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Abstract: Accurate quantification of land use/cover change (LULCC) is important for 

efficient environmental management, especially in regions that are extremely affected by 

climate variability and continuous population growth such as West Africa. In this context, 

accurate LULC classification and statistically sound change area estimates are essential for a 

better understanding of LULCC processes. This study aimed at comparing mono-temporal and 

multi-temporal LULC classifications as well as their combination with ancillary data and to 

determine LULCC across the heterogeneous landscape of southwest Burkina Faso using 

accurate classification results. Landsat data (1999, 2006 and 2011) and ancillary data served 
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as input features for the random forest classifier algorithm. Five LULC classes were 

identified: woodland, mixed vegetation, bare surface, water and agricultural area.  

A reference database was established using different sources including high-resolution images, 

aerial photo and field data. LULCC and LULC classification accuracies, area and area 

uncertainty were computed based on the method of adjusted error matrices. The results revealed 

that multi-temporal classification significantly outperformed those solely based on  

mono-temporal data in the study area. However, combining mono-temporal imagery and 

ancillary data for LULC classification had the same accuracy level as multi-temporal 

classification which is an indication that this combination is an efficient alternative to  

multi-temporal classification in the study region, where cloud free images are rare. The LULCC 

map obtained had an overall accuracy of 92%. Natural vegetation loss was estimated to  

be 17.9% ± 2.5% between 1999 and 2011. The study area experienced an increase in 

agricultural area and bare surface at the expense of woodland and mixed vegetation, which 

attests to the ongoing deforestation. These results can serve as means of regional and global 

land cover products validation, as they provide a new validated data set with uncertainty 

estimates in heterogeneous ecosystems prone to classification errors.  

Keywords: multi-temporal images; mono-temporal image; ancillary data; LULCC; Burkina 

Faso; West Africa 

 

1. Introduction 

Remote sensing plays an important role in the management of the earth’s surface by providing  

spatio-temporal information on land use/cover (e.g., water, forest, bare area, and cropland). Change in 

land use/cover (LULC) affects the global environment [1], its biodiversity [2], local, regional and global 

climate [3,4], and also can accelerate, among others land degradation, which reduces ecosystem services 

and functions [5]. Monitoring land use/cover change (LULCC) is, therefore, relevant for sustainable 

landscape and environmental management. For instance, in regions like West Africa, where LULC is 

known to change rapidly [6], regular map updates could lead to better estimation of deforestation and 

land degradation rates, which are key components of the UN REDD (Reducing Emissions from 

Deforestation and Forest Degradation) program and UNCCD (United Nation Convention to Combat 

Desertification) strategy “Zero Net Land Degradation”, respectively.  

Remote sensing provides an effective means for mapping LULC, especially over large areas [7]. Different 

types of classifications have been applied for LULC mapping [8–11]. Some of these classifications are 

based on mono-temporal image (e.g., [12,13]), multi-temporal images (e.g., [10,14]), or in combination 

with ancillary data (e.g., [11,15,16]) such as biophysical variables (e.g., elevation, slope and soil types). 

Mono-temporal classification is widely used in literature (e.g., [6,12,17,18]); this analysis focuses on a 

single date image for LULC mapping. The processing of single date image is faster as compared to 

multi-temporal classification. In multi-temporal classification, bands from more than one date, season, 

or year are combined and classified [19]. This approach involves the use of more images, which increases 
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processing time. Multi-temporal classification has been used to classify the LULC of various landscapes 

(e.g., [10,14,20]). 

A comparison of mono-temporal and multi-temporal classifications in different areas revealed 

contradictory results. For instance, in two states in the United States of America (USA), Lunetta and 

Balogh [10] used single date Landsat image against two dates of imagery and found that the latter 

increased wetlands identification accuracy from 69% to 88%. Key et al. [14] also noticed a positive 

effect of multi-temporal classification for discriminating individual tree species in a temperate hardwood 

forest (West Virginia University forest). Contrary to the aforementioned studies, Langley et al. [19] 

compared single date and multi-temporal satellite image classifications in semi-arid grassland and found 

out that single date classification produced more satisfactory results than multi-temporal classification. 

The integration of ancillary data with mono-temporal image has been found in some places suitable for 

improving LULC classification accuracy (e.g., [11,15]). 

Although mono-temporal and multi-temporal classifications as well as the addition of ancillary data 

have been compared in elsewhere, such investigations remain rare in West Africa, especially in the 

Sudanese savannah zone. In addition, determining an efficient LULC mapping method is crucial for 

performing accurate post-classification change analysis and to monitor environmental degradation in 

this region, which is particularly exposed to effects of climate change and population growth. 

Furthermore, an accurate LULCC map could be an efficient decision-making support tool for mitigating 

carbon emission and for proper environmental change management, such as forest cover restoration 

through reforestation campaigns.  

LULCC assessment in West Africa is challenging, as the region lacks atmospherically undisturbed 

and cloud free satellite images, which is a limiting factor for LULC mapping. Beside, lack of ground 

truth information for past years limits assessments of historical LULC (e.g., [21]) as well as validation 

of LULCC map (e.g., [6,22,23]). 

The present study aimed at comparing mono-temporal and multi-temporal LULC classifications as 

well as their combination with ancillary data and to determine LULCC across the heterogeneous 

landscape of southwest Burkina Faso using accurate classification results.  

2. Materials and Method 

2.1. Study Area 

The study area is located in the Black Volta basin of Burkina Faso with an area of about 5120 km2 

(Figure 1) and belongs to the South-Sudanese climatic zone that is characterized by two main seasons. 

The rainy season extends from May to October, and the dry season occurs from November to April. The 

average monthly temperature ranges from 26 °C to 32 °C, and the average annual rainfall in the  

period 1981–2012 was estimated to be 862.87 mm based on the data collected from the national direction 

of meteorology of Burkina Faso. Rainfall is marked by high inter-annual variability, and the vegetation 

is Sudanese savannah of which dominant woody species are Gardenia sp, Combretum micranthum, 

Parkia biglobosa, Vitellaria paradoxa, Bombax costatum, Berlinia grandifotia, among others.  

The main livelihood activity of the local population is agriculture, which is characterized by low  

inputs (e.g., fertilizers) with slash and burn being the frequently applied farming practice [6]. According 

to Reenberg et al. [24], the typical agricultural practice is small-scale subsistence farming on rainfed 
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fields, while the main crop productions are cotton and cereals (e.g., sorghum, maize and millet). Rice is 

cultivated as dry-rice in topographic depression or as irrigated wet-rice close to lakes and dammed-up 

rivers [13].  

 

Figure 1. Situation of the study area. 

2.2. Data and Pre-Processing 

2.2.1. Landsat Images 

Landsat TM data (30 m × 30 m resolution, scene 196/052) were used for LULC classification. In 

total, ten monthly images were downloaded from United States Geological Survey (USGS) website for 

the years 1999, 2006 and 2011 (Table 1) using a criterion of cloud cover less than 10%. Five Landsat 

bands were considered in this study: blue (0.45–0.52 µm), green (0.52–0.60 µm), red (0.63–0.69 µm), 

near infrared (0.76–0.90 µm) and middle infrared (1.55–1.75 µm).  

The Landsat data were calibrated and corrected to remove atmospheric influences. Firstly, the digital 

numbers (DN) values of the TM images were calibrated into radiance based on information from the 

meta data files provided by USGS (e.g., sun elevation, acquisition date). Afterwards, the radiance data 

were converted to surface reflectance using the ENVI 5 FLAASH (Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes) module, which has shown to be efficient for satellite images 



Remote Sens. 2015, 7 12080 

 

atmospheric correction (e.g., [25]). This module requires information such as sensor altitude, initial 

visibility, atmospheric model, aerosol model, flight date, pixel size, and scene center location [26]. Some 

of these parameters were obtained from meta data files, while others were already included into the 

module such as atmospheric and aerosol models which were set to tropical and rural, respectively, during 

the atmospheric correction process to match with the study area environment.  

Image-to-image co-registration was performed in order to ensure good alignment of pixels in the 

respective images. A root mean square error of less than one pixel was achieved for all the  

co-registrations. The images were already georeferenced to the Universal Transverse Mercator (UTM) 

projection WGS84 zone 30 north. 

Table 1. Landsat TM images of 2011, 2006 and 1999. 

2011 2006 1999 

3 March 31 October 20 October 

6 May 16 November 14 February 

7 June 18 December - 

9 July - - 

29 October - - 

2.2.2. Environmental Ancillary Data  

Ancillary data were also included in the LULC classification process (Table 2): slope, elevation, soil 

types and geomorphology. Slope and elevation were derived from version 2 of Digital Elevation Model 

(DEM) of ASTER, which has a spatial resolution of 30 m × 30 m. The DEM was georeferenced to UTM 

WGS84 zone 30 north. Vector layers (shapefiles) for geomorphology and soil types were obtained from 

the National Soil Office of Burkina Faso (BUNASOL) at a scale of 1/500,000. They highlighted different 

geomorphological units and soil types found in the study area. The shapefiles were projected to UTM 

WGS84 zone 30 north, then rasterized and resampled to 30 m × 30 m using ArcGIS 10.1.  

Table 2. Ancillary data used in LULC classification. 

Ancillary data Source Description resolution 

Elevation ASTER Height 30 m × 30 m 

Slope ASTER degree 30 m × 30 m 

Soil BUNASOL-BF Soil types 30 m × 30 m 

Geomorphology BUNASOL-BF geomorphological units 30 m × 30 m 

2.2.3. Reference Data Sources 

High-resolution images (Table 3) and field data were used to collect LULC reference samples to train 

and validate the Landsat images classifications. The high-resolution images were acquired as close as 

possible to the acquisition dates of the Landsat TM images. RapidEye image (from April 2011) was 

collected from the RapidEye Science Archive Team (RESA) of the German Aerospace Center (DLR) at 

level 3A (i.e., orthorectified with a spatial resolution of 5 m × 5 m and georeferenced to UTM projection). 

In addition, Quickbird image (2.4 m × 2.4 m) was acquired from October 2012, and scanned aerial photo 

(June 1999) was obtained from the National Geographic Institute of Burkina Faso (IGB) with a 
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resolution of 2.3 m × 2.3 m. High-resolution images of Google Earth (from October 2006 and November 

2007) were also used in this research. Apart from the RapidEye image that was already corrected, the 

other spatial data were geometrically adjusted (co-registration) to the Landsat images and georeferenced 

to UTM WGS84 zone 30 north. 

A field campaign was conducted in October 2013 to collect LULC ground truth samples with a handheld 

Global Positioning Systems (GPS) using the projection system UTM WGS84 zone 30 north. LULC areas 

that remained stable since 2011 were sampled based on local population knowledge. Five broad LULC 

classes were identified (Table 4) using a modified LULC classification scheme of the  

FAO [27]: Woodland, bare surface, agricultural area, water and mixed vegetation. Homogeneous areas  

of 30 × 30 m were surveyed for each LULC (to match Landsat pixel), and the coordinate of the center 

recorded. In total, 150 samples were recorded across the study area.  

Table 3. High-resolution images used in the analysis. 

Images Date Resolution Extent % of study area covered 

RapidEye April 2011 5 m × 5 m 625 km2 12.20 

Quickbird October 2012 2.4 m × 2.4 m 25.7 km2 0.50 

Aerial photo June 1999 2.3 m × 2.3 m 188 km2 3.70 

Google Earth image 1 November 2007 2.4 m × 2.4 m 306.9 km2 6.00 

Google Earth image 2 October 2006 2.4 m × 2.4 m 309.8 km2 6.05 

Table 4. Adapted LULC classification scheme, modified from FAO [27]. 

Non-Modified Modified 

Level 1 Level 2 Adopted LULC classes  

Vegetated 

Woodland Woodland 

Mixture of grasses, shrubs and trees Mixed vegetation 

Cultivated area Agricultural area  

Non-vegetated 

Bare land 

Bare surface 
Built up 

Tarred road 

Rock 

Rivers 

Water Artificial water bodies 

Lakes 

2.3. LULC Classification 

2.3.1. Image Combinations 

In order to assess the classification of mono-temporal and multi-temporal satellite data as well as their 

combination with ancillary data, four spatial data set combinations were produced using Landsat images and 

ancillary data (Table 5). These images combinations are: (1) mono-temporal image; (2) mono-temporal 

image plus ancillary data; (3) multi-temporal images; and (4) multi-temporal images plus ancillary data. 

For the combination of mono-temporal image with ancillary data (Table 5, column 2), only the image 



Remote Sens. 2015, 7 12082 

 

that produced the highest overall accuracy amongst all mono-temporal classifications (Table 5, column 1) 

was selected. 

Table 5. Different approaches of image combinations used for the year 2011. 

 Mono-Temporal 

Image 

Mono-Temporal Image 

Plus Ancillary Data 

Multi-Temporal 

Images 

Multi-Temporal Images 

Plus Ancillary Data 

Landsat 

bands 

Five images 

(October, July, June, 

May and March) 

Image which achieved the 

highest accuracy in mono-

temporal classification 

Five images 

(October, July, June, 

May and March) 

Five images (October, July, 

June, May and March) 

Ancillary 

data 

 Elevation  Elevation 

Slope Slope 

Geomorphology Geomorphology 

Soil types Soil types 

2.3.2. Classification Algorithm: Random Forest Classification Algorithm  

Supervised classifications of the Landsat images were performed using Breiman’s [28]  

non-parametric Random Forest (RF) classifier. RF is a machine learning algorithms [29] that can 

incorporate diverse sources of data (e.g., biophysical and remotely sensed data) [30], and it was found 

more accurate than other classifiers such as maximum likelihood classification (e.g., [31,32]), support 

vector machine (e.g., [31]) and neural networks (e.g., [33]).  

RF is an ensemble of classification trees in which each tree contributes with a single vote for the 

assignment of the most frequent class to the input vector (X), 𝐶̂𝑟𝑓
𝐵 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {𝐶̂𝑏(𝑋)}1

𝐵 [28,34], 

where 𝐶̂𝑏(𝑋) is the class prediction of the bth random forest tree, and B the total number of trees.  

In fact, RF collects different subsets of training data to grow the trees (Ntree) using bagging [35] 

which is a technique used for training data creation by randomly resampling the original dataset with 

replacement (i.e., with no deletion of the data selected from the input sample for generating the next 

subset) [34,36]. A second random sampling is operated by RF to select a subset of predictive variables 

(Mtry) for the division of every node, which reduces the generalization error [29,37]. This randomness 

included in RF process decreases the correlation between trees in the forest and increases accuracy [38]. 

RF also computes the contribution of each variable to the classification using Mean Decrease Gini 

(MDG) and Mean Decrease Accuracy (MDA). However, Nicodemus [39] noticed that MDG is sensitive 

to within-predictors correlation and differences in category frequencies, while MDA is robust to these 

data characteristics. 

Field data (only for 2011) and visual interpretation of the high-resolution images provide the 

possibility to collect a first set of LULC truth points (for each years) to train the RF classifier. Polygons 

of homogeneous pixels were drawn around each truth point for each LULC class and saved as vector 

layer of training areas. Landsat pixels that overlap the training areas were then used to train the RF 

classifier using R statistical software. The number of trees built was set to 800, and the number of 

selected variables at each node split was, by default, the square root of the total number of variables in 

each image combination. 
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2.4. LULCC Mapping: Post Classification Change Detection 

Pixel-based post-classification change detection was performed using the classified maps  

of 1999 and 2011. Post-classification change detection consists in comparing individual LULC maps 

from two different periods in order to determine change areas. It emphasizes on “from to” change 

detection technique, which provides a change matrix and enables tracking the trajectory of each pixel 

between the two time steps of observation. In the present study, the post-classification change detection 

was performed in ArcGIS 10.1 where the LULC maps of 1999 and 2011 were combined into one raster 

file using the function “combine”. This enabled the detection of 25 LULC conversions or LULCC classes 

using the attribute table of the produced raster. However, four generalized categories of LULCC classes 

were considered: stable natural vegetation (SNV), natural vegetation loss (NVL), stable non-natural 

vegetation (SNNV), and other change (OC). Based on a new field created in the attribute table of the 

combined raster file, the four LULCC classes were assigned to each pixel following the rules shown in 

Table 6 below. 

Table 6. LULC conversions included in the four LULCC classes between 1999 and 2011. 

Name 
Stable Natural 

Vegetation 

Natural Vegetation 

Loss 

Stable non-Natural 

Vegetation 

Other Change 

Change 

classes 

Stable woodland 

Woodland to other 

LULC unless mixed 

vegetation 

Stable agricultural area 
Agricultural area to all 

other LULC 

Stable mixed 

vegetation 
Mixed vegetation to 

other LULC unless 

woodland 

Stable bare surface 
Bare surface to all other 

LULC 

Woodland to 

mixed vegetation 

Mixed vegetation 

to woodland 

  Stable water area  Water to all other LULC 

2.5. Accuracy and Area Assessment 

2.5.1. Sampling Design 

The sampling design is the protocol for selecting the subset of spatial units that will form the basis of 

the accuracy assessment [40,41]. In this study, pixels were used as spatial units (30 m × 30 m). Stratified 

random sampling was applied for collecting a second set of reference points to test RF classifications and 

validate the LULCC map; this is because the statistics computed in this study were based on the adjusted 

error matrix that requests a probability sampling for collecting reference data [42]. Stratified random 

sampling is a probability sampling design and a key element of a statistically rigorous assessment [41]. It 

enables statistical inference for computing estimates with confidence intervals.  

Here, the different LULC and LULCC classes were considered as strata. Stratification is conducted 

when the strata are of interest for reporting results (e.g., accuracy and LULC class area), and to improve 

the precision of the accuracy and area estimates [40]. The strata sample allocation can be done either by 
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equal sample size (same sample size for each class) or by proportional sample size (sample proportional 

to the spatial extent of each class in the map). The first method favors user’s accuracy against overall and 

producer’s accuracies [43], while, in the second method, the standard errors of estimating producer’s and 

overall accuracies become smaller as compared to equal allocation [40]. In order to take advantage of both 

sample allocation methods, the recommendation of Olofsson et al. [40] to increase the sample size of the 

rarer classes was followed in this study. 

2.5.2. Response Design 

The response design is the protocol for determining the reference LULC classification of a sampling 

unit [41]. The high-resolution images were used as reference data (Table 3).  

For each year, the portions of the classified Landsat data that overlapped the high-resolution images 

were extracted and converted to polygon vector layer (in ArcGIS 10.1) from which the RF training areas 

were excluded. Each class was isolated as an individual vector layer based on which a set of randomly 

selected pixels were generated for each stratum (class). Each pixel received a LULC label by visual 

interpretation of the high-resolution images. The labels of each reference pixels on the maps and the  

high-resolution images were then compared to produce error matrices. Altogether, 371, 328 and 345 pixels 

were selected as samples for the years 2011, 2006 and 1999, respectively. The samples allocated to each 

stratum are shown in Table 7.  

For the LULCC of the period 1999–2011, the overlapping area between LULCC map, aerial photo 

of 1999 and high-resolution images of 2011 were considered for reference pixels collection following 

the same procedure as above. However, Landsat images (1999 and 2011) were included especially for 

LULCC classes that were underrepresented in the high-resolution images. In all, 300 LULCC reference 

pixels were selected based on the classes established in Section 2.4. The numbers of samples are given 

in Table 8. Finally, the labels of the reference pixels on the change map and also on the reference images 

of 1999 and 2011 were compared to build an error matrix. 

Table 7. Sample size allocated to each LULC class in 1999, 2006 and 2011. 

 Sample Allocated 

LULC classes (strata) 2011 2006 1999 

Water 42 40 42 

Woodland 100 97 111 

Bare surfaces 59 45 45 

Mixed vegetation 75 78 89 

Agric. Area 95 68 58 

Total column 371 328 345 

Table 8. Sample size allocated to each LULCC class. 

LULCC Classes (strata) Sample Allocated 

Stable natural vegetation 125 

Natural vegetation loss 56 

Stable non-natural vegetation 42 

Other change 77 

Total 300 
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2.5.3. Analysis 

Accuracy assessment 

In order to determine the accuracy of a classified map with q categories, an error matrix is  

constructed [44]. Following the suggestions of Olofsson et al. [42] for assessing the accuracy of LULCC 

maps based on stratified random sampling strategies and pixel-based classifications, the error matrices 

of both LULCC and LULC classification were adjusted by the area of each category on the maps, and 

error matrices based on area proportions (𝑃̂𝑖𝑗) were produced:  

𝑃̂𝑖𝑗 = 𝑊𝑖

𝑛𝑖𝑗

𝑛𝑖+
  (1) 

where 𝑊𝑖 is the proportion of area of category 𝑖 in the map, 𝑛𝑖𝑗 is the number of samples mapped as 𝑖 and 

belonging to category 𝑗 in the reference data, 𝑛𝑖+ is the number of samples mapped as category 𝑖 in the 

map. In the adjusted error matrix (Table 9), each cell element 𝑃̂𝑖𝑗 indicates the probability that a randomly 

selected area is classified under category 𝑖 in the image and under category 𝑗 in the reference data [45].  

Table 9. Adjusted error matrix of estimated area proportions. 

  Reference   

1 2 … j … q Total 

M
a

p
 

1 𝑃̂11 𝑃̂12 … 𝑃̂1𝑗  𝑃̂1𝑞 𝑃̂1+ 

2 𝑃̂21 𝑃̂22 …  …  𝑃̂2+ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

i 𝑃̂𝑖1 𝑃̂𝑖2 … 𝑃̂𝑖𝑗 … 𝑃̂𝑖𝑞 𝑃̂𝑖+ 

⋮ ⋮ ⋮ ⋮  ⋮ ⋮ ⋮ 

q 𝑃̂𝑞1 𝑃̂𝑞2 … 𝑃̂𝑞𝑗 … 𝑃̂𝑞𝑞 𝑃̂𝑞+ 

Total 𝑃̂+1 𝑃̂+2 … 𝑃̂+𝑗 … 𝑃̂+𝑞 1 

Based on this new error matrix, accuracies (overall, user’s and producer’s) were calculated. The 

overall accuracy (𝑂̂) indicates the overall proportion of area correctly classified. It is the sum of 𝑝̂𝑖𝑖 of 

the adjusted error matrix diagonal. 

𝑂̂ = ∑ 𝑃̂𝑖𝑖

𝑞

𝑖=1

 (2) 

User’s accuracy (𝑈̂𝑖) of class i is the proportion of the area mapped as class i that has reference class i, 

and producer’s accuracy (𝑃̂𝑗) of class j is the proportion of the area of reference class j that is mapped as 

class j. Both accuracies were computed according to Equations (3) and (4), respectively. 

𝑈̂𝑖 =
𝑃̂𝑖𝑖

𝑃̂𝑖+

  (3) 

𝑃̂𝑗 =
𝑃̂𝑗𝑗

𝑃̂+𝑗

  (4) 

Classification types performance 
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McNemar’s test was used to evaluate the performance of multi-temporal and mono-temporal 

classification as well as their integration with ancillary data. It is a non-parametric test that is more 

precise and sensitive than the Kappa z-test [46]. McNemar’s test evaluates the difference between paired 

proportions. Here, the test is based on a pair of confusion matrices of correctly and wrongly classified 

reference samples. It produces a chi-square (𝜒2 ) statistics that is computed by Equation (5). The 

difference between two classification approaches is significant when the p-value is less than 0.05.  

𝜒2 =
(𝑓12 − 𝑓21)2

(𝑓12 + 𝑓21)
  (5) 

where 𝑓12  indicates the number of cases that are wrongly classified by approach 2, but correctly 

classified by approach 1, and 𝑓21 is the number of cases that are correctly classified by approach 2, but 

wrongly classified by approach 1. 

Area estimates and uncertainty 

In accordance with the systematic approach suggested by Olofsson et al. [42], the adjusted error 

matrix was used to compute an area estimator based on the proportion of the area of category j.  

Equation (6) gives the area of category j (𝐴̂𝑗). 

𝐴̂𝑗 =  𝐴𝑡𝑜𝑡 × 𝑃̂+𝑗   (6) 

where 𝐴𝑡𝑜𝑡 is the total area, and  

𝑃̂+𝑗 = ∑ 𝑊𝑖

𝑞

𝑖=1

𝑛𝑖𝑗

𝑛𝑖+
 (7) 

This area estimator is an error-adjusted estimator of area that includes the area of map omission error 

of category j and removes the area of map commission error [42]. Its standard error 𝑆(𝐴̂𝑗)was computed 

as follows. 

𝑆(𝐴̂𝑗) = 𝐴𝑡𝑜𝑡  × 𝑆(𝑃̂+𝑗)  (8) 

where the standard error for the stratified estimator of proportion of area 𝑆(𝑃̂+𝑗) is computed as:  

𝑆(𝑃̂+𝑗) = √∑
𝑊𝑖𝑃̂𝑖𝑘−𝑃̂𝑖𝑘

2

𝑛𝑖+ − 1

𝑞

𝑖=1

  (9) 

The use of 𝑃̂+𝑗 (estimated from the reference samples) instead of 𝑃̂𝑖+(map areas) is because it allows 

the assessment of uncertainty of the area estimates in the form of sampling variability that can be 

computed as confidence interval. For 𝐴̂𝑗  the approximate 95% confidence interval (CI) was  

derived as: 

𝐶𝐼 = 𝐴̂𝑗 ± 𝑧 × 𝑆(𝐴̂𝑗)  (10) 

where z corresponds to the percentile from the curve of the standard normal distribution, and for 95% 

confidence, z = 1.96. 
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3. Results 

3.1. Suitable Period for Mono-Temporal LULC Classification 

In order to detect the most adequate period to classify the observed LULC, the year 2011 was selected 

because it had images from dry season (March), early rainy season (May and June), mid rainy season 

(July) and late rainy season (October), which cover the entire vegetation period. The results of the  

mono-temporal RF classifications are shown in Figure 2, and it can be observed that there is an increase 

in overall, average user’s and average producer’s accuracies from March to October. Table 10 presents the 

pixels count error matrices obtained from the five mono-temporal classifications. Major confusions were 

recorded, for instance, between agricultural area and natural vegetation, agricultural area and bare 

surface and among natural vegetation types. The use of October image for classification outperformed 

all other mono-temporal attempts, because it reduced confusion between natural vegetation classes 

(Woodland and Mixed vegetation) and between agricultural area and natural vegetation, among others. 

The matrices clarify that at the end of the dry period (March) the class agriculture area seems to spectrally 

resemble other classes, which explains the aforementioned low accuracies obtained for that period. The 

main finding is that the LULC classification of the late rainy season images (e.g., October) performed 

better than those applied to images of the mid rainy, early rainy and dry seasons. Therefore, the  

mono-temporal image of October served as benchmark for assessing the effect of multi-temporal images 

and ancillary data on LULC classification. 

 

Figure 2. Overall, user’s and producer’s accuracies of the mono-temporal classifications of 

2011 derived from adjusted error matrix. User’s and producer’s accuracies are averages of 

the class-wise assessments. 

3.2. LULC Classification Accuracies According to Images Combinations 

The results presented in Table 11 show that mono-temporal classification (of the best performing  

data set, October) had the lowest accuracy among the four combinations of images. In contrast to  

the optimal mono-temporal approach, multi-temporal classification improved the overall accuracy  

from 88% to 94%, the average user’s from 87% to 93%, and the average producer’s from 86% to 91%. The 

incorporation of ancillary data has also positively influenced the LULC discrimination. Indeed, their 

integration with mono-temporal image (October) yielded an overall accuracy comparable to the use of  
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multi-temporal data (94%). There was also an improvement in average user’s accuracy (87% to 93%) and 

average producer’s accuracy (86% to 91%). However, the best performance in terms of the accuracy 

assessment was recorded by the combination of multi-temporal images and ancillary data, which 

produced the highest overall, average user’s and average producer’s accuracies with values  

of 95%, 95% and 92%, respectively. This superiority of multi-temporal classification and the addition of 

ancillary data over mono-temporal classification is supported by the results of McNemar’s test (Table 12). 

The test showed significant difference (p < 0.05) in LULC classifications produced by multi-temporal,  

mono-temporal plus ancillary data and multi-temporal plus ancillary data classifications over mono-temporal 

data. However, no significance difference was found between multi-temporal, mono-temporal plus 

ancillary data and multi-temporal plus ancillary data classifications. 

The positive impact of multi-temporal images and ancillary data was also perceptible on each LULC 

class. The user’s and producer’s accuracies of each class, according to Tables 13 and 14, indicate that 

the discrimination of the individual LULC classes was improved with the use of multi-temporal images 

and the addition of ancillary data. 

Table 10. Error matrices of mono-temporal LULC classifications of 2011, the values in all 

the tables refer to the numbers of pixels. 1: Water; 2: Woodland; 3: Bare surface; 4: Mixed 

vegetation; 5: Agricultural area. 

March 

 1 2 3 4 5 Total 

1 15 0 2 0 25 42 

2 0 79 0 5 16 100 

3 0 4 35 7 11 57 

4 1 16 12 34 14 77 

5 0 0 0 5 90 95 

Total 16 99 49 51 156 371 

May 

 1 2 3 4 5 Total 

1 13 0 16 0 13 42 

2 3 91 0 3 3 100 

3 0 2 44 5 8 59 

4 0 20 4 39 12 75 

5 1 4 2 5 83 95 

Total 17 117 66 52 119 371 

June 

 1 2 3 4 5 Total 

1 37 0 0 0 5 42 

2 4 91 2 1 2 100 

3 0 5 46 3 5 59 

4 0 20 9 36 10 75 

5 0 3 1 5 86 95 

Total 41 119 58 45 108 371 
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Table 10. Cont. 

July 

 1 2 3 4 5 Total 

1 42 0 0 0 0 42 

2 6 87 1 3 3 100 

3 0 6 46 2 5 59 

4 0 9 8 43 15 75 

5 0 2 1 0 92 95 

Total 48 104 56 48 115 371 

October 

 1 2 3 4 5 Total 

1 40 2 0 0 0 42 

2 0 90 0 6 4 100 

3 0 0 48 6 5 59 

4 0 5 4 57 9 75 

5 0 0 0 5 90 95 

Total 40 97 52 74 108 371 

Table 11.Classification accuracy in 2011 (%) according to images combinations. 

Images Combinations Overall Accuracy Av. User’s acc. Av. Producer’s Acc. 

Mono-temporal 88 87 86 

Mono-temporal plus ancillary  94 93 91 

Multi-temporal 94 93 91 

Multi-temporal plus ancillary data 95 95 92 

Table 12. McNemar’s test results between image combinations. 

 Mono-Temporal 

𝒇𝟏𝟐 𝒇𝟐𝟏 Chi-square p-value 

Multi-temporal 4 22 12.5 0.0004 

Mono-temporal plus ancillary data 6 23 10 0.001 

Multi-temporal plus ancillary data 1 19 16.2 0.00005 

 
Mono-temporal plus ancillary 

𝒇𝟏𝟐 𝒇𝟐𝟏 Chi-square p-value 

Multi-temporal 6 7 0.08 0.8 

Multi-temporal plus ancillary data 10 5 1.7 0.2 

Multi-temporal plus ancillary data 

Multi-temporal 

𝒇𝟏𝟐 𝒇𝟐𝟏 Chi-square p-value 

8 3 2.3 0.1 

3.3. Contribution of Remotely Sensed Bands and Ancillary Data to LULC Classification 

The contribution of the remotely sensed bands and ancillary data to LULC classification in the study area 

is shown in Figure 3, which highlights the mean decrease accuracy (MDA) score of each variable. This was 

computed by RF algorithm based on the classification of mono-temporal image plus ancillary data. In 

general, near infrared, middle infrared and elevation were the three most important variables for LULC 
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classification. They are followed by geomorphology, red, green and blue bands, whereas slope and soil types 

were the least important variables. Among the four environmental data used in this research, elevation and 

geomorphology have more contributed to LULC discrimination compared to soil types and slope.  

Table 13. LULC user’s accuracy (%) per image combination in 2011. 

Classification Approach Water Woodland 
Bare 

Surface 

Mixed 

Vegetation 

Agricultural 

Area 

Mono-temporal 95 90 81 76 94 

Mono-temporal plus ancillary 95 98 90 88 95 

Multi-temporal 95 96 90 89 97 

Multi-temporal plus ancillary 98 99 93 88 97 

Table 14. LULC producer’s accuracy (%) per image combination in 2011. 

Classification Approach Water Woodland 
Bare 

Surface 

Mixed 

Vegetation 

Agricultural. 

Area 

Mono-temporal 100 96 66 81 85 

Mono-temporal plus ancillary 100 100 69 92 93 

Multi-temporal 100 100 71 92 93 

Multi-temporal plus ancillary 100 98 69 94 97 

 

Figure 3. Remotely sensed bands and ancillary data contributions to LULC classification 

based on mean decrease accuracy (MDA) score of RF mono-temporal image plus ancillary 

data classification. 

3.4. The Dynamics of LULC in the Study Area over the Years 1999, 2006 and 2011 

In accordance with the results of the 2011 classifications, the combination of multi-temporal images 

and ancillary data was used to classify the images of 1999 and 2006. The monthly Landsat images of 1999 

and 2006, specified in Table 1, were combined with ancillary data (Table 2), and the classification yielded 

94% (93%) as overall accuracy for the LULC map of 1999 (2006). The distribution of each LULC area in 

1999, 2006 and 2011 is presented in Tables 15–17, respectively. The mapped area is slightly different from 



Remote Sens. 2015, 7 12091 

 

the estimated area for all LULC classes. In all cases, it could be found within the confidence interval (95%) 

around the estimated area indicating a high reliability of the produced maps [42].  

Table 15. Proportion of LULC types in 1999. 

LULC 
Mapped 

Area % 

Estimated 

Area % 

Confidence 

Interval % 

Water 1.7 1.7 ± 0.1 

Woodland 41.5 40.1 ± 2.0 

Bare surface 1.8 2.4 ± 1.0 

Mixed vegetation 33.2 33.2 ± 2.3 

Agricultural area 21.8 22.6 ± 2.3 

Total 100 100  

Table 16. Proportion of LULC types in 2006. 

LULC 
Mapped 

Area % 

Estimated 

Area % 

Confidence 

Interval % 

Water 0.7 0.7 ± 0.04 

Woodland 39 38.1 ± 1.3 

Bare surface 1.8 2.9 ± 1.3 

Mixed vegetation 32.5 32.3 ± 1.7 

Agricultural area 26 26 ±2 .6 

Total 100 100  

Table 17. Proportion of LULC types in 2011. 

LULC 
Mapped 

Area% 

Estimated 

Area % 

Confidence 

Interval % 

Water 0.2 0.2 ± 0.01 

Woodland 35.3 36.4 ± 2.1 

Bare surface 2.9 3.3 ± 1.4 

Mixed vegetation 31.6 30.4 ± 1.3 

Agricultural area 30 29.7 ± 1.6 

Total 100 100  

The results revealed that agricultural area and bare surface have increased in the study area at the 

expense of woodland and mixed vegetation, which decreased over the years. For instance, the proportion 

of agricultural area increased from 22.6% ± 2.3% in 1999 to 26% ± 2.6% in 2006 and further  

to 29.7% ± 1.6% in 2011. These dynamics are well captured in Figure 4, which highlights the expansion 

of agricultural area (in yellow) across the study area. Contrary, the areas of woodland and mixed 

vegetation, as observed in 1999, decreased in 2006 and 2011 (Tables 15–17). A decreasing trend was 

also observed for areas covered by water. 



Remote Sens. 2015, 7 12092 

 

 

Figure 4. LULC spatial distribution in the study area in 1999, 2006 and 2011. 

3.5. LULCC in the Study Area between 1999 and 2011 

The adjusted error matrix of the LULCC map derived between 1999 and 2011 is given by Table 18. 

The accuracy assessment returned an overall accuracy of 92%, while the user’s accuracy ranged  

from 86% to 95% and the producer’s accuracy from 84% to 95%. 

Table 18. Adjusted error matrix of LULCC map between 1999 and 2011. SNV: stable 

natural vegetation; NVL: natural vegetation loss; SNNV: stable non-natural vegetation; OC: 

other change. 

 SNV NVL SNNV OC Total User’s (%) 

SNV 0.547 0.014 0 0.014 0.575 95 

NVL 0.016 0.151 0.003 0.003 0.173 87 

SNNV 0.004 0.01 0.129 0 0.143 90 

OC 0.007 0.004 0.004 0.094 0.109 86 

Total 0.574 0.179 0.136 0.111 1  

Producer’s (%) 95 84 95 85  92 

Table 19 presents the estimated and the mapped LULCC areas. In this case also, the map area of each 

LULCC class fell within the computed confidence interval (95%). Between 1999 and 2011, 57.4% ± 2.7% 

of the study area was dominated by stable natural vegetation. Area under loss of natural vegetation 

represented 17.9% ± 2.5%. Stable non-natural vegetation and other change covered 13.6% ± 1.5%  

and 11.1% ± 1.9% of the study area, respectively. The distribution of the LULCC classes in the study 

area is shown in Figure 5 where most of the losses of natural vegetation are located in areas dominated 

by agriculture. 
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Table 19. LULCC area between 1999 and 2011. 

 Map Area Estimated Area 

LULCC classes % % Conf. interval (%) 

Stable natural vegetation 57.5 57.4 ± 2.7 

Natural vegetation loss 17.2 17.9 ± 2.5 

Stable non-natural vegetation 14.3 13.6 ± 1.5 

Other change 11 11.1 ± 1.9 

Total 100 100  

 

Figure 5. Distribution of LULCC in the study area between 1999 and 2011. 

The main LULC conversions observed between 1999 and 2011 (Table 20) consisted of changes from 

woodland to agricultural area (occurred on 8.6% of the study area), woodland to mixed vegetation 

(8.4%), mixed vegetation to woodland (7.2%) and mixed vegetation to agricultural area (6.8%). Stable 

LULC are dominated by woodland, mixed vegetation and agricultural area, which covered 24.1%, 17.8% 

and 13.8% of the area, respectively. Although there was an important loss of natural vegetation  

(17.9% ± 2.5%) in the study area, the transfer matrix highlighted that also regrowth of natural vegetation 

was recorded. As example, 2.7%, 4.5% and 0.8% of the study area were converted from agricultural area 

to woodland, agricultural area to mixed vegetation and bare surface to mixed vegetation, respectively. 

Those conversions could be cropland left under fallow, and potentially the result of reforestation and 

afforestation campaigns that are frequent in this area. 
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Table 20. LULC transfer matrix between 1999 and 2011 expressed as percentage of area. 

 

2011 

Water Woodland 
Bare 

Surfaces 
Mixed Veg. Agric. Area Area 1999 

1
9

9
9
 

Water 0.2 1.1 0 0.1 0.3 1.7 

Woodland 0 24.1 0.4 8.4 8.6 41.5 

Bare surfaces 0 0.2 0.3 0.8 0.5 1.8 

Mixed veg. 0.01 7.2 1.4 17.8 6.8 33.2 

Agric. Area 0 2.7 0.8 4.5 13.8 21.8 

 Area 2011 0.2 35.3 2.9 31.6 30 100 

4. Discussion 

4.1. LULC Classification  

The use of late rainy season image (e.g., October image) was found more suitable than single image 

from other seasons (mid rainy, early rainy and dry seasons) for LULC classification in the Sudanese 

savannah of southwest BF. This is due the fact that late rainy season image provides better spectral 

information to separate confusing LULC classes such as agricultural area and natural vegetation. 

Medicinal, sacred, and fruit trees maintained in croplands creating intermixed areas (Figure 6) can be 

seen as one major reason for this spectral confusion between these two classes in the study region.  

The result obtained for the Sudanese savannah are in agreement with the study by Lunetta and  

Balogh [10] and Key et al. [14], who noticed an improvement in LULC classification accuracy when 

they used multi-temporal images as compared to mono-temporal. However, findings in this study are in 

contrast with those reported in Langley et al. [19]. This is because the study by Langley et al. [19] focused 

on areas dominated by grassland located in the Jornada del Muerto plain of southern New Mexico, while 

the present work investigated an area dominated by woodland and mixed vegetation with many patterns 

of agricultural areas. These findings therefore highlight that differences in environment and LULC types 

might play a critical role. 

Multi-temporal classification enables the analysis of images acquired at different phenological stages, 

which adds useful information for the classification, and in turn permits a better class discrimination. It 

has to be noted that this research did not assess different multi-temporal image compositions, like various 

combinations of months, which could be helpful for the choice of adequate temporal images [47,48]. 

However, the mono-temporal results strongly indicate that for multi-temporal mapping, the inclusion of 

late rainy season images is of relevance for accurate LULC mapping in southwest Burkina Faso. The 

remaining challenge is that frequent cloud cover in the region may reduce the availability of data in such 

important temporal windows suitable for classification [49].  

In the face of frequently disturbed atmospheric conditions and poor availability of cloud-free satellite 

data in the study region, it is of high interest that ancillary data can significantly improve LULC 

classification to almost the same accuracy level as multi-temporal classifications. In the study area for 

instance, natural vegetation distribution (e.g., Woodland) is influenced by topography [13]. This explains 

the usefulness of including environmental variables into LULC discrimination especially elevation and 

geomorphology units that added most inputs to the classification after the remotely sensed infrared 
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bands. These results confirm similar conclusions of previous studies, which utilized the environmental 

settings as add-on for an improved classification. Sesnie et al. [15] found the overall accuracy increasing 

from 82.4% to 87.4% with the addition of terrain variables (e.g., elevation and slope) in the classification 

of nine land cover types in Nicaraguan tropical dry forest. For monitoring of land-cover change in San 

Diego County, Rogan et al. [11] noted that ancillary variables (elevation, fire history, and Slope) 

contributed 15% to the overall accuracy of land-cover change mapping.  

The most accurate classification was achieved when multi-temporal images and ancillary data were 

combined. The accuracy of this approach significantly differed from mono-temporal classification (as 

shown by the McNemar tests at the 95% confidence level), but not from classification results using a 

combination of specific mono-temporal image with ancillary data. This again shows that combining 

mono-temporal satellite data with information about environmental settings can be assessed to be a 

suitable alternative even in the heterogeneous savannah of southwest Burkina Faso.  

The ancillary data showed positive impact on the classification results, but it needs to be stated that 

geomorphology and soil data, were produced at a scale of 1:500,000, which is at a coarse spatial 

resolution in comparison to 30 m Landsat pixels. The use of higher spatial resolution data matching the 

satellite data pixel could possibly improve the accuracy of LULC classifications. In general, 

LULC/LULCC maps presented in this study can be seen as a valuable input for training and validating 

global or regional LULC maps, which in turn will be used for regional assessments e.g. of the carbon 

budget [50]. Local maps are of particular value within the very complex landscape of West Africa, which 

extremely challenges the accurateness of existing regional to global maps [51]. Assessing the accuracy 

of regional maps requires an estimation of error propagation and hence documented quality information 

about the local input maps. The maps presented here, have such quality attributes even though it must 

be stated that validation was carried out on only 28.5% of the study area. For applying the validation 

throughout the study area, the availability of more high-resolution data sets would be desirable. With the 

increasing number of high-resolution data sources (e.g., QuickBird, RapidEye and Ikonos), future 

studies will potentially consider larger portions of their study area for accuracy assessment, which may 

give more confidence to the results. However, for instance validation activities of other LULC mapping 

studies relying on field observations can usually cover only those parts of the study areas which can be 

accessed either by car or by bike (e.g., [13]), which also questions the spatial distribution of the samples 

and hence the overall validity of the accuracy assessment. However, a validated LULC map based on 

some portions of the study area remains more reliable than a non-validated LULC map as observed in 

previous studies conducted in West Africa (e.g., [21]). 

 

Figure 6. Harvested crop intermixed with trees in the study area. 
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4.2. LULCC in the Study Area 

Availability of adequate reference data provided a unique baseline for conducting LULCC map 

accuracy assessment in southwestern Burkina Faso. The observed changes of LULC in the study area 

were characterized by the increase in agricultural area and bare surface at the expense of natural 

vegetation (mixed vegetation and woodland). These dynamics attest to the ongoing deforestation in the 

southwest of Burkina Faso. Human activities are the main drivers of these changes in LULC, because in 

this region, where farming is characterized by low inputs such as fertilizers, farms are usually expanded 

and scattered across the landscape to increase yield [52]. Such a practice combined with population 

growth could explain the conversion of relatively huge areas of natural vegetation to agricultural area, 

as was observed in the period from 1999 to 2011. This conversion was also noticed elsewhere in the 

Sudanese savannah (e.g., [17,18,22]). Besides, in this region, fallowing practice has been reduced [53] 

leading to excessive cultivation of the same land over many years resulting in soil fertility loss, which 

favors the augmentation of bare surface. Furthermore, expansion of human settlement across the study 

area, as in Diebougou, Dano, Fara and Dissin, could also be a contributory factor to increasing bare 

surface at the expense of natural vegetation. Apart from agriculture and urban growth, other 

anthropogenic activities, such as wood harvesting for charcoal production, bushfire and mining, 

contribute to deforestation in the study area (Figure 7). 

The loss of natural vegetation could have also been exacerbated by climate variability, which acts as 

a catalyst to the anthropogenic pressure. Indeed, in West Africa, IPCC [54] reported that climate change 

has increased rainfall variability and the recurrence of extreme events such as droughts.  

Figure 8 shows the temporal variability of rainfall (1981–2012) in the study area where the red bars 

indicates deficit of water and the blue represents the surplus of water. Three out of four stations (Fara, 

Diebougou and Dissin) highlighted that the years 1999 and 2006 were more humid than 2011.  

In addition, the year 1999 was characterized by floods in the southwest of Burkina Faso [55]. This further 

buttress the observed increase in bare surface in 2011 compared to 2006 and 1999. In fact, in this region, 

a decrease in rainfall leads to an increase in barren land area [12], mainly due to the close relationship 

between rainfall variability and vegetation dynamics [56]. 

  
(a) (b) 

Figure 7. (a) Trees cut for new cropland; and (b) fuel wood collected in an area devastated  

by bushfire. 
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Figure 8. Rainfall variability in the study area (1981–2012) expressed as standardized 

precipitation index (SPI) distribution (Rainfall data collected from the national direction of 

meteorology of Burkina Faso). 

5. Conclusions 

This study, carried out in the Sudanese savannah of southwest Burkina Faso, compared  

mono-temporal and multi-temporal classification as well as their combination with ancillary data to 

determine the best classification method in order to produce an accurate post-classification LULCC map. 

In the study region, late rainy season images, used as input to a RF classifier algorithm, produced higher 

overall accuracy (88%) than images from other periods. Multi-temporal classification significantly 

improved mono-temporal classification of LULC in terms of overall and class-wise accuracies. It was 

found that the overall accuracy increased from 88% to 94%, the average user’s from 87% to 93%, and 

the average producer’s from 86% to 91%. The inclusion of ancillary data was found beneficial for  

multi-temporal classifications and also enhances mono-temporal classification accuracies to the level of  

multi-temporal classifications (94%). Among the ancillary data (elevation, geomorphology, slope and 

soil types), elevation and geomorphology were found to be the most contributors to LULC classification 

in the study area. The results suggest that, at least for the heterogeneous Sudanese savannah of southwest 

Burkina Faso, the inclusion of ancillary data reduces the data requirements for accurate LULC/LULCC 

maps, where atmospheric conditions are the limiting factors for the availability of multi-temporal data. 

However, at least a cloud-free satellite data set from late rainy season period should be available for 

successful mapping. Of course, this method needs to be tested in other regions not only within the 

Sudanese savannah for a more generalized assessment of its performance and spatial transferability to 

LULC/LULCC maps in West Africa and beyond.  
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The study also found unsustainable LULC dynamics within the savannah of southwest Burkina Faso, 

which is characterized by increasing agricultural area and bare surface at the detriment of woodland and 

mixed vegetation. For instance, between 1999 and 2011, agricultural area increased from 22.6% ± 2.3%  

to 29.7% ± 1.6%, and contrary, woodland and mixed vegetation decreased from 40.1% ± 2.0%  

to 36.4% ± 2.1% and from 33.2% ± 2.3% to 30.4% ± 1.3%, respectively. The LULCC map produced an 

overall accuracy of 92% and the loss of natural vegetation was estimated to be 17.9% ± 2.5% in the 

period 1999–2011. Human activities are supposed to be the main drivers of the observed changes in 

LULC, but rainfall variability most probably also contributed to the observed LULCC. The loss of 

natural vegetation increases carbon emission in the atmosphere and could accelerate the process of land 

degradation in the study area. Of course, bi-temporal comparisons cannot attribute all observed 

alterations to land use change but can be seen as indicators of ongoing developments. Trend analysis  

of vegetation cover such as those obtained from moderate resolution time series (e.g., Moderate-Resolution 

Imaging Spectroradiometer, MODIS) can substantiate the hints of the high-resolution change map and 

allows for better assessment of intra-annual variability of vegetation cover, e.g., due to climate variability 

within the change analysis. However, the LULCC maps presented in this study can successfully support 

monitoring of ongoing reforestation activities. It can also be used to locate areas where adequate 

measures, for more efficient and sustainable land use management, can be introduced to safeguard the 

natural environment and livelihood of local population in the southwest Burkina Faso. 
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