.5 7 11 278.06 311.2 0.192 0.468 311.3 0.194 0.716 749.2 742 

18 April 880 268.9 7 11.2 281.29 311.4 0.182 0.287 311.24 0.189 0.597 776.9 728.6 

24 April 882 278.9 6 10.6 278.71 311 0.193 0.714 311.1 0.191 0.93 946.74 926 

S0 is the downward shortwave radiance from the sun (in W/m2). DLR is the down longwave radiance 

from the sky (in W/m2), t1 is the start time and t2 is the end time in local hours, Ts1 and Tv1 are the land 

surface temperatures at time t1 for bare soil area and vegetation covered area, respectively. T1 and T2 are 

land surface temperature values of the two endpoints, α1 and α2 are albedo values of the two endpoints, 

and f1 and f2 are VFC values of the two endpoints. The STI for Soil and the STI for vegetation are 

simplified thermal inertia values for soil and vegetation (in J·m−2·K−1·S−1/2), respectively. 

3.2.3. Selecting the Most Suitable STI Result 

The results in Table 1 show that among the eleven days, 624.3 is the smallest STI value for vegetation 

and 555.4 is the smallest STI value for soil. The reason of choosing the smallest values is that, for the 

same net radiance and meteorological conditions, an area with a smaller STI means that it has a larger 

land surface temperature change and thus is much drier than other places. Therefore, Psd = 555.4 and  

Pvd = 624.3 (both in J·m−2·K−1·S−1/2). 
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3.3. Laboratory Experiment to Measure the STI 

Thermal inertia is an inherent characteristic of soil, and it does not change with the measurements or 

the meteorological condition. Therefore, in order to assess the accuracy of the simplified thermal inertia 

values, three categories (three individual samples for each category), including dry clay soil, dry sand 

soil, and full cover vegetation, are measured in this experiment. In order to prepare the full cover 

vegetation sample, fresh tree leaves were inserted into a bucket filled with dry sand soil. The VFC value 

of the full cover vegetation sample is regarded as 1 because of the full cover, and the transpiration is 0. 

The equipment used in this experiment is shown in the Table 2. 

Table 2. Equipment used in the laboratory experiment. 

Equipment Specification of the Accuracy and Unit Functionality 

Net pyranometer ±2%, W/m2 Measuring net radiance 

Lamp  Constant radiance at 275 W/m2 
Providing downward shortwave 

and longwave radiation 

Infrared thermometer 
Model name: Raytek MX4, 

±1 °C,automatic recording 
Measuring surface temperature 

 

Figure 3. Changes of surface temperature over time for dry clay soil. 

Table 3. Results of STI. 

Samples Laboratorial Measured 

Values (J·m−2·K−1·S−1/2) 

Estimated Results 

(J·m−2·K−1·S−1/2) 

Dry clay soil 564.6 555.4 

Dry sandy soil 560.7 

Full covered vegetation 607.2 624.3 

Before the lamp used to simulate the solar radiation was turned on in this experiment, samples had 

been placed in the laboratory for approximately 24 h in order for the samples to reach the same 

temperature as that of the laboratory environment. During the experiment (once the lamp was turned on), 

the net radiation and the surface temperature were automatically recorded at an interval of 10 seconds. 

For the dry clay soil, the curve of surface temperature change over time is shown in Figure 3. It can be 

seen from Figure 3 that the rate of temperature rising becomes smaller as time goes by. This is because 

it takes a few minutes for the sample’s temperature and the surrounding air temperature to approach 

equilibrium. In order to achieve a better accuracy in the calculations, only the first 10 measurements are 

used to compute the STI. 
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The results of STI measurement are shown in Table 3.The standard deviation of STI measurements 

within each of three categories (sandy, clay, and vegetation) are 8.87, 9.68, and 5.53 J·m−2·K−1·S−1/2, 

respectively. The average values of three samples in each category are listed in the laboratory measured 

values of Table 3. It can be seen from Table 3 that STI values from the laboratory measurements are 

very close to the results estimated in Section 3.2.3. The STI values for dry soil and vegetation both have 

a bias below 20 J·m−2K−1S−1/2 compared with the estimates from Section 3.2.3. The laboratory 

experiment verifies that the STI estimates from Section 3.2.3 are reasonable. 

4. Regional Application of DDTI and the ET Estimation 

4.1. Computation Processes of the Two Models 

Due to the fact that the observation of ET at Yucheng station was not available after year 2011 and 

the year 2009 showed a high precipitation (101.6 mm) in April and May, days from 1 March 2008 to  

30 June 2009, were selected as the study period to estimate the regional ET using DDTI. 21 clear days 

with cloud cover of less than 10% were chosen based on the MOD11A1 data. There are 13 days selected 

from year 2008 with four days (3 March, 24 March, 17 April, 29 April) in spring, two days (20 May,  

23 August) in summer, six days (1 September, 16 September, 1 October, 19 November, 21 November, 

and 30 November) in autumn, one day (30 December) in winter. Another eight days are selected from 

year 2009. One day (1 January) is in winter, five of the days (18 March, 9 April, 21 April, 25 April, and 

26 April) are in spring, and 23 May and 5 June are in summer. For the DDTI model, the most suitable 

simplified thermal inertia values described in Section 3.2.3. were applied to the 21 clear days in order to 

determine the theoretical dry lines first. The simplified thermal inertia of dry soil Psd, mean net radiation, 

start time t1h, end time t2h, and start temperature T1h are fed into Equation (13); then, the theoretical bare 

soil temperatureTs2h can be calculated. Similarly, Tv2h can be obtained by Equation (16). After identifying 

the two endpoints on the theoretical dry line, the theoretical dry line can be determined. For the heat 

energy balance model, two endpoints were obtained by Equations (5) and (6). In the computations, the 

daily maximum air temperatures observed separately by eleven weather stations in the study area were 

used as the air temperatures when determining two endpoints. The aerodynamic resistance is calculated 

by Equations as follows [25,35]: 

𝑟 =
𝑙𝑛 [

𝑧𝑚 − 𝑑
𝑧𝑜𝑚

] 𝑙𝑛 [
𝑧ℎ − 𝑑

𝑧𝑜ℎ
]

𝑘2𝑢𝑧
 (23) 

𝑧𝑜ℎ = 0.1𝑧𝑜𝑚 (24) 

𝑑 = [1 −
1 − 𝑒𝑥𝑝 (−√7.5𝐿𝐴𝐼)

√7.5𝐿𝐴𝐼
] ∙ ℎ (25) 

ℎ = 𝑎
𝐿𝐴𝐼

𝑓
− 𝑏 (26) 

𝑧𝑚 = 0.1ℎ (27) 

where zm is the height of wind measurements (m), zh is the height of humidity measurements (m). 

Generaly, zh takes the same value with zm. d is zero plane displacement height (m). zom is roughness 
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length governing momentum transfer (m). zoh is the roughness length governing transfer of heat and 

vapor (m). k is the von Karman’s constant, 0.41. μz is the wind speed at height z (m·s−1). h is the crop 

height. a and b are empirical coefficients and for wheat, they are 0.0093 and 0.0023 m, respectively. For 

bare land, h and d are zero and zom is set to 0.04 m [36]. 

During the period of study, MOD11A1 data, from the land surface temperature product from 

Moderate-resolution Imaging Spectroradiometer (MODIS) were processed by the MODIS Reprojection 

Tool (MRT). The albedo data were from MCD43B3 and also processed by the MRT. Other data 

variables, such as NDVI, and VFC, were processed by the following approaches, with the MOD09GA 

products being used as the original input. 

(1) NDVI 

𝑁𝐷𝑉𝐼 =
α1 − α2

α1 + α2
 (28) 

where α1 and α2 are the 12th and 11th band in the MOD09GA product. 

(2) VFC 

𝑉𝐹𝐶 =
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 (29) 

where NDVImax is the maximum value in the NDVI data and NDVImin is the minimum value in the  

NDVI data. 

(3) Emissivity 

ε𝑠 = 0.273 + 1.778ε31 − 1.807ε31ε32 − 1.037ε32 + 1.774ε32
2  (30) 

where ε31 and ε32 are emissivity of the band 31 and the band 32 in MOD11A1 data, εs is the land surface 

emissivity [37]. 

In this paper, the slope of the theoretical wet line was set to zero. It implies that bare soil or a full 

cover vegetation area where there is no water stress has the same surface temperature as the theoretical 

wet line. The temperature of regional bodies of water within the study area was used as the intercept of 

the theoretical wet line [38].  

During the experiment, the Bowen ratio of soil and the Bowen ratio of vegetation can be calculated 

by the layered energy-separating algorithm of Bowen Ratio. Formulas are provided in  

Equations (31) and (32) [12,20]. Then, the available energy can be separated into soil evaporation and 

vegetation transpiration. A detailed introduction can be found in the literature [12,20]. 

β𝑠𝑖 =
𝑇𝑠𝑙 − 𝑇𝑠𝑠

𝑇𝑠𝑙 − 𝑇𝑠𝑖
− 1 (31) 

β𝑣𝑖 =
𝑇𝑣𝑙 − 𝑇𝑣𝑠

𝑇𝑣𝑙 − 𝑇𝑣𝑖
− 1 (32) 

where Tsl is the maximum value of separated soil temperature, Tss is the minimum value of separated 

soil temperature, Tvl is the maximum value of separated vegetation temperature, Tvs is the minimum 

value of separated vegetation temperature, Tsi is the separated soil temperature of pixel i, and Tvi is the 

separated vegetation temperature of pixel i. 
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A flow chart showing the whole process is provided in Figure 4. The equal soil moisture line is a line 

in which pixels have the same soil moisture and the VFC is the only parameter influencing LST, ignoring 

influences from other meteorological variables. Equal soil moisture lines are obtained by the ratio of 

vertical distance to the theoretical dry line and vertical distance to the theoretical wet line. The purpose to 

determine an equal soil moisture line is to decompose the mixed land surface temperatures in the PCACA 

model. Two points in one equal soil moisture line, which have same soil temperature and vegetation 

temperature, can be decomposed by solving linear equations [12,20,25]. The major difference between the 

two models (DDTI and the heat energy balance model) is how the theoretical dry line is determined.  

 

Figure 4. Flow chart of the ET estimation processes. 

4.2. Results 

Three methods were adopted to evaluate the results: the first by comparing the locations of theoretical 

dry lines, the second by comparing ET results and the third by comparing the evaporative fractions from 

the two models (DDTI and the heat energy balance model) with the in situ measurements. 

4.2.1. The Location of Theoretical Dry Line 

The locations of theoretical dry lines determined from the two models in each season are shown in 

Figure 5. Two days were selected for each season as representative to compare the two models. Using 

historical precipitation data from the China Meteorological Sharing Service System, we identified 21 

individual dates as representative of either dry periods or wet periods. The cumulative precipitation in 

the ten days prior to 3 March, 19 November, 21 November, 30 November, 30 December, 1 January,  

18 March, and 9 April was less than 3 mm and these eight days are considered to be dry periods. The 

other 13 days are considered to be humid or sub-humid periods. Some meteorological variables at the 

overpassing time of 21 MODIS scenes are shown in Table 4. It can be seen from Figure 5 that the 

locations of theoretical dry lines determined by the heat energy balance model are closer to the scatter 

cloud and lower than theoretical dry lines determined by DDTI model except the Winter, indicating that 
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the line from DDTI shows a dryer condition than that from the heat energy balance model in the spring, 

summer and autumn. In the winter, lines of two days are almost the same, which indicating that the two 

models have the same effect to determine dry lines in dry period. It can also be seen from Figure 5 that, 

in wet days, such as 23 May 2008 and 25 May 2009, values of Tsd by the DDTI model are 30 K higher 

than the highest land surface temperature of the area, while values of Tsd from the heat energy balance 

model are only about 10 K higher than the highest land surface temperature of the area. Tsd of about 10 K 

higher than land surface temperature turns out to be unreasonable for wet areas. So, the DDTI model is 

more reasonable than heat energy balance model in wet areas. The intercept of the theoretical dry line 

can be as high as 350 K, which can be explained by the definition of the theoretical dry line, since it 

refers to the historical extreme dry situation. The DDTI model presented in this paper can be used not 

only in two-layer ET models, but also can be used in one-layer feature space schemes. The air 

temperatures observed at the satellite overpass time in Yucheng and the wet lines for eight dates are also 

shown in Figure 5. It can be seen from Figure 5 that, air temperatures in Yucheng are usually higher than 

the wet lines except on 30 December 2008 and 1 January 2009. The temperature of the water body, 

which was measured at the center of a lake from the MODIS LST data product to determine the wet line, 

is more stable than the air temperature in Yucheng at the satellite overpass time. During late December 

and early January when is in cold winter, the air temperature in Yucheng at the satellite overpass time 

can be 2 or 3 degrees lower than the temperature of the water body which was close to zero degrees 

Celsius. It appears that using the temperature of water body as wet lines is more reasonable. 

Table 4. Meteorological variables at the MODIS overpassing time at Yucheng Station. 

Variables Date 
Overpass Time in 

Local 
S0 (W/m2) Ta (°C) 

Wind Speed 

(m/s) 

Air Relative 

Humidity (%) 

3 March 2008 11 a.m. 700.5 7.9 4.457 24.9 

24 March 2008 11:18 a.m. 806 10.85 0 24.18 

17 April 2008 10:30 a.m. 730.7 20.37 4.22 66 

29 April 2008 10:54 a.m. 718.1 23.29 1.8 47.11 

20 May 2008 10:54 a.m. 831 25.8 6.7 50 

23 August 2008 10:30 a.m. 722.1 28.42 2.098 68.04 

1 September 2008 10:24 a.m. 749.9 25 1.22 51.5 

6 September 2008 10:30 a.m. 606.5 27.3 1.277 58.04 

1 October 2008 10:30 a.m. 661.2 22.71 2.77 57 

19 November 2008 11:18 a.m. 533.3 4.8 0.921 27.1 

21 November 2008 11:6 a.m. 469.4 9.94 3.69 34.52 

30 November 2008 11 a.m. 445.1 10.73 4.1 33.78 

30 December 2008 11:12 a.m. 469.4 −0.5 3.69 27.85 

1 January 2009 11 a.m. 441 −2.25 0 34.9 

18 March 2009 11:24 a.m. 659.9 21.93 4.48 52.5 

9 April 2009 10:48 a.m. 782.2 20.87 3.3 41.4 

21 April 2009 11:12 a.m. 873 17.9 2.6 37.2 

25 April 2009 10:48 a.m. 831 17.3 2.9 35.5 

26 April 2009 11:30 a.m. 854 18 2.1 30 

23 May 2009 10:40 a.m. 937 23.73 2.5 50.6 

5 June 2009 10:42 a.m. 754 30.12 2.35 41.75 
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Figure 5. Locations of the theoretical wet/dry lines from two models in each season. 

4.2.2. Comparison of ET Results 

Estimates of ET results from the two models  were compared with the in situ messurements at the 

Yucheng Station. Comparison result are shown in Figure 6. LE appeared to be well estimated by the two 

models. DDTI demonstrated ET with a root mean square error (RMSE) of 56.77 W/m2 and a bias of 

27.17 W/m2; while the heat energy balance model demonstrated an RMSE of 83.36 W/m2 and a bias of 

−38.42 W/m2. For comparing the coeffcient of determination for the two models, DDTI demonstrated 

ET with R2 of 0.9065; while the heat energy balance model has that of 0.7729. The DDTI results were 

statistically closer to the observations. 

 

Figure 6. ET estimates from two models. 
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The evapotranspiration results on 18 March and 21 April of 2009 by the DDTI model are shown in 

Figure 7. These two days are representative of dry days and wet days, separately. It can be seen from 

Figure 7 that the evapotranspiration on 21 April is larger than that of 18 March in 2009, because 21 April 

was wetter than 18 March. In both images, the areas with the largest evapotranspiration are bodies of 

water. Since the northwest region of the study area was mainly composed of cotton growing area, it was bare 

land in March and April, so evapotranspiration is much less than other areas, which are winter wheat fields 

or mountain forest. Areas with no evapotranspiration values (shown in white) are cloud-contaminated pixels.  

 

Figure 7. Regional ET of 18 March and 21 April. 

4.2.3. Comparison of Evaporative Fraction from the Two Models 

In order to further analyze the performance of the theoretical dry line determination by DDTI, the 

Evaporative Fraction (EF) was selected as a criterion to evaluate the two models. EF is defined as the 

ratio of ET to the available energy [39]. 

𝐸𝐹 =
𝐿𝐸

𝑅𝑛 − 𝐺
 (33) 

 

Figure 8. Comparison of EF of the two models. 
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EF values observed by Yucheng station, estimated by the heat energy balance model and by DDTI in 

the 21 clear days, are shown in Figure 8. When compared with the in situ measurements of EF at 

Yucheng Experimental Station, the ET model based on DDTI reproduces the pixel scale EF with an 

RMSE of 0.151, which is much lower than that based on the heat energy balance model (an RMSE of 

0.220). Also, the bias between DDTI and in situ measurements is 0.064 lower than the bias of the heat 

energy balance model, which is −0.084. It shows that the DDTI model provided more accurate estimates 

than the heat energy balance model.  

5. Discussions 

5.1. Comparison with Other Studies 

Extensive validation and inter-comparison studies of remote sensing-based evapotranspiration 

models had been conducted using dataset from the Yucheng station [40–44]. Sun [41] presented a study 

to retrieve ET based on MODIS data and Yucheng Station was selected to validate the model. The study 

from Sun showed that the Sim-ReSET model had instantaneous ET estimation with a mean absolute 

difference (MAD) of 34.27 W/m2 and a root mean square error (RMSE) of 41.84 W/m2 [40,41]. Liu 

presented ET retrievals from MODIS data during year 2005–2006 over the Yucheng station, which had 

the consistency index of 0.917, correlation coefficient of 0.872 with the measurements by a lysimeter [42]. 

Tang compared three remote sensing-based energy balance models using lysimeter during the wheat 

(late April to late May) and corn (early July to late September) growing periods excluding the maturity 

stage of year 2009. The three models were the surface energy balance system (SEBS), the two-source 

energy balance (TSEB) model and the surface temperature-vegetation index triangle (TVT). When 

estimating ET with the same dataset, the TSEB model showed an agreement with the Lysimeter observed 

result with an RMSE of about 45 W/m2, while the SEBS showed an RMSE of about 55 W/m2 and TVT 

showed an RMSE higher than 110 W/m2 [43]. Tian presented ET estimates with an operational  

two-layer model in North China based on MODIS data in year 2004 from March to June, which showed 

that the correlation coefficient between the estimated surface ET and the observations from Yucheng 

station was 0.85 and the RMSE is 21.3 W/m2 [44]. 

The ET estimates from the DDTI model have an RMSE of 56.77 W/m2, a bias of 27.17 W/m2, and 

an R2 of 0.9065, while the EF by the DDTI model have an RMSE of 0.149, a bias of 0.064. The accuracy 

of the ET results by DDTI is comparable to the prior studies. The DDTI result have a smaller bias than 

Sim-ReSET and a higher R2 than Sim-ReSET and Tian’s result, which indicates that the theoretical dry 

line determined by the DDTI is more reasonable. Sim-ReSET and TSEB both show a lower RMSE than 

DDTI because all four different seasons are included in the DDTI estimates, however, the other models 

focused only on the crop growing seasons.  

5.2. Advantages of DDTI 

The most significant contribution of DDTI is its capability to determine the theoretical dry line in wet 

period without the need of aerodynamic resistance and air temperature at the satellite overpassing time. 

This feature would be more beneficial in ET estimation compared with the heat energy balance model 

and other feature space models. In particular, DDTI is featured with the following advantages: 
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(1) DDTI is especially advantageous for applications in area of wet situation where no dry pixels 

exist. In the feature space models, it is more difficult to determine the dry line than the wet line 

since dry pixels do not exist in many situations. The determination of the dry line is somewhat 

subjective and, thus, inaccurate. Therefore, the locations of dry line are usually underestimated. 

The DDTI model estimates the theoretical dry line by the soil characteristics, which are 

determined from historical extremely dry situations, without the need of land surface temperature 

at the satellite overpassing time.  

(2) DDTI does not need the parameterization of the aerodynamic resistance which is required in 

other ET models, such as the heat energy balance model. Consequently, some other parameters 

which are needed to estimate aerodynamic resistance (e.g., canopy height, roughness) are not 

required. The aerodynamic resistance is usually difficult to available at regional scales. Not using 

the aerodynamic resistance is another advantage of DDTI. 

(3) DDTI requires relatively fewer inputs. Meteorological variables such as air temperature, air 

humidity, and wind speed at satellite overpass time are not needed in this model. It has to be 

noted that air temperature and air humidity are required variables for many ET models, such as 

the heat energy balance model.  

(4) The DDTI model can be integrated not only in two-layer ET models, but also can be used in  

one-layer feature space schemes. 

5.3. Limitations of DDTI 

(1) A special category of observations from ground is needed in DDTI. Some parameters, such as 

land surface temperature and local time when net radiance is equal to 0, are needed. The 

application of this method is limited in areas which don’t have this data.  

(2) DDTI needs the STI values of bare land and vegetation fully covered area. In this paper, they are 

determined by a historical dataset. A laboratory experiment was also used to measure the STI. 

DDTI cannot be used in areas without a historical extremely dry period. 

(3) Soil texture is not considered in DDTI. Soil texture is assumed to be uniform when estimating 

STI from remote sensing images in this paper. When DDTI is used in area with heterogeneous 

soil texture, it is more reasonable to adjust the STI values to account for the soil texture, which 

will be studies in the future.  

(4) DDTI was evaluated in North China Plain in this present study. Performance of DDTI is to be 

evaluated in the regions with different climatology. MODIS images used in this paper have a 

resolution of 1km. Satellite sensors with a finer spatial resolution, such as Landsat TM and HJ 1B, 

will be used in the future study. 

6. Conclusions  

In this study, we developed a new model named DDTI to determine the theoretical dry line. The 

Simplified Thermal Inertia was first estimated by satellite observations in the North China Plain, and 

then validated by a laboratory experiment. DDTI was applied to the 13 clear days from 2008 and eight 

clear days from 2009 in the North China Plain to estimate the regional ET. Finally, the EF observed by 
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an experimental station was used to assess the accuracy of ET retrieval. Several conclusions can be made 

from this study: 

(a) The STI values estimated in the North China Plain in dry situations are consistent with the 

measurements in the laboratory experiment, which is a solid basis for the DDTI model. 

(b) The theoretical dry line determined by the DDTI is all above the scatter cloud in the feature space 

and also higher than that by the heat energy balance model in spring, summer, and autumn. The 

theoretical dry lines determined by the two models are almost the same in winter. The theoretical 

dry line determined by the DDTI appears more reasonable and robust than the line determined 

by the heat energy balance model, especially in wet period. 

(c) Validation of DDTI was done by comparing the ET estimates from 21 scenes of MODIS images 

and the Eddy covariance measurements at Yucheng Station. ET estimated from DDTI has an 

root mean square error (RMSE) of 56.77 W/m2 and a bias of 27.17 W/m2; while the heat energy 

balance model estimated ET with an RMSE of 83.36 W/m2 and a bias of −38.42 W/m2. When 

comparing the coeffcient of determination of two models with data from Yucheng, DDTI 

demonstrated ET with R2 of 0.9065; while the heat energy balance model has that of 0.7729. 

When compared with the in situ measurement of evaporative fraction (EF) at Yucheng 

Experimental Station, the ET model based on DDTI reproduces the pixel scale EF with an RMSE 

of 0.149, much lower than that based on the heat energy balance model which has an RMSE of 

0.220. Also, the EF bias between the DDTI model and the in situ measurements is 0.064, lower 

than the EF bias of the heat energy balance model, which is −0.084.This reveals that the DDTI 

model gives better estimates of ET than the heat energy balance model, and it can be applied to 

both wet conditions and dry conditions. 

Acknowledgments 

The work described in this publication has been supported by the National Natural Science 

Foundation of China (41171286, 41271380, and 41571356), the National Basic Research Program of 

China 2013CB33406, and the Open Fund of State Key Laboratory of Remote Sensing Science 

(OFSLRSS201510). Daily maximum air temperatures and precipitation data were provided by the China 

Meteorological Sharing Service System. 

Author Contributions 

Sujuan Mi wrote the manuscript with the contributions from all co-authors and was responsible for 

the research design, data preparation, and analysis. Hongbo Su, Renhua Zhang and Jing Tian conceived 

and designed the research. 

Conflicts of Interest 

The authors declare no conflict of interest.  

  



Remote Sens. 2015, 7 10875 

 

References 

1. Choudhury, B.J. Estimating evaporation and carbon assimilation using infrared temperature data: 

Vistas in modeling. In Theory and Applications of Remote Sensing; Asrar, G., Ed.; John Wiley:  

New York, NY, USA, 1989; pp. 628–690. 

2. Kustas, W.P.; Norman, J.M. Use of remote sensing for evapotranspiration monitoring over land 

surfaces. Hydrol. Sci. J. 1996, 41, 495–517. 

3. Moran, C.A.; Jackson, R.D. Assessing the spatial distribution of evapotranspiration using remotely 

sensed inputs. J. Environ. 1991, 20, 725–737. 

4. Jiang, L.; Islam, S. A methodology for estimation of surface evapotranspiration over large areas 

using remote sensing observations. Geophys. Res. Lett. 1999, 26, 2773–2776. 

5. Jiang, L.; Islam, S. Estimation of surface evaporation map over southern Great Plains using remote 

sensing data. Water Res. 2001, 37, 329–340. 

6. Allen, R.G.; Tasymi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration 

with internalized calibration (METRIC)-model. J. Irrig. Drain. Eng. 2007, 133, 380–394. 

7. Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holslag, A.A.M. A remote sensing surface 

energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. 

8. Su, Z.B. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. 

Hydrol. Earth Sys. Sci. 2002, 6, 85–99. 

9. Roerink, G.J.; Su, Z.B.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the 

surface energy balance. Phys. Chem. Earth (B) 2000, 25, 147–157. 

10. Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy 

fluxes in observations of directional radiometric surface temperature. Agr. For. Meteor. 1995, 77, 

263–293. 

11. Kustas, W.P.; Norman, J.M. A two-source energy balance approach using directional radiometric 

temperature observations for space canopy covered surfaces. Agr. J. 2000, 92, 847–854. 

12. Zhang, R.H.; Sun, X.M.; Wang, W.M.; Xu, J.P.; Zhu, Z.L.; Tian, J. An operational two-layer remote 

sensing model to estimate surface flux in regional scale: Physical background. Sci. China Ser. D 

Earth Sci. 2005, 48, 225–244. 

13. Kustas, W.P.; Norman, J.M. Evaluation of soil and vegetation heat flux predictions using a simple two 

source model with radiometric temperatures for partial canopy cover. Agr. For. Meteor. 1999, 94, 13–29. 

14. Xu, Z.X.; Li, J.Y. Estimating basin evapotranspiration using distributed hydrologic model.  

J. Hydrol. Eng. 2003, 2, 74–80. 

15. Price, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE 

Trans. Geophys. Remote Sens. 1990, 28, 940–949. 

16. Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimation crop water deficit using the relation between 

surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. 

17. Nishida, K.; Nemani, R.R.; Running, S.W.; Glassy, J.M. An operational remote sensing algorithm 

of land surface evaporation. J. Geo. Res. 2003, 108, 4270. 

18. Merlin, O. An original interpretation of the wet edge of the surface temperature-albedo space to 

estimate crop evapotranspiration (SEB-1S), and its validation over an irrigated area in northwestern 

Mexico. Hydrol. Earth Sys. Sci. 2013, 17, 3623–3637. 

http://www.cabdirect.org/search.html?q=ed%3A%22Asrar%2C+G.%22


Remote Sens. 2015, 7 10876 

 

19. Meilin, O.; Chirouze, J.; Olioso, A.; Jarlan, L.; Chehbouni, G.; Boulet, G. An image-based four source 

surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal 

emission data (SEB-4S). Agr. For. Meteor. 2014, 184, 188–203. 

20. Zhang, R.H.; Tian, J.; Sun, X.M.; Chen, S.H.; Xia, J. Two improvements of an operational two-layer 

model for terrestrial heat flux retrieval. Sensors 2008, 8, 6165–6187. 

21. Tang, R.L.; Li, Z.L.; Tang, B.H. An application of the TS‐VI triangle method with enhanced edges 

determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: 

Implementation and Validation. Remote Sens. Environ. 2010, 114, 540–551. 

22. Bastiaanssen, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, 

Turkey. J. Hydrol. 2000, 229, 87–100. 

23. Long, D.; Singh, V.P. A two-source trapezoid model for evapotranspiration (TTME) from satellite 

imagery. Remote Sens. Environ. 2012, 121, 370–388. 

24. Price, J.C. On the analysis of thermal infrared imagery: The limited utility of apparent thermal 

inertia. Remote Sens. Environ. 1985, 18, 59–73. 

25. Zhang, R.H. Quantitative Model of Thermal Infrared Remote Sensing and Ground Experiments. 

Beijing; Science Press: Beijing, China, 2009; pp. 274–279.  

26. Robin, L.F.; Philip, R.C.; Hugh, H.K. High-resolution thermal inertia derived from the thermal emission 

imaging system (THEMIS): Thermal model and applications. J. Geophys. Res. 2006, 111, 1–22. 

27. Price, J.C. Thermal inertia mapping: A new view of the earth. J. Geophys. Res. 1977, 82, 2582–2590. 

28. Pratt, D.A.; Ellyett, C.D. The thermal inertia approach to mapping of soil moisture and geology. 

Remote Sens. Environ. 1979, 8, 151–168. 

29. Sobrino, J.A.; EI Kharraz, M.H. Combining afternoon and morning NOAA satellites for thermal 

inertia estimation: Methodology and application. J. Geophys. Res. 1999, 104, 9455–9465. 

30. Kahle, A.B.; Gillespie, A.R.; Goetz, F.H. Thermal inertia imaging: A new geologic mapping tool. 

Geophys. Res. Lett. 1976, 3, 23–28. 

31. Tramutoli, V.; Claps, P.; Marella M.; Pergola, N.; Sileo, C. Feasibility of hydrological application 

of thermal inertia from remote sensing. In Proceedings of the 2nd Plinius Conference on 

Mediterranean Storms, Siena, Italy, 16–18 October 2000; pp. 16–18. 

32. Cracknell, A P.; Xue, Y. Thermal inertia determination from space—A tutorial review. Int. J. Remote 

Sens. 1996, 17, 431–461. 

33. Zhang, R.H. Investigation of remote sensing of soil moisture. In Proceedings of the Fourteenth 

International Symposium on Remote Sensing of Environment V.I., San Jose, Costa Rica, 23–30 

April 1980; pp. 121–133. 

34. Short, N.; Stuart Jr, L. The Heat Capacity Mapping Mission (HCMM) Anthology; Scientific and 

Technical Information Branch, National Aeronautics & Space Administration: Washington, DC, 

USA, 1983. 

35. Fao corporate document repository. Available online: http://www.fao.org/docrep/x0490e/x0490e06.htm# 

aerodynamicresistance (ra) (assessed on 18 August 2015). 

36. Jia, L.; Wang, J.M.; Massimo, M. Estimation of area roughness length for momentum using remote 

sensing data and measurements in field. Chin. J. Atmos. Sci. 1999, 23, 632–643. 

37. Liang, S.L. Quantitative Remote Sensing of Land Surface; John Wiley & Sons: Hoboken, NJ, USA, 

2004. 



Remote Sens. 2015, 7 10877 

 

38. Carlson, T. Evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. 

39. Shuttleworth, W.J.; Gurney, R.J.; Hsu, A.Y.; Ormsby, J.P. FIFE: The variation in energy partition at 

surface flux sites. In Remote Sensing and Large-Scale Processes, Proceedings of the IAHS Third 

International Assembly, Baltimore, MD, USA, 10–19 May 1989; IAHS Publication: Baltimore, 

MD, USA, 1989; Volume 186, pp. 67–74.  

40. Sun, Z.G.; Wang, Q.X.; Matsushita, B.; Fukushima, T.; Ouyang, Z.; Watanabe, M. Development of 

a simple remote sensing evapotranspiration model (Sim-ReSET): Algorithm and model test.  

J. Hydrol. 2009, 376, 476–485. 

41. Sun, Z.; Wang, Q.; Matsushita, B.; Fukushima, T.; Ouyang, Z.; Gebremichael, M. A simple model 

for estimating evapotranspiration based solely on remote sensing: Algorithm and application. In 

AGU Fall Meeting Abstracts, Proceedings of the AGU Fall Meeting, San Francisco, CA, USA,  

14–18 December 2009; Volume 1, p. 769. 

42. Liu, C.; Gao, W.; Gao, Z.; Shi, R. Application of MODIS data for assessment of evapotranspiration 

and drought in Northern China. In SPIE Proceedings, Proceedings of the Remote Sensing and 

Modeling of Ecosystems for Sustainability VI, San Diego, CA, USA, 2 August 2009;  

Gao, W., Jackson, J.G., Eds.; International Society for Optics and Photonics: Belek-Antalya, 

Tuekey, 2009; p. 74541. 

43. Tang, R.; Li, Z.L.; Jia, Y.; Li, C.R.; Sun, X.M.; Kustas, W.P.; Anderson, M.C. An intercomparison 

of three remote sensing-based energy balance models using large aperture scintillometer 

measurements over a wheat-corn production region. Remote Sens. Environ. 2011, 115, 3187–3202. 

44. Tian, J.; Su, H.; Sun, X.; Chen, S.H. Application of an operational two-layer model for soil 

evaporation and vegetation transpiration retrievals in North China. Geogr. Res. 2009, 28, 1297–1306. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


