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Abstract: Maximum flood extent—a key data need for disaster response and mitigation—is
rarely quantified due to storm-related cloud cover and the low temporal resolution of optical
sensors. While change detection approaches can circumvent these issues through the
identification of inundated land and soil from post-flood imagery, their accuracy can suffer
in the narrow and complex channels of increasingly developed and heterogeneous
floodplains. This study explored the utility of the Operational Land Imager (OLI) and
Independent Component Analysis (ICA) for addressing these challenges in the
unprecedented 2013 Flood along the Colorado Front Range, USA. Pre- and post-flood
images were composited and transformed with an ICA to identify change classes. Flooded
pixels were extracted using image segmentation, and the resulting flood layer was refined
with cloud and irrigated agricultural masks derived from the ICA. Visual assessment against
aerial orthophotography showed close agreement with high water marks and scoured
riverbanks, and a pixel-to-pixel validation with WorldView-2 imagery captured near peak
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flow yielded an overall accuracy of 87% and Kappa of 0.73. Additional tests showed a
twofold increase in flood class accuracy over the commonly used modified normalized water
index. The approach was able to simultaneously distinguish flood-related water and soil
moisture from pre-existing water bodies and other spectrally similar classes within the
narrow and braided channels of the study site. This was accomplished without the use of
post-processing smoothing operations, enabling the important preservation of nuanced
inundation patterns. Although flooding beneath moderate and sparse riparian vegetation
canopy was captured, dense vegetation cover and paved regions of the floodplain were main
sources of omission error, and commission errors occurred primarily in pixels of mixed land
use and along the flood edge. Nevertheless, the unsupervised nature of ICA, in conjunction
with the global availability of Landsat imagery, offers a straightforward, robust, and flexible
approach to flood mapping that requires no ancillary data for rapid implementation. Finally,
the spatial layer of flood extent and a summary of impacts were provided for use in the
region’s ongoing hydrologic research and mitigation planning.

Keywords: change detection; Colorado Front Range; flood; independent component
analysis; inundation mapping; Landsat 8

1. Introduction

Flooding is one of the most common and destructive natural hazards, resulting in significant loss of
life and property, damage to infrastructure, and environmental impacts each year. As the global climate
continues to change, more intense and long-lasting precipitation events are likely to increase the
frequency and magnitude of floods [1,2], while continued urban development and human
encroachment into flood prone areas significantly heightens the potential for damage [1,3].

The current capacity of land management agencies and municipalities to forecast, prepare for, direct
planning and zoning policies, and mitigate and respond to the effects of flooding is inadequate.
Calibration of elevation-based flood inundation models is limited by a lack of or limitations to field
measurements during extreme events [3], and collected aerial imagery and in-situ data are often
focused within municipal rather than hydrologic boundaries. As a result, regional-scale assessments
require substantial amounts of time and resources to compile data collected from a variety of sources
and methods. These concerns make accurate mapping and assessment of floods a top priority for
governments and disaster response agencies at both local and national scales [4,5].

Satellite remote sensing provides an efficient tool for flood mapping [6,7], and optical sensors play
a critical role. The Landsat TM/ETM+ instruments are commonly used to derive maps of flood extent
through thresholds of water and vegetation indices from an image captured during or immediately
following a flood event [8,9]. While these techniques can provide accurate and useful results, the
combined challenges of low temporal resolution and storm-related cloud cover remain significant
limitations [10,11]. In the rare case that a cloud free image is available during the event, the resulting
measure of flood width is inherently tied to the weather and flow conditions present at the time the
scene is captured. Furthermore, the limited spectral information available in such single-scene analyses
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makes distinguishing flooded areas from pre-existing water bodies difficult, and can cause
classification errors in pixels containing both water and flood-related soil moisture. As a result,
maximum flood extent—a top priority for both flood responders and hydrologists—is rarely quantified
using passive satellite imagery [11,12].

Multi-temporal strategies offer a promising solution to these issues, as they provide significantly more
information to the analyst, and can circumvent many of the data gaps due to cloud cover. A number of
recent studies have shown the utility of Aqua/Terra MODIS imagery for this purpose [13—15], and make
use of the satellite pair’s 12-hour return interval to map inundation through time-series analysis and
spectral indices. However, while such approaches are effective for mapping floods in large river basins,
the coarse spatial resolution and view angle of MODIS data considerably limits its utility in small
catchments and narrow channels [10].

Consequently, change detection methods using Landsat image pairs currently offer the most viable
option for flood mapping at the local or regional scale. These approaches commonly involve the use of
pre-and post-flood image pairs to identify pixels that changed from non-water to water between scene
dates, and have been accomplished using post classification image differencing [12,16], as well as
principal component analysis (PCA) of pre- and post-flood image stacks [17]. The latter approach
seeks to map flooded pixels by identifying maximum variances in spectral values between the image
dates. However, because PCA is based on second-order statistics, it is not suitable for distinguishing
information components from noise related to the complexity of many change detection problems [18],
and often provides poor extraction of scene components in non-Gaussian regions of multi-temporal
images [19]. This can present significant challenges in heterogeneous landscapes that possess change
classes spectrally similar to flooding (i.e., irrigated agriculture). Furthermore, these methods often
employ significant post-processing to smooth the flood boundary. This produces a more visually
appealing result, but homogenizes the flood boundary and makes it less suitable for subsequent
hydrologic and mitigation research.

Recent studies have explored the use of advanced supervised machine learning classifiers [20,21], and
clearly demonstrate the ability of such techniques to better handle class differences and mixed pixels.
While these are powerful and promising approaches, their supervised nature requires that target classes
must be known a priori in order to create training data for classification. This adds time and complexity
to the mapping workflow, and introduce the potential for human error in pre-processing. Moreover,
because training data sets offer only a fraction of the full range of values to the classifier, the resulting
flood classes may not include pixels that experienced more nuanced changes in spectral values. This is
particularly the case if the spectral indication of flooding is related more to inundated soil rather than to
open water, which is often the case in images captured days after the flood peak has occurred.

The last decade has seen a number of developments that may help to address these issues. Similar to
the PCA, the independent component analysis (ICA) [22] is a more recent statistical and computational
technique born out of the fields of signal processing and neural computing. The ICA linearly
transforms data into components that are maximally independent from each other [23,24], and is thus
capable of identifying the underlying factors in a dataset that are a mixture of several sources, called
independent components (IC). As a result, the technique can serve as a powerful unsupervised image
classifier [23,25] that makes use of all data present in an image stack to produce comprehensive,
unbiased class definitions [21]. The ICA is also designed to simultaneously seek out statistically
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“interesting” distributions of multidimensional data, which are often those that show the least Gaussian
distribution [23].

Significant advances have also been made in the design of modern optical sensors. The Operational
Land Imager (OLI) onboard Landsat 8 offers a number of new spectral bands and data improvements
over previous Landsat missions. The increased radiometric resolution and signal-to-noise ratio of the
OLI provides a larger range of values at lower error rates, which may help to isolate subtle changes
due to flood inundation within complex and spectrally similar landscapes. Additionally, Landsat 8 data
is delivered with very high geometric accuracy and multispectral band registration, which promotes
more accurate change detection and removes the need for additional co-registration.

Despite these developments, to the best of our knowledge, no research has combined Landsat 8 and
ICA for remote sensing of floods. In this study, we address this gap by mapping the maximum extent
of the unprecedented September 2013 flood in Colorado, USA. Our objective was to explore the utility
of OLI-based ICA change detection for identifying inundation in narrow river channels across a
developed and heterogeneous landscape. We begin with a description of the study area and the flood
event, followed by an explanation of data acquisition and analysis. The results are then validated and
quantitatively compared with a commonly used threshold technique. This is followed by a discussion
of strengths, error sources, and the potential of the approach for application to other floods and river
systems. Finally, we provide a spatial data layer of the flood extent and a summary of affected land
covers for use in ongoing hydrologic research and management planning related to the event.

2. Study Area and Flood Event Description

The Colorado Front Range extends north to south across the state and represents the point at which
North America’s Great Plains region meets the southern Rocky Mountains. The region has long been
used for irrigated agriculture, with water supplied by a number of major rivers that flow out of the
steep canyons and onto the lower gradient, unconfined semi-arid high plains, which intersect the
mountains at approximately 1,800 m in elevation [26]. Many of the rivers flowing west to east along
the Front Range have augmented flow from transcontinental water diversions from the Colorado River
Basin, pulling water from less populated to more populated regions in the state. The plains have seen a
dramatic rise in population in recent decades—particularly in urban and suburban centers [27], and the
region is now home to more than 80% of the Colorado population [28]. Though the typical annual
peak runoff is snowmelt driven and occurs in late May and early June, extreme events have historically
been generated by isolated convective thunderstorms. Elevations under 2,300 m commonly experience
rainfall-induced floods that mainly occur in July and August as a result of intense, localized
thunderstorms over the foothills [27].

This was the case during 9—16 September 2013, when the region experienced one of the most extreme
rainfall and flooding events in Colorado recorded history. Tropical moisture drawn north from the Gulf
of Mexico by a low-pressure system traveled into the Rocky Mountains and released its contents over the
Front Range. Large portions of the foothills received an exceptional amount of rainfall, with 457 mm
(18") falling within a period of 10 days [29]. This figure amounts to more than the annual average for the
region. The majority of this precipitation fell during a period of 36 hours from September 11 to
September 12 [29], with the water traveling down the system over the following days. The resulting
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flooding caused 250 debris slides, destruction of recreational facilities (US $44 million in damages),
615 km of destroyed roads, and US $2 billion in overall damages [30]. The event resulted in 10 human
deaths and thousands of people displaced or stranded, as damage to roads and bridges cut off access to
numerous residential areas. Research and assessment of this event is ongoing; while a handful of recent
studies have investigated the meteorological drivers [31], peak flows and flood frequencies [29], and
debris flows [32], there remains no comprehensive, regional-scale map of maximum flood extent along

the high plains region.
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Figure 1. Map of the Colorado Front Range and the project study site, comprised of all
areas within WRS-2 Path 34, Row 32 below 1800 m in elevation. Major affected counties,

cities, and rivers are included for reference.

Our study focused on mapping inundation in all areas along the plains of the Front Range. The site
stretches across nine counties from south of the city of Denver, Colorado to the Wyoming border
(Figure 1). The base of the foothills (1800 m contour) forms the western boundary of the study site,
and the eastern edge of World Reference System-2 (WRS-2) Path 34, Row 32 serves as the eastern
boundary. The area contains all rivers that flow out of the mountains and join to form the main stem of
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the South Platte River at the eastern edge of the study site. The most prominent of these include the
South Platte, Boulder Creek, Saint Vrain, Big Thompson, and Cache la Poudre Rivers.

3. Methodology

Our general workflow to map maximum flood extent was as follows (Figure 2): Pre- and post-flood
multispectral Landsat 8 images were combined into a single composite raster dataset. An ICA was run
on the image stack and the IC containing flooded pixels was identified. Flooded and non-flood pixels
were separated using image segmentation and thresholds, and class confusion was reduced through the
use of crop and cloud masks created from the other ICs. Pre-existing (unchanged) water bodies were
merged with the ICA modeled flood pixels, producing a final map of maximum flood extent.
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Figure 2. Workflow of the flood mapping procedure.
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3.1. OLI Characteristics, Data, and Processing

The Landsat 8 satellite was launched into orbit on 11 February 2013, and collects 30 m spatial
resolution multispectral data at a return interval of 16 days. The increased radiometric resolution of its
OLI (12-bit) instrument captures more levels of detail in each pixel than in any previous Landsat sensor.
This greater quantization allows the measurement of subtle variability in surface conditions [33], which
may improve the identification of residual soil moisture in areas that were inundated during a flood but
dry in a post-event image. The OLI also offers significant improvements in the signal-to-noise ratio,
which is estimated to reduce errors in retrieval of water characteristics to just 25% of those expected
from the ETM+ sensor [33]. Furthermore, the Landsat 8 L1T product is delivered with a registration
accuracy of <4.1 m across all multispectral bands, and a geometric accuracy of 7-13 m [34]; these
locational improvements significantly streamline pre-processing and increase the accuracy of
multi-temporal change detection [35]. The OLI is also equipped with two new bands: the
“coastal/aerosol” band, which is useful for imaging shallow water, and the “cirrus” band, which is
designed to identify clouds in the upper atmosphere and thus facilitate the creation of cloud masks.

When employing change detection to map flood extent, it is best to select image pairs that
“book-end” the flood event as closely as possible [5,17]. We acquired two Landsat 8 images (Path 34,
Row 32), the first captured 16 August 2013, and the second 17 September 2013. Both scenes were
nearly cloudless within the study site, with the exception of a few clouds near the city of Boulder,
Colorado in the August scene. We chose the August image to represent the pre-flood landscape, and
the September image to represent the post-flood condition approximately four days after peak
discharge of the region’s major rivers. These L1T terrain-corrected images were downloaded from the
U.S. Geological Survey Earth Explorer (http://earthexplorer.usgs.gov/), and were radiometrically
calibrated to top of atmosphere reflectance using ENVI v5.1 software. The multispectral bands from
each scene served as the basis for the subsequent change detection analysis.

3.2. Independent Component Analysis Change Detection

The central idea of ICA is to break down a set of multivariate signals into statistically independent
sources with minimal loss of information in order to achieve classification [36]. Given a set of random
variables X = (X1, X2,..., Xn), which are assumed to be the linear mixture of a set of statistically
independent components or source signals S = (x1,X2,..., Xn), the linear model of ICA is written as:

X = As (1)

where A is the unknown matrix of mixing parameters [19,23]. Using the given observations of X, I[CA
estimates A, and subsequently computes its inverse W, so that the independent components S are
obtained by:

s=Wx (2)

When an ICA is applied to a raster stack of two image dates, the algorithm can accurately distinguish
and categorize types of change between the two dates [18,19,37], as changed pixels are often the most
uncorrelated in the dataset. Unlike the PCA, which seeks to decorrelate components in a vector, the ICA
is based on higher order statistics and is thus able to identify components which may not be included in a
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traditional PCA [23,25]. This may have significant utility for identifying flooded areas from post-flood
multispectral imagery, as moisture greatly influences reflectance values, particularly in the near infrared
and shortwave infrared region of the electromagnetic spectrum [38,39]. It follows that the ICA could
identify the group of pixels—or independent component—that was inundated during the flood by its
distinct decrease in reflectance values.

We combined the eight multispectral bands from each Landsat scene to create a 16-band composite
raster, and subsequently applied an ICA transformation to the entire image stack. Increasing the complexity
of the ICA can yield more optimal signal separation, and we therefore experimented with adjusting the
primary ICA parameters. This included incremental increases in the number of iterations, as well as
varying the change threshold by orders of magnitude. We found that altering parameters added significant
processing time to the analysis, but did not appear to produce notable changes in the resulting ICs. We
therefore settled on the following parameter settings, selected for their ability to balance computational
power with processing time [40]: Change Threshold = 0.0001; Maximum Iterations = 100; Maximum
Stabilization Iterations = 100; Contrast Function = LogCosh (Coefficient = 1.0).

The transformation produced 16 new bands, each representing an independent component of the
original composite raster. We examined each IC to determine which image class it contained, and
categorized them into those that: (a) experienced change between the two dates (i.e., harvested fields,
irrigated crops); (b) remained unchanged (i.e., roads, rooftops); or (c¢) represented image noise (haze,
sensor error). The group of pixels that changed from non-water to water (i.e., flooded areas) was
identified in IC band 3 (IC3). It is important to note that this IC also included pixels that were
non-water in the post-flood image, but showed significant decrease in reflectance of the NIR and
SWIR bands due to residual soil moisture (Figure 3a).

Following the examination of IC3, we applied standard image segmentation techniques to the band in
order to separate flooded pixels from non-flooded pixels. Image segmentation partitions an image into
groups of connected pixels with similar values [17,41], and we used the Extract Segments Only
workflow in ENVI to accomplish this. First, we applied an edge algorithm to group neighboring pixels
into objects with similar textural properties; the following parameters were used: Scale value = 80;
Merge value = 0; Texture kernel size = 3. The high scale value closely delineated the inundated channel
while avoiding over-segmentation, and the small kernel size prevented narrower river channels and
subtle variations in the flood boundary from being lost due to generalization. A merge value of 0 was
chosen in order to preserve flood objects with lower IC change values (i.e., moist soil), as their lower
contrast would have otherwise resulted in their merging with neighboring dry land (Figure 3b). This
process segmented the image into objects, each with a single value determined by the mean of the IC3
values of its pixels (Figure 3c). We then used the water and moisture patterns visible on the false color
pre- and post-flood imagery to guide the selection of a “flooded” class threshold (in this case, a mean IC3
value < 12.2).

3.3. Addition of Existing Water Bodies

Because the flood layer extracted from IC3 comprised only pixels that experienced change due to
inundation, the region’s pre-existing river channels and lakes were not present in the initial flood layer.
In order to include these (water-to-water) areas and delineate maximum extent, we derived the
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Modified Normalized Difference Water Index (MNDWI) [42] from the pre-flood image using

Equation (3):
MNDWI = Green—-SWIRI )
Green+ SWIR1

where Green is the Landsat 8 band with a spectral range of 0.53-0.59 pm, and SWIR1 is the Landsat 8
shortwave infrared band with a range of 1.57-1.65 pum. The MNDWI is a commonly used index for
extracting surface water [8,42,43], and is specifically designed for use in developed landscapes. The
index results in values of —1 to 1, with values greater than 0 understood to represent water bodies [15].
However, manual calibration most often leads to more accurate results when applying thresholds to
water indices [44], and we found pixels with MNDWI > 0.15 to best represent surface water in the
pre-flood Landsat 8 image. We then merged these pixels with the ICA-derived surface (Figure 3d).

) —e— "

Figure 3. General steps of the segmentation procedure used to extract flood features from
IC3. The confluence of the Saint Vrain and South Platte Rivers is shown as an example.
(a) IC3 change values shown in gray scale. (b) Flooded pixels isolated with edge filter.
(c) Segmented image objects (d) Extracted ICA flood layer, merged with pre-existing
water-to-water pixels (i.e., river channels and lakes).

3.4. Crop and Cloud Masking

The majority of the agricultural land along the Front Range is irrigated, and we found that some of
these areas were included in IC3 due to their spectral changes in moisture and greenness. This issue
was largely overcome with IC9 and IC16 however, which we found to contain crops that experienced
change between the image dates. These were readily identifiable by their distinctive circular
(i.e., center-pivot irrigation) or rectangular shape, and their similar changes in reflectance between the
pre- and post-flood Landsat scenes. We extracted these pixels using a pair of density slices (IC9 —89.8
to 2.1; IC16 —64.3 to —2.2) and merged them to create a single layer representing changed crops across
the study site (total area of 192.6 km?).

To assess the fidelity of this layer, we visually compared it against high-resolution R-G-B imagery
available in ESRI ArcMap software, finding close agreement with irrigated agricultural plots visible on
the landscape. Additionally, we quantitatively tested its accuracy against the most current (2010)
publicly available spatial data of irrigated land for the region, acquired from the state of Colorado’s
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Decision Support Systems website (http://cdss.state.co.us/GIS/Pages/Division1SouthPlatte.aspx). The
results of an overlay analysis revealed a tight match between the two layers, with 192,197 of the
213,980 (90%) of the ICA-derived crop pixels falling within polygons of known irrigated lands.
Additionally, because we included the cirrus bands (OLI Band 9) of both Landsat 8 scenes in the
original image stack, the ICA transformation was able to isolate and group all cloudy pixels into a single
independent component (IC10). We again used a pair of density slices (IC10 —696.8 to —4.0; IC10 6.9 to
1739.9) to extract these pixels from the IC, using the individual cirrus bands as a visual guide for
threshold selection. We then compared this layer against the Quality Assessment (QA) bands provided
with all Landsat 8 L1T data, which showed the ICA-derived mask in close agreement with cloud pixels
identified by the quality assessment band (QA values > 53,000). We also found the ICA cloud mask to
be far superior to the QA bands for capturing cirrus clouds and avoiding confusion in bright urban areas.
Following these assessments, we merged the ICA-derived cloud and crop data to create a comprehensive
mask for the flood extent layer. These refinement steps resulted in a final layer representing the
maximum inundation extent of the 2013 event (hereafter referred to as the “ICA modeled flood”).

4. Results and Validation

The ICA modeled flood consisted of a total area of 380 km? across the high plains of the Colorado
Front Range. An overlay analysis with the 2011 National Land Cover Dataset [45] revealed a variety
of flood characteristics and impacted land cover types. First, the region’s pre-existing water bodies
(NLCD class “open water”) comprised 139 km? (37%) of the total ICA modeled flood extent. The
remaining 241 km? thus represented all areas that were inundated (non-water to water) during the 2013
event. Of these, agricultural lands were the most heavily affected cover type, with a total area of
122 km?. Wetlands and developed regions also experienced significant impacts, with inundated areas
of 52 km? and 33 km?, respectively. The remaining flood area was split between shrub/herbaceous
vegetation (24 km?), forested (4 km?), and barren land (5 km?). The ICA modeled flood layer and
study boundary—as well as a summary table and spatial results of affected land covers—can be found
in the supplementary materials to this article (Data S1, Data S2, Data S3, Data S4, Data S5).

4.1. Validation

We used two methods, one qualitative and one quantitative, to validate the ICA modeled flood layer.
First, we conducted a visual assessment against high-resolution aerial orthophotography flown on the Big
Thompson, Cache la Poudre, and South Platte Rivers during the event. This was followed by a
pixel-to-pixel validation with WorldView-2 (WV-2) imagery of Boulder Creek near peak flow. We then
directly compared the ICA modeled flood with the post-flood MNDWI extent using a McNemar test.

4.1.1. Visual Validation

A set of high-resolution (30 cm) R-G-B aerial orthophotographs was captured on 14 September 2013,
the day when many downstream gages recorded peak flow for the 2013 event. The flight lines had a
swath width of approximately 4 km, and followed the South Platte River from the Weld/Adams county
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line downstream to the eastern edge of the study site, as well as the Cache la Poudre and Big Thompson
Rivers from their canyon mouths to their confluences with the South Platte River (Figure 4).
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Figure 4. (Top) Orthophotographs of the South Platte River near Evans, Colorado. The
main river channel is visible near the center of the floodplain, which is heavily inundated
with floodwater (light brown). Residual moisture and pools of water can be seen near the
center-pivot crop circle in the lower left corner. (Bottom) The ICA modeled flood layer
overlaying the aerial imagery from the top image. Insets show detailed view of water and

sediment flowing over U.S. Route 34.

Visual assessment of the ICA modeled flood showed close agreement—not only with existing
floodwaters—but also with scoured banks and wet soil visible in the orthophotographs (Figure 5). The
comparison also revealed that the ICA successfully identified flooded areas under partial riparian

canopy (Figure 6).
4.1.2. Pixel-to-Pixel Validation

Boulder Creek experienced the most extreme discharges during the 2013 flood event, peaking at
146 m®/s (5179 cfs)—nearly 20,000% above average flow [46]. While most of the Front Range was
heavily clouded throughout the duration of the flood, the WV-2 satellite captured a nearly cloudless
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image of a reach of Boulder Creek at 18:28 on 13 September 2013 (Figure 7). This was approximately
12 hours after peak flow of Boulder Creek (which occurred the previous night), when stage height was

0.38 m (15") below the river’s maximum recorded stage during the 2013 event [46].

Figure 5. Orthophotograph of a reach of the Cache la Poudre River in Fort Collins,
Colorado. The left image shows the flooding as of 14 September 2013, and the right shows
the same image overlaid with the ICA modeled flood (semi-transparent blue). The flood
layer closely agrees with turbid, inundated areas as well as adjacent banks scoured during
the peak of the flooding.
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Figure 6. Orthophotograph of a reach of the Big Thompson River in Loveland, Colorado.
The left image shows the flooding as of 14 September 2013, and the right shows the same
image overlaid with the ICA modeled flood (semi-transparent blue).

We used the cloudless section of this reach to quantitatively validate the ICA modeled results. The
reference reach runs from the eastern edge of the city of Boulder, Colorado until Highway 52 near
Gooding, Colorado. The area is approximately 15.5 km long and 1 km wide, and contains a variety of
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land uses and cover types representative of the Front Range, including developed floodplain, managed
wetlands, irrigated agriculture, and riparian trees and shrubs.
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Figure 7. WorldView-2 image of Boulder Creek near peak flow of the 2013 event. The
image is displayed in standard false color (NIR-R-G); within the validation area, water is
blue-green or black, and vegetation is red. Inset shows flooding over roads as well as the
inundated floodplain.

Binary pixel-to-pixel validation is a widely used approach for quantitatively assessing flood extent
maps [7,14]. Reference and modeled maps are overlaid and compared on a cell-by-cell basis, resulting
in a confusion matrix reporting pixels in agreement (flooded or non-flooded), as well as underprediction
and overprediction.

In order to create a reference layer of maximum flood extent, we performed image segmentation on
the WV-2 image to classify flooded and non-flooded regions. Additionally, we created a mask for the
few cloudy areas in the south-central part of the scene, and excluded these pixels from the accuracy
assessment. The WV-2 flood map was then resampled (nearest neighbor) to match the spatial
resolution of Landsat 8, and the two flood layers were overlaid for the pixel-to-pixel comparison.

The validation along Boulder Creek (Figure 8) showed close agreement between the reference
WV-2 layer and the ICA modeled flood, with an overall accuracy of 87%, and a Kappa Coefficient of
0.73 (Table 1). Commission errors were 12% for flooded classes and 15% for non-flooded classes.
Omission errors were 15% for flooded classes and 12 % for non-flooded classes.

Additionally, in order to provide a comparison of our approach with other common flood mapping
techniques, we conducted an identical pixel-to-pixel validation against the Boulder Creek reference
layer using the flood extent produced from a post-flood MNDWTI threshold. This resulted in an overall
accuracy of 69% and a flood class accuracy of 43% (Table 2). A McNemar test comparing these
results with those of the ICA modeled flood showed the latter to be significantly (p < 0.001) more
accurate than the MNDWTI for mapping maximum flood extent (Table 3).
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Figure 8. Map of Boulder Creek showing the results of the pixel-to-pixel comparison
between the ICA modeled flood and the WV-2 reference layer. Pixels in agreement, errors
of omission, and errors of commission are shown in contrasting colors.

Table 1. Error matrix of the pixel-to-pixel validation between the ICA and WV-2 reference layer

Reference (WorldView-2)

ICA Flooded Non-Flooded Total Producer’s Accuracy (%)
Flooded 8221 1395 9616 85
Non-Flooded 1079 7772 8851 88
Total 9300 9167 18467
User’s Accuracy (%) 88 85
Overall Accuracy (%) 87
Kappa Coefficient 0.73

Table 2. Error matrix of the pixel-to-pixel validation between the post-flood Modified
Normalized Difference Water Index (MNDWI) and the WV-2 reference layer.

Reference (WorldView-2)

MNDWI Flooded Non-Flooded Total Producer’s Accuracy (%)
Flooded 4145 179 4324 96
Non-Flooded 5534 8609 14143 61
Total 9679 8788 18467
User’s Accuracy (%) 43 98
Overall Accuracy (%) 69

Kappa Coefficient 0.40
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Table 3. Results of McNemar test between ICA and post-MNDWI.

ICA Correct ICA Incorrect Total

MNDWI Correct 4029 116 4145

MNDWI Incorrect 4016 1381 5397

Total 8045 1497 9542
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The ICA modeled flood layer is shown in full in Figure 9, along with a visual comparison of the
MNDWTI and ICA extents. The ICA modeled flood constitutes 58% more flooded area than the
MNDWTI threshold of the post-flood image (222 km?), indicating that the approach not only captured
the open water visible in the scene, but also residual moisture (Figure 9a—c).

5. Discussion
5.1. Strengths and Advantages

Our analysis was able to simultaneously delineate flood-related surface water and soil in very
narrow channels—some only two or three Landsat pixels in width—across multiple drainages and
surrounding land cover types. Moreover, this was accomplished without the use of clumping
procedures and moving windows that are often applied to smooth flood width maps [17,47,48]. While
such post-processing techniques can be appropriate for large river systems with deep, homogenous
channels, they yield layers that homogenize the channel variability observed in more shallow, braided
rivers—one of the most important yet difficult aspects of a flood to capture with stream gages [3].

The multi-temporal ICA approach also provides flexibility to the analyst; if only inundated pixels
(i.e., non-water to water) are all that is required, the ICA accurately and automatically provides this
through its identification of change classes. However, if existing channels and water bodies (i.e., water
to water) are also needed, these can be merged with the flood layer using a water index threshold from
the pre-flood image, as was done in this study.

The ability of the ICA to separate non-flood change classes such as agriculture proved extremely
useful for refining the flood layer in a heavily irrigated landscape like the high plains of the Front Range.
This is a robust and valuable asset that enables more accurate assessment of flood impacts in developed
and cultivated floodplains. The ICA also produced an excellent cloud mask; although our images were
nearly cloudless in the study site, this ability could be very useful in streamlining data processing for
future studies employing imagery with greater proportions of cloud cover. This also demonstrates the
benefit of including the multispectral cirrus bands as an integral part of the change analysis.

An additional strength of the approach is the consistent time period and spatial scale of its results.
This enables the comparison of flood impacts across municipal and hydrologic boundaries, facilitates
targeting of field measurements, and promotes cross-basin management and recovery decisions in a
way not possible with localized mapping efforts. This has powerful implications when considered with
the free and global coverage of Landsat data and the availability of ICA code through ENVI, MatLab,
R, and Python. Finally, the relatively straightforward nature of the procedure—and its independence
from ancillary training data or elevation models—makes it accessible and applicable for a wide variety
of users and settings.

5.2. Errors and Limitations

The errors observed in this study are the result of a number of factors. The floodplains and channel
margins of the Great Plains streams host numerous gallery cottonwood (Populus deltoides) forests.
While many flooded areas beneath moderate or sparse riparian canopy were accurately identified by our
analysis, pixels with dense or complete canopy cover were not captured. This contributes to the overall
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omission error, as the consistent vegetation crown prevents the identification of change between pre- and
post-flood images—even if the ground at the base of the tree and was inundated during the event.
Omission errors also occurred in paved areas and along concrete channel banks, as their impermeability
and ability to move floodwater through the system prevent large changes in moisture.

Although most of the irrigated crops misclassified as flooded were identified and masked using the
other ICs, some experienced a change in spectral values so similar to flooding between dates that they
were still present in the final flood layer. While we focused on a strictly remote sensing approach, the
majority of these erroneous areas could be removed as needed in post-processing through expert
interpretation of the results with ancillary geospatial layers and field observations. For instance,
“flooded” areas that form clear geometric shapes (i.e., crop circles) and are isolated from the river
channel could be manually removed with a high degree of confidence.

Another consideration is the 30 m spatial resolution of Landsat 8. The cell size likely contributed to
confusion in developed areas, where floodwaters move between homes, vehicles, and other urban
features. This increases the brightness of otherwise dark pixels, resulting in higher numbers of
omission errors. The resolution also makes precise delineation of the flood edge difficult at the scale
necessary for detailed assessment of geomorphic change. It is also important to note that our study
benefited from the availability of a post-flood image captured only days after the most extreme
flooding, when many inundated areas were still saturated at the surface. This reinforces the importance
of using imagery as close to the event as possible, as the detectability of such changes will decrease as
the moisture conditions of the surface return to their normal state. While residually wet soils and
stressed vegetation can be observed from one to two weeks after a flood [49,50], the window of time
for mapping these with an ICA change detection will likely vary with the magnitude of the event, the
soil properties of the study area, and the sensor being employed. The method may also have challenges
in steep topography or canyons, where floodplains are narrower and flooding occurs more in the
vertical (i.e., river stage) than the horizontal (i.e., lateral extent across the floodplain) direction.

5.3. Future Work

The response to the damages to human infrastructure that occurred in the 2013 Colorado event has
resulted in the reconstruction of roads and stream crossings, as well as simplification, straightening,
and—and in some cases—narrowing of stream channels. Flood recovery efforts that result in streams
engineered to convey floods as efficiently as possible through simplified channels are in direct conflict
of managing streams for natural channel processes, productive fisheries, and other valuable ecosystem
services. The spatial data produced from this study can be used for comparisons of flood impacts
across multiple catchments, as well as inform management decisions and guide research on the
function of extreme floods in ecohydrological processes that maintain dynamic, productive and diverse
riparian habitats [51]. These data can also be used for flood hazard and flood risk mapping to aid in the
establishment of flood warning systems. Where available, high-resolution digital elevation models can
be used in conjunction with the measure of flood width to estimate a number of hydrologic parameters
including flood depth, velocity, stream power and shear stress.

Many of the challenges we encountered may be overcome through application of the ICA with imagery
from the upcoming Sentinel-2 satellite pair (European Space Agency). The multispectral instrument
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onboard the satellites will feature relatively high spatial resolution in both the Visible to NIR (10 m) and
Red Edge to SWIR (20 m) regions of the electromagnetic spectrum [33], which will enable finer
delineation of the flood edge. Moreover, the Sentinel-2 program has been cross-calibrated for integration
with Landsat 8 data [33], will have a revisit time of 1-4 days (depending on latitude) [52], and is planned to
share the latter’s free and open data policy [53]. This will significantly increase the availability of
comparable imagery that bookend flood events, and is an exciting avenue for future research.

6. Conclusions

This study explored the utility of Landsat 8 multispectral data and independent component analysis
for delineating maximum flood extent through an unsupervised change detection procedure. The
analysis was conducted across multiple catchments possessing narrow channels and heavily developed
floodplains in the high plains of the Colorado Front Range. Results were qualitatively and
quantitatively assessed against multiple reference data, and subsequently compared with a modified
difference water index commonly used to map floods in developed landscapes.

Our results produced a consistent, regional-scale flood layer with an overall accuracy of 8§7%, and
close agreement with high-resolution aerial orthophotographs captured near peak flow. The spatial data
of flood extent was provided for ongoing hydrologic and mitigation planning in the region, and
showed a maximum flood area of 380 km? across a variety of land cover types. Excluding pre-existing
water bodies, a total of 241 km? was inundated in the event, with agricultural land comprising the
largest impacted area (122 km?).

Our study also revealed a number of important characteristics of the OLI-based independent
component analysis for flood mapping. The ability of the ICA change detection to identify residually
wet soils inundated during peak flow resulted in it being 44% more accurate for mapping maximum
flood extent than the standard MNDWI-based technique. Moreover, because these results were
achieved without the use of post-processing smoothing operations, they retained the spatial variability
of flooding within the complex and braided channels of the study site. This an important—yet rarely
captured—flood characteristic that is critical for understanding the nuanced patterns of floods,
particularly in heavily managed and engineered river systems. Although flooded pixels under dense
vegetation cover caused omission errors, flooded areas under moderate or sparse riparian canopy were
accurately classified. We also found the approach to be effective for identifying subtle class
differences in the images; this provided useful data with which to mask irrigated agriculture that
experienced spectral changes similar to flooding, and may significantly help to refine flood maps in
other developed and heterogeneous floodplains.

These findings offer change detection with OLI and ICA to be a powerful tool for overcoming some
of the long-standing issues in optical remote sensing of flood mapping. The procedure is both robust
and flexible, as it can be applied to capture only inundated pixels, or combined with pre-existing water
features to map maximum extent. The method also has significant potential for consistent and
international application, as it requires no ancillary training data or elevation models, making it highly
applicable in remote regions where Landsat imagery is all that is available. While the temporal and
spatial resolutions of Landsat 8 remain challenges in certain settings, these may be significantly
reduced through cross-calibration and integration with upcoming satellites and multispectral sensors.
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This—in combination with field measurements and expert opinion—could rapidly produce maps for
emergency responders and hydrologists to focus rescue and remediation efforts, and the consistent
time period, spatial scale, and method of creation facilitate the comparison and management of flood
impacts across municipal and hydrologic boundaries.
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